
Integration Models
in a .NET Plug-in Framework*

Reinhard Wolfinger, Herbert Prähofer

Christian Doppler Laboratory for Automated Software Engineering
Johannes Kepler University, 4040 Linz, Austria

wolfinger@ase.jku.at
herbert.praehofer@jku.at

Abstract: Applications based on plug-in architectures are extensible through third-
parties and enable customized user environments. We argue that extensibility and
customization are important features in enterprise application software. In an
ongoing research project we are developing a plug-in platform in .NET for the
enterprise domain. Targeting the enterprise domain raises special requirements
with security, reliability and versioning. This paper presents models for host and
plug-in integration that address execution of plug-ins in reliable settings and
allowing independent evolution of core applications and plug-ins and it will show
how this has been solved in a consistent and transparent way in the .NET plug-in
framework.

1 Introduction

The plug-in approach [Bg03] enables developers to build application software that is in-
herently extensible and customizable to the particular needs of an individual user. A
small core application can be extended with features implemented as components that
are plugged into the core and integrate seamlessly with it. Although plug-ins originally
became popular with web browser applications like Mozilla Firefox [Sa00] or with the
Eclipse Platform [Ec03], we have found good reasons to enable extensibility and cus-
tomizability in application software for the enterprise space.

Extensibility is important because it is simply not possible for an application of any size
or complexity to hit 100% of the requirements out of the box. Even if an application cov-
ers all major scenarios, the customer is always asking for more features. Some of those
features are niche or industry specific. Or they may not be in the manufacturer's core
competence, or they are far enough of the list in terms of priority. Thus for commercial
reasons the manufacturer decides not to include those features in its base version of the
product. However, the customer still needs a way to fill the gap between what the applic-

* This work has been conducted in cooperation with BMD Systemhaus GmbH, Austria, and has
been supported by the Christian Doppler Forschungsgesellschaft, Austria.

ation provides and what they really need to satisfy their business. When extensibility is
built into the product, this enables the customer or distributors to fill the gap between
what the manufacturer is providing and what the customer really needs to solve its busi-
ness problems. And in doing so they create a virtue cycle. The manufacturer can still sell
the base version of the product and hit what he thinks is the majority of customer scen-
arios and allows third-parties to fill the gap. They create those specific plug-ins that
make the application more able to participate in a wider range of customer scenarios and
get even more deeply integrated in the customer's business processes. The application
plus the wide range of plug-ins that are created on behalf of the manufacturer by third-
parties result in an aggregate application, that has broader appeal to a wider range of
customers.

Moreover, customizability is a critical factor for usability because enterprise software is
inherently complex and feature-rich. Modern enterprises define a significant number of
business processes, whereat the individual user participates only in a rather small frac-
tion of those. Hence if the user interface of an enterprise application is cramped with fea-
tures for all business processes, users struggle to find their share of features that they will
use to participate in their own processes. The plug-in approach enables customization
and therefore improves focus and reduces clutter by providing a customized user
environment.

In an ongoing project we develop a new plug-in framework in .NET for the enterprise
domain. Our plug-in framework shows much resemblance to Eclipse, however, whereas
Eclipse describes extensibility with dedicated XML configuration files, our framework
relies on .NET concepts such as custom attributes and metadata to specify relevant in-
formation directly in the source code of an application [Wo06]. We argue that this ap-
proach is more readable and easier to maintain. Moreover, it exploits .NET specific fea-
tures for plug-in deployment, discovery, qualification, integration, activation,
deactivation and unloading of extensions at run-time. Additionally our plug-in frame-
work encounters special requirements with security, reliability and versioning stemming
from the enterprise domain. In this paper we address reliability and versioning issues.

1.1 Problem Areas

The basic issues of a plug-in framework are simple. There is a host application that al-
lows architectural changes through component addition, removal and replacement. To
make that work, we have essentially seven problems to solve:

(a) Contract specification. The host defines a contract how it wants to be extended and
how it intends to use a plug-in. The plug-in relies on this contract and has to provide an
appropriate implementation.

(b) Plug-in deployment. The plug-in contributor needs to package the extension imple-
mentation and get it to the machine where it is going to run.

(c) Plug-in discovery. The plug-in framework needs to discover that a plug-in has been
added. It is desirable that a host discovers plug-in additions at start-up as well as at run-
time.

