
Software Evolution Analysis
and Visualization

Harald Gall
University of Zurich
Department of Informatics
http://seal.ifi.uzh.ch

2seal.ifi.uzh.ch

"The study of products is vastly more
important than the study of production,
even for understanding production and its
methods."

Karl Popper

3seal.ifi.uzh.ch

On the study of products...

4seal.ifi.uzh.ch

Goals & Questions

 What can we learn about
 Software and its structure
 Change impact and propagation
 Developer contributions and efforts
 Team structure and social networks
 Change smells, trends and hot spots
 Faults and defects

5seal.ifi.uzh.ch

Mining Software Repositories...

 Code base
 Which entities co-evolve?
 Do code and comments co-evolve?

 Bugs and Changes
 Who should fix this bug?
 How long will it take to fix this bug?
 Predicting bugs from cached bug history
 When do changes induce fixes?

 Project and Process
 Project memory for software development

 Software Expertise
 Identifying expertise from changes and bug reports

6seal.ifi.uzh.ch

Techniques

Software
Analysis

Software Quality Models

Code Duplication Analysis

Software Process

Reengineering Patterns

Architecture ReflexionFeature Analysis

Developer Patterns

Software Artifacts Analysis

Software Evolution Metrics

Software Visualization

Reverse Engineering

Software Evolution Analysis

Standard Quality Characteristics

Software Analysis

Analyses & Visualizations

Changes and bug fixes
Developer tasks & patterns
Social networks

8seal.ifi.uzh.ch

Release History Database

Related work
 Hipikat, Cubranic et al.
 softChange, German
 Kenyon, Bevan et al.
 s.e.a.l. Evolizer, Gall et al.

9seal.ifi.uzh.ch

The gestalt of Fractal Figures

10seal.ifi.uzh.ch

How many developers per entity?

11seal.ifi.uzh.ch

How many bugs per entity?

Marco D'Ambros, Michele Lanza and Harald C. Gall, Fractal Figures: Visualizing Development Effort for CVS Entities
In Proceedings of International Workshop on Visualizing Software For Understanding and Analysis, 2005.

12seal.ifi.uzh.ch

Who should fix this bug?

 Apply machine learning algorithms to open bug
repository

 Learn the kinds of reports that each developer
resolves

 A classifier suggests developers who should
resolve the bug

 Precision: 57% in Eclipse, 75% in Firefox

Anvik, J., Hiew, L., and Murphy, G. C. 2006. Who should fix this bug?
In Proceeding of the 28th international Conference on Software Engineering, May 20 - 28, 2006.

13seal.ifi.uzh.ch

How long will it take to fix this bug?

 Automatically predicting the fixing effort, i.e.,
the person-hours spent on fixing an issue

 Effort data from JBoss project
 Quality of predictions

 issues: close to actual effort
 bugs: beating naive predictions

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, Andreas Zeller, How Long Will It Take to Fix This Bug?
In Proceedings of the Fourth International Workshop on Mining Software Repositories, May, 2007.

14seal.ifi.uzh.ch

When do changes induce fixes?
 Fix-inducing changes
 Which change properties may

lead to problems?
 How error-prone is my product?
 How can I filter out problematic

changes?
 Can I improve guidance along

related changes?

 --> Fridays (Eclipse) or Sundays
(Mozilla)

Śliwerski, J., Zimmermann, T., and Zeller, A. 2005. When do changes induce fixes?
In Proceedings of the 2005 international Workshop on Mining Software Repositories, St. Louis, Missouri, May 2005.

Code Ownership & Co-Evolution

16seal.ifi.uzh.ch

Who is the code owner?

ownership = 30% of revisions

CVS check-in analysis
combined with
Formal Concept Analysis (FCA)

17seal.ifi.uzh.ch

Which entities co-evolve?

Fan-in
invoke

access

Class/module metrics
files, directories,

packages, ...

global variables,

NOM, NOA, ...