(d) Plug-in qualification. The plug-in framework needs to make sure that a plug-in is ac-
tually appropriate for using with this host.

(e) Plug-in integration. The plug-in framework has to integrate the plug-in, possibly in a
lazy loading scenario where the plug-in is integrated without actually loading the code.

(f) Plug-in activation. When finally used, the plug-in framework has to activate the
plug-in. Usually it will load the code and create the respective objects.

(g) Plug-in deactivation. The plug-in framework removes a plug-in that is no longer
needed. Removal means to deactivate the instance, close the communication path, free
the environment, unload the implementation and reclaim resources.

1.2 Special Requirements

As our framework targets enterprise applications instead of tool environments, new re-
quirements emerge. Before we present our plug-in solution, we want to elaborate on a
couple of challenges that we consider crucial for application of the plug-in framework in
the enterprise domain:

(a) Reliability. In the enterprise domain customers expect high availability. Therefore,
the host might need to take precautions against being taken down by a ragged plug-in.
For example, if a plug-in will do calls to unmanaged code or other non-verifiable, insec-
ure operations, the host must make provisions that it is executed independently and can
protect itself from a crash of its plug-ins.

(b) Versioning. In an open plug-in world it is impossible to test all plug-ins against new
versions of a host. If we want to update a host and still use the existing plug-ins or up-
date a plug-in independently of the host, we need an architecture which is version resili-
ent. A version resilient model should provide backward as well as forward compatibility.
Backward compatibility means that a new host can load plug-ins that targeted earlier
versions of the host. Forward compatibility means that an old host can load plug-ins that
targeted newer versions of the host.

(c) Security. One important reason for enabling extensibility is to enable third parties to
contribute functionality. A third party is typically a partner company, a reseller or even
the user itself. The developer of the host application might probably restrict what a plug-
in can do and can not do. The host application might give a plug-in some permissions
but not all. And the plug-in developer might require certain permissions. The framework
needs to match those permissions and requirements and to negotiate settings acceptable
to both.

This paper will specially address the issues of executing plug-ins in reliable settings and
allowing independent evolution of core applications and plug-ins. And it will show how
this has been solved in a consistent and transparent way in the .NET plug-in framework.
Security, however, is not addressed in this paper, but is subject to ongoing research. We
will briefly discuss security in the outlook in the last section.

1.3 Outline of Paper

The content of this paper will be as follows: The next section reviews the basic concepts,
in particular the slot and extension mechanism of our plug-in framework in .NET. Then
Section 3 will discuss the different integration models between host and plug-ins and
will discuss reliability and versioning issues. Section 4 will discuss the realization and
Section 5 will conclude with a summary and an outlook to future research directions.

2 .NET Plug-in Architecture

In this section the basic concepts of our plug-in architecture for the .NET platform is re-
viewed. In particular, the slot and extension mechanism is shown. For a detailed elabora-
tion the interested reader is referred to [Wo06].

The .NET plug-in platform shows much resemblance to Eclipse [Bg03]. So it supports
an easy, file copy-based deployment and discovery mechanism, it allows lazy loading
and static integration of plug-ins, and adopts an extension specification approach. How-
ever, it exploits and relies on .NET specific features and technology [Mo04]. In particu-
lar, whereas Eclipse describes extension points and extensions with dedicated XML con-
figuration files, our architecture relies on .NET concepts such as custom attributes and
metadata to specify relevant information directly in the source code of an application.

In our architecture a plug-in is a deployable .NET assembly which has explicit specifica-
tions of its slots and extensions. Slot specifications define how other plug-ins are inten-
ded to extend the functionality of this plug-in, whereas extension specifications define
how this plug-in makes contributions to slots of others. Therefore, slot and extension
specifications have to match. In essence, slots declare the types of information a plug-in
expects and the extensions fill this information slots accordingly. In its simplest form, a
plug-in specification is a structured list of name/value-pairs where the slot specifies the
required names and value ranges and the extension specification defines appropriate val-
ues for the extension at hand. The component defining the slot is called the extension
host and the component implementing the extension is called the extension contributor.

Figure 1: Slot and extension in host and contributor plug-in

Usually, plug-in extensions will occur on the level of run-time behaviour, i.e., plug-in
host and contributor will communicate based on a defined protocol in order to accom-
plish a particular task. The collaboration between the host and its contributor is defined
in the form of required and provided interfaces. The host will define the required inter-
face and the extension contributor has to provide an implementation for it. Figure 1 de-
picts the structure of slot and extension specifications in host and contributor plug-ins.
The interface in the host and the implementation class in the contributor specify the
agreed collaboration protocol. Additional name/value pairs define other properties that
the host requires to make use of the extension.

Specification of slots and extensions is based on .NET custom attributes [Mi01]. Custom
attributes are pieces of meta-information that can be attached to language constructs
such as classes, interfaces, methods or fields in the source code of an application. At run-
time the attributes attached to a language construct can be retrieved using reflection. In
addition to pre-defined attributes programmers can declare custom attributes by imple-
menting attribute classes with arbitrary properties whose values can be set when the at-
tribute is attached to a language construct.

The plug-in framework defines a set of custom attributes which are used for specifying
slots and extensions. So a Slot attribute is used for tagging program elements which be-
long to a slot. The Extension attribute is used to tag the program element belonging to
the extension. Additionally, slot specifications will define their own custom attributes to
be used by their extensions.

Let us clarify the approach by a simple example. The example is taken from the work-
bench component of our prototype rich client platform. The workbench plug-in is the ap-
plication's frame window and allows for an arbitrary number of actions to be plugged in.
An action represents a command that can be triggered by the user. The following code
snippet shows the specification of a simple Action slot, which allows extensions to con-
tribute actions called from menus and toolbars. The interface IAction is specified to be-
long to the slot by the Slot attribute. The slot Workbench.Action is identified by a unique
name. In the RequiredAttribute it is specified that an extension has to provide a Menu-
Item attribute. In the sequel this MenuItem attribute is defined by class MenuItemAttrib-
ute. It is intended to be used for specification of caption and icon of an action.

[Slot(Name="Workbench.Action")]
[RequiredAttribute("MenuItem")]
public interface IAction {

void Do(object sender, EventArgs e); }
[Slot(Name="Workbench.Action")]
public class MenuItemAttribute : Attribute { ... }

An extension implementation of slot Workbench.Action now has to implement the IAc-
tion interface and provide the MenuItem attribute. The following code snippet shows a
sample extension that contributes to slot Workbench.Action. The Extension attribute
identifies the slot by its unique name. It uses the MenuItem attribute to define caption
and icon to be used for this action in user interface widgets. Finally, the class HelloAc-
tion provides an implementation for the required slot interface IAction.

[Extension(Slot="Workbench.Action",Name="HelloAction")]
[MenuItem(Caption="Hello",Image="hello.ico")]
public class HelloAction : IAction {
 public void Do(object sender, EventArgs e) {
 MessageBox.Show("Hello world"); } }

3 Integration Models

In Section 1 we have discussed the issue of reliability and versioning for plug-in sys-
tems. In this section we incrementally develop four different plug-in integration models
and discuss problems and advantages of each of them [Mi05]. In Section 4 we will then
show how those are realized with .NET specific concepts and how they are supported in
our .NET plug-in framework.

3.1 Tightly Coupled

The first one is to start with a tightly coupled model. In .NET, tightly coupled means that
host and plug-in are in the same application domain as shown in figure 2. An application
domain can be perceived as a logical process with memory isolation that is built on top
of an operating system process [Lo03]. If both, host and plug-in assembly, share a single
application domain, then there is no kind of isolation possible.

Figure 2: Tightly coupled model

There are four problems with this tight coupling:

Problem #1: A tightly coupled plug-in cannot be unloaded. As the .NET Common Lan-
guage Runtime (CLR) does not have the ability to unload individual assemblies, a plug-
in once loaded cannot be unloaded.

Problem #2: Same CLR and framework for host and plug-in. If host and plug-in reside in
the same application domain, they have to agree to use the same version of the CLR and
they have to use the same version of all the frameworks.

Problem #3: Versioning - If host is updated, plug-ins must be recompiled. When the host
application is updated with a new version and if the plug-in was using types of the host,
the plug-in must be recompiled with the new types1. This impedes independent version-
ing of host and plug-ins.

Problem #4: Unsafe plug-in can cause system crashes. As host and plug-in operate in a
single CLR, a faulty plug-in doing unmanaged calls can pull down the whole
application.

3.2 Isolation Boundary

The obvious starting place, to solve those four problems, is to put an isolation boundary
between the host and the plug-in. In particular to put them in a separate application do-
main is an obvious approach in the .NET framework.