Change dependencies
change couplings

bugs, issues

Fan-out
invoke

access

Software Evolution Metrics

Martin Pinzger, Harald C. Gall, Michael Fischer, and Michele Lanza, Visualizing Multiple Evolution Metrics
In Proceedings of the ACM Symposium on Software Visualization, 2005.

18seal.ifi.uzh.ch

Mozilla Module DOM: 0.92 -> 1.7

19seal.ifi.uzh.ch

Multiple Evolution Metrics

Kiviat graph:
26 metrics
7 Mozilla modules
7 subsequent releases

ChangeDistilling

Source Code Change Extraction

21seal.ifi.uzh.ch

Change Analysis

 Current change history analysis rely on versioning systems
(e.g., CVS)

 Extracting source code changes by means of text diffs has
problems
 determine enclosing entity (e.g., method)
 kind of statement which changed (e.g., return statement)
 kind of change (i.e., insert, delete, move, update)

22seal.ifi.uzh.ch

Change Analysis

1967,1970c1964,1965
< if (d != null) {
< d.foo();
< d.bar();
< }

> d.foo();
> d.bar();

CVS diff

CVS log: “lines: +2 -4”

• 3 Body changes

• 2 Statement parent changes

• 1 Statement delete

• Change significance?

23seal.ifi.uzh.ch

Change Distilling

 Identifying change types and change patterns
 Eliminate mass changes and other noise

24seal.ifi.uzh.ch

Examples of Change Types

 Classification of 35 change types

crucialReturn Type Update
mediumParameter Renaming
lowFinal Modifier Delete
significance:Declaration part changes:

crucialRemoved Functionality
mediumCondition Expression Change
lowAdditional Object State
significance:Body part changes:

25seal.ifi.uzh.ch

Potential of Change Type Analysis

 Stability of interfaces
 Change impact
 Code and Comments
 Changes due to bug fixes
 Many or significant changes

26seal.ifi.uzh.ch

Which changes are significant?

Example from ArgoUML

Developer Networks

Communication Structures in
Software Teams

28seal.ifi.uzh.ch

What are the developer networks?

 Conway‘s law
 Inter-team collaboration
 Ownership changes
 Key personalities in social networks

 connectors vs. communicators
 gatekeepers, influencers, innovators, leaders and

communicators as trendsetters
 Information for project manager vs. newcomer

29seal.ifi.uzh.ch

Integration of Data Sources

Mails CVSBugs

MHonArc
html

iQuest

Possible Follow-Ups

Follow-Ups

ViewVC
html

Evolizer

File Size Calculator

Importer

Interaction Paths

Bugzilla
xml/html

Project Consolidation

Person Finder
 Allocation Person MatchingPerson Matching

Ownership Calculator

30seal.ifi.uzh.ch

Scenario: newcomer Kevin

31seal.ifi.uzh.ch

Scenario: key person Rafael leaving

32seal.ifi.uzh.ch

Scenario: distributed teams

33seal.ifi.uzh.ch

SNA Cockpit

Evolizer

A platform for harvesting and provisioning
of software evolution data

35seal.ifi.uzh.ch

The Architecture of Evolizer

 Plug-in architecture
 Layers

 Repositories
 Data importers
 Data integrators
 Data providers
 Data consumers

36seal.ifi.uzh.ch

Evolizer Platform

37seal.ifi.uzh.ch

Data Models in Evolizer

 Data Models provide an interface to the
information harvested from a software
repository
 One model per repository
 Models can integrate other models

38seal.ifi.uzh.ch

Version Control Model

39seal.ifi.uzh.ch

Bug Tracking Model

40seal.ifi.uzh.ch

Bridging the Gap

41seal.ifi.uzh.ch

Bridging the Gap

42seal.ifi.uzh.ch

Evolizer Tools

 ChangeDistiller: change types and
significance

 ArchView: evolution metrics
 SNA Cockpit: developer networks
 Evolution Browser
 Comment Analyzer: code and comments
 Clone Evolution