Figure 3: Model with application domain isolation boundary

Separate application domains solve problem #1, problems #2 to #4 remain. Now plug-
ins can be unloaded because the CLR can unload the plug-in application domain. Unfor-
tunately the isolation boundary brings in two new problems that we did not have before.

Problem #5: Application domain boundary requires remoting. Application domains in
.NET are separate memory spaces and communication between program elements in se-
parate application domains have to be done using .NET remoting. That means, in order
to cross the boundary, an object has to be either serializable or it has to be a marshal-by-
reference object.

Problem #6: Performance penalty. That other new problem is, that remoting brings in a
performance penalty.

3.3 Stable Contract

If we want to be version resilient, i.e. we want to make sure that we could actually up-
date the host application independently, a way is the introduction of a stable contract as
boundary between host and plug-in.

1 This is not an issue with assemblies that are not strong-named [Ri02, 72f]. Assemblies without
strong-names are considered by the CLR as presumably type compatible. As long as public
interfaces are not broken, there will not be type mismatch errors.

Figure 4: Stable contract model

The contract actually is supposed not to change. Host and plug-in rely on this stable con-
tract and will be developed against this stable contract. This results in backward and for-
ward compatibility. Host and plug-in now can evolve independently and will stay com-
patible. To make the stable contract work, a proxy is used on the host and an adaptor
object is used at the plug-in side.

The version resilient model solves problem #3, i.e. the versioning problem, but adds two
new problems:

Problem #7: Stable contract challenge. It is certainly a challenge to design a contract
between a host and the plug-ins which should not change in the future.

Problem #8: Implementation of proxy and adaptor. It represents an additional effort to
implement the proxy on the host side and that adaptor on the plug-in side.

3.4 Cross-Process Boundary

To provide even better isolation between host and plug-in, one can use independent pro-
cesses instead of an application domain.

Figure 5: Model with cross-process isolation boundary

That model solves the remaining problems #2 and #4. Now each process can have its
own CLR and its own .NET Framework. They are completely independent and using a
stable contract they are version resilient.

Problem #6 (worse): Performance penalty even higher.

Problem #9: Cannot use process-local resources. The plug-in cannot use any process-
local resources across that boundary.

Problem #10: Thread synchronization issues. Since it is no longer the same thread on
both sides we get a threading and re-entrancy problem.

Problem #11: Process life-cycle management. The framework has to host the plug-in
processes and it has to manage their life-cycle, e.g. it has to notice when a process goes
away.

4 Realization

In this section we present how the integration models from Section 3 are implemented in
our prototype plug-in framework. Our plug-in framework provides solutions for all sev-
en basic mechanism presented in Section 1.1. In this section we focus on those mechan-
isms that are affected by the integration models to provide reliability and versioning.

4.1 Contract Specification

Section 2 presented how we use slots and extensions to specify explicitly how a com-
ponent should be extended and how other plug-in components make their contributions.
The following code snippet revisits the Workbench.Action slot definition and the corres-
ponding HelloAction extension from Section 2 and adds some additional properties. An
AssemblyVersion attribute is added to enable version control on the contract. And in or-
der to support the isolated integration models, either application domain or cross-process
isolation, the Slot attribute gets additional properties to specify a proxy class and a proxy
assembly.

[assembly: AssemblyVersion("1.0.*")]
[Slot(Name="Workbench.Action",Proxy="ActionProxy",Assembly="Workbench.Proxy")]
[RequiredProperty("MenuItem")]
public interface IAction {
 void Do(object sender, EventArgs e); }

[assembly: AssemblyVersion("1.0.*")]
[Extension(Slot="Workbench.Action",Name="HelloAction",AutoLoad=false,
 Dependencies = new string[] { "Workbench" })]
[MenuItem(Caption="Hello",Image="hello.ico")]
public class HelloAction : IAction {
 public void Do(object sender, EventArgs e) {
 MessageBox.Show("Hello world"); } }

4.2 Deployment

We utilize .NET assemblies as unit of deployment. To enable version control we added
version information through the AssemblyVersion attribute and strong name identifica-
tion [Ri02, 72f]. The make the contract stable, the workbench plug-in providing the slot
Workbench.Action is built into two separate assemblies. A stable contract never versions
and does not change. Thus the slot definition for the workbench must be in its own sep-
arate assembly Workbench.Contracts.v1.dll, apart from the workbench plug-in itself
which resides in the assembly Workbench.dll. Plug-in assemblies reference that contract
assembly and in order to not break the types referenced by the plug-in it is crucial to not
recompile the contract assembly after it has shipped. To not break the contract, any sub-

sequent change or addition to the slot definition results in a completely new contract as-
sembly Workbench.Contracts.v2.dll. With the contract put in its separate assembly, the
implementation of the workbench component can be versioned without breaking any of
its plug-ins. Figure 6 shows the build schema to make the contract stable.

Figure 6: Build schema for stable contract Workbench.Contracts.v1.dll

4.3 Qualification

Qualification means to make sure that a plug-in is appropriate for using with a host, or to
be more specific, whether an extension is appropriate for a specific slot. A slot requires
an interface to be implemented and a number of values to be set for certain custom prop-
erties. Before a host can activate an extension, the framework checks whether that exten-
sions fulfills all those requirements.

Qualification is also about negotiating constraints. The host may put certain restrictions
on the integration model used for a particular slot. Or a plug-in might have requirements,
e.g. a plug-in might want to run in a separate process or cannot run in a separate process.
If a host has reliability concerns for a slot, it might intend to run plug-ins in a separate
process only. The framework negotiates and get both sides to agree.

4.4 Activation

The framework activates a plug-in in an environment that satisfies the constraints on
both the host and the plug-in. Activation is where the integration models from Section 3
really come into play. The plug-in uses a custom attribute IntegrationMode to specify its
integration mode requirements. Due to its impact on how an assembly is loaded by the
CLR, the integration mode must be specified for a whole plug-in assembly and not per
individual extension. The framework supports three levels of isolation for integration:

(a) HostAppDomain. The plug-in wants to be activated in the application domain of its
host. Therefore it will be tightly coupled to that host, which means unrestrained perform-
ance but the ability to be unloaded is tied to the host. If the host can be unloaded, so can
the plug-in, but only in association with the host.

(b) AppDomain. The plug-in wants to be activated in a separate application domain.
Communication between host and plug-in means remoting which brings a performance
penalty. The plug-in can be individually unloaded. Optionally the plug-in can specify a
friendly name for the application domain. By using the same friendly name, plug-ins can
consolidate into a shared application domain, which enhances performance within this
domain but requires those plug-ins to be unloaded in association.

(c) Process. The plug-in wants to be activated in a separate operating system process.
Communication between host and plug-in means remoting cross processes which brings
an even higher performance penalty compared to application domain isolation. The sep-
arate process can be individually stopped and destroyed.

If a plug-in omits to specify an integration mode, the default mode HostAppDomain is
used. Specifying the integration mode is as simple as setting the custom attribute Integ-
rationMode as shown below. To change the integration mode later on is as easy as chan-
ging one attribute value. No further coding work in the plug-in. Everything is done by
the framework. So the implementation of a plug-in is not affected by the integration
mode it is going to use.

[assembly: IsolationMode(AppDomain,FriendlyName="IsolatedHelloWorld")]
[Extension(Slot="Workbench.Action",Name="HelloAction", ...)]
public class HelloAction : IAction { ... }

However there is some additional coding effort in the host, if it wants to support applica-
tion domain or process isolation. The host needs to implement proxies for each of its
slots. As shown in the code snippet in Section 2 on page 9 the host needs to specify a
proxy class and a proxy assembly. The proxy class must inherit from MarshalByRefOb-
ject to enable remoting. Implementation of that proxy class is a routine task, since it is
simply a wrapper around the interface definition of the slot. We plan to take that imple-
mentation burden of the plug-in contributor by providing on-the-fly generated proxies in
future generations of the framework.

4.5 Deactivation

If a plug-in or a combination of plug-ins is used temporarily for a specific task we might
want to get rid of it. We want to deactivate the plug-in, i.e., remove it from the user in-
terface. In many cases we even want to unload the implementation and regain resources.
The plug-in framework can do this. And the important thing is, that it can do this without
restarting the host-application. The framework is monitoring plug-ins for removals.
When it detects that a plug-in has been removed from the repository the framework noti-
fies the host who can disintegrate UI elements before the framework destroys the exten-
sion instances. Depending on whether the plug-in had been isolated in a separate applic-
ation domain or process, the plug-in assembly is unloaded. Either immediately if the
plug-in had its own application domain, or deferred as soon as all other plug-ins within
the same domain have been deactivated.