Conclusions

44seal.ifi.uzh.ch

Résumé
 Analyzing software evolution is a multi-source/-

view/-dimension/-stakeholder challenge
 Technical: resides in modeling and handling various kinds

of information
 Conceptual: answering interesting questions and

presenting the results (visually)

 Mining software repositories has been embraced by
both the software evolution and the empirical
software engineering community

 Social networks are a key

45seal.ifi.uzh.ch

Developers, developers, developers

46seal.ifi.uzh.ch

References /1
 Anvik, J., Hiew, L., and Murphy, G. C., Who should fix this bug?. In Proceeding of the 28th

international Conference on Software Engineering, Shanghai, China, May 2006
 John Anvik , Gail C. Murphy, Determining Implementation Expertise from Bug Reports, Proceedings

of the Fourth International Workshop on Mining Software Repositories, May 2007
 Ivan T. Bowman, Richard C. Holt, Reconstructing Ownership Architectures To Help Understand

Software Systems, Proceedings of the 7th International Workshop on Program Comprehension, May
1999

 G. Canfora and L. Cerulo. How software repositories can help in resolving a new change request. In
Workshop on Empirical Studies in Reverse Engineering, 2005

 D. Čubranić and G. C. Murphy. Automatic bug triage using text classification. In Proceedings of
Software Engineering and Knowledge Engineering, pages 92--97, 2004

 Davor Cubranic, Gail C. Murphy, Janice Singer, Kellogg S. Booth, Hipikat: A Project Memory for
Software Development, IEEE Transactions on Software Engineering, v.31 n.6, p.446-465, June 2005

 M. Fischer, M. Pinzger, and H. Gall, Populating a Release History Database from Version Control
and Bug Tracking Systems, Proc. of 19th International Conference on Software Maintenance (ICSM
2003), Amsterdam, Netherlands, IEEE CS, 2003

 Fluri, B., Wuersch, M., Gall, H.C.: Do code and comments co-evolve? on the relation between source
code and comment changes. In: Proc. Working Conf. Reverse Eng., IEEE CS, 2007

 Beat Fluri, Michael Würsch, Martin Pinzger, Harald C. Gall, Change Distilling: Tree Differencing for
Fine-Grained Source Code Change Extraction, IEEE Transactions in Software Engineering (TSE),
vol. 33, no. 11, November 2007

47seal.ifi.uzh.ch

References /2
 Kim, S. and Ernst, M. D. 2007. Which warnings should I fix first?. In Proceedings of the the 6th Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC-FSE ‘07), Dubrovnik, Croatia, September 2007

 Audris Mockus , James D. Herbsleb, Expertise browser: a quantitative approach to identifying
expertise, Proceedings of the 24th International Conference on Software Engineering (ICSE 2002),
Orlando, Florida, May 2002

 Nachiappan Nagappan, Brendan Murphy, Victor Basili, The Influence of Organizational Structure on
Software Quality: An Empirical Case Study, ICSE 2008 (to appear)

 S. Kim, T. Zimmermann, E. J. Whitehead, Jr., and A. Zeller, Predicting Bugs from Cached History,
Proc. of the 29th International Conference on Software Engineering (ICSE 2007), Minneapolis, USA,
May 2007

 Gursimran Singh Walia, Jeffrey C Carver, Nachiappan Nagappan, The Effect of the Number of
Inspectors on the Defect Estimates Produced by Capture-Recapture Models, ICSE 2008 (to appear)

 Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, Andreas Zeller, How Long Will It Take to Fix
This Bug?, Proceedings of the Fourth International Workshop on Mining Software Repositories, May
2007

 J. Zliwerski, T. Zimmermann, and A. Zeller, When Do Changes Induce Fixes?, Proc. of Int'l
Workshop on Mining Software Repositories (MSR 2005), Saint Louis, Missouri, USA, May 2005

 Thomas Zimmermann, Nachiappan Nagappan, Predicting Defects using Social Network Analysis on
Dependency Graphs, ICSE 2008 (to appear)