Deactivation of plug-ins at run-time is the most important requirement for implementing
a hot-update capability. Hot update means to replace a running plug-in with a newer ver-
sion without restarting the application. With our plug-in framework, if a new version of

a currently active plug-in is installed to the repository by overwriting the previous ver-
sion, the framework will automatically unload the old version and activate the new ver-
sion. The rest of the application can keep running.

5 Summary and Outlook

In this paper we presented the basic problem areas when dealing with plug-ins and we
presented integration models that address issues that emerge when plug-in systems are
applied in the enterprise domain. Those integration models provide the groundwork for
security, reliability and versioning. The realization of the integration models poses im-
plementation challenges that need to be concealed from a plug-in developer. Our plug-in
framework shows that .NET concepts can be applied to accomplish those challenges in-
side the framework itself.

In this paper we discussed objectives, architecture, basic concepts, and implementation
issues of a new plug-in framework for the .NET platform. The plug-in framework is in-
tended to serve as a foundation for application software in the enterprise domain. A ma-
jor goal is that applications should become inherently extensible and customizable. The
plug-in framework shows much resemblance to Eclipse but uses .NET specific features
for plug-in contract specification, deployment, discovery, qualification, integration, act-
ivation and deactivation.

In the enterprise application domain, reliability and security requirements play a domin-
ant role. Additionally, the independent versioning of host and plug-ins has been identi-
fied as an indispensable demand from our industrial partner. This paper has described di-
fferent integration models between host and plug-ins. We have shown how the different
integration models solve the reliability and versioning problem and have shown how
they are supported by our current plug-in framework.

However, we have not tackled the problem of security so far, but this will be subject of a
continuing research step. Two main directions will be pursued. First we will work out
how the .NET security model with code access security and role-based security match
with the plug-in approach, in general, and the different integration models, in particular.
Second, we will investigate how behavioral contract specifications [Sc04][Zs05][Bl06]
and protocol verification approaches can help that a host application can protect itself
from faulty and possibly malicious plug-ins.

6 References

[Bg03] Beck, K., Gamma, E.: Contributing to Eclipse. Addison-Wesley, 2003.

[Bl06] Bläser, L.: A Component Language for Structured Parallel Programming. Lecture Notes
in Computer Science, Vol. 4228, Proceedings of 7th Joint Modular Languages Confer-
ence, JMLC 2006 Oxford, UK, September 13-15, 2006.

[Ec03] Eclipse Platform Technical Overview. Object Technology International, Inc.,
http://www.eclipse.org, February 2003.

[Lo03] Löwy, J.: Programming .NET Components. O'Reilly, 2003.

[Mi01] Microsoft: Microsoft C# Language Specifications. Microsoft Press, Redmond (2001).

[Mi05] Miller, J., Quinn, T.: CLR: Designing Managed AddIns for Reliability, Security and
Versioning. Session FUN309, Microsoft Professional Developers Conference, Septem-
ber 5, 2005.

[Mo04] Mössenböck, H., Beer W., Birngruber, D., Wöß, A.: .NET Application Development.
Pearson Addison Wesley, 2004.

[Ri02] Richter, J.: Applied Microsoft .NET Framework Programming. Microsoft Press, 2002.

[Sa00] Shaver, M., Ang, M.: Inside the Lizard: A Look at the Mozilla Technology and Archi-
tecture. http://www.mozilla.org, 2000.

[Sc04] Schmidt, H. W. et al.: Predictable Component Architectures Using Dependent Finite
State Machines. In: Wirsing, M.: Knapp, A., Balsamo, S. (eds.), Radical Innovations for
Software and Systems Engineering in the Future. 9th International Workshop, RISSF
2002. Springer-Verlag, 2004.

[Wo06] Wolfinger, R., Dhungana, D., Prähofer, H., Mössenböck, H.: A Component Plug-in Ar-
chitecture for the .NET Platform. Lecture Notes in Computer Science, Vol. 4228, Pro-
ceedings of 7th Joint Modular Languages Conference, JMLC 2006 Oxford, UK,
September 13-15, 2006.

[Zs05] Zulkernine, M., Seviora, R.: Towards automatic monitoring of component-based soft-
ware systems. J. Syst. Softw. 74 (1), Jan. 2005, pp. 15-24.

