
Copyright is held by the author/owner(s).
OOPSLA’08 October 19–23, 2008, Nashville, Tennessee, USA.
Copyright © 2008 ...

Plug-in Architecture and Design Guidelines
for Customizable Enterprise Applications

Reinhard Wolfinger
Christian Doppler Laboratory

for Automated Software Engineering
University Linz, Austria

wolfinger@ase.jku.at

Categories and Subject Descriptors D.2.11 [Software Engi-
neering]: Software Architectures – Patterns.

General Terms Design

Keywords Run-time adaptation; Plug-in architecture

1. Introduction
Today's enterprise software is often designed to have a com-
ponent-based architecture and built with object-oriented ap-
plication frameworks. Decomposition typically produces
rather coarse-grained business logic and presentation compo-
nents where features are usually deployed as a monolithic
piece of software. Eventually all customers get the same appli-
cation, while configuration or license codes determine whether
particular features are enabled or not. This one-size-fits-all
approach causes three major problems:

(a) Enterprise software is inherently complex and feature-
rich, while individual users only need a small fraction of the
features. Hence, if the user interface of an application i s
cramped with features for all business processes, users strug-
gle to find features they really need for their tasks.

(b) Customer requirements for enterprise applications are
characterized by a large variation and depend on industry or
company size. It is impossible for an enterprise application of
any size to fully meet customer requirements with a standard
product. Even if an application covers all the major business-
relevant scenarios, customers typically ask for more features
addressing their special needs. Some of these features are
highly industry-specific and thus outside the manufacturer's
core competence. Thus the manufacturer may decide not to
include them in the product. Still, customers need a way to add
features that are important to them.

(c) Enterprise customers tend to be conservative about de-
ploying patches. Often one business unit urges to deploy a
certain patch, while another business unit is reluctant to do so
yet. The coarse-grained deployment model assumes that patch-
ing means to replace large parts of the application. This rules
out selective patch deployment scenarios.

From these problems we derive the following main goals of
our research:

(a) Customizability and run-time adaptability. Complex
enterprise applications should be made customizable to the

needs of individual users by breaking it up into a thin core
application that can be extended with features that are plugged
into the core and integrate seamlessly with it. Using run-time
system adaptation mechanisms the application cannot only be
customized to the needs of individual users, but can also be
reconfigured for a specific working context without restarting
it.

(b) Extensibility through third parties and end users. End
users and third parties should be able to safely contribute any
functionality the manufacturer did not already provide in the
base product. Integrating this functionality should be made as
simple as dropping an executable into the application direc-
tory. The ultimate goal is a slim system with a potentially un-
limited, but controlled extensibility.

2. State of the Art
Although component technologies such as COM, CORBA,
.NET Assemblies or JavaBeans simplify software reuse and
independent component deployment, they rely on program-
matic effort for assembling components. Current architectures
often require component assembly to happen at development
time. This cannot adequately support enterprise applications
that increasingly need to be extensible by third parties and
reconfigurable at run time.

Recently, the concept of plug-in components has emerged
as a promising way of building applications that are inher-
ently extensible and customizable to the needs of specific
users. Several plug-in approaches have already found their way
into today’s software development practice. For instance, OSGi
defines a standard for deploying and managing coarse-grained
components. OSGi defines several mechanisms that are rele-
vant for plug-in frameworks such as lifecycle management of
components, service locators, or hot updates. The configura-
tion of a resulting application depends on the set of deployed
components, which may vary per user and can even change at
run time. Eclipse can be regarded as the most outstanding rep-
resentative of plug-in systems today. Eclipse plug-ins are fine-
grained components with a well-defined and published inter-
face that can plug into so-called extension points of other
components.

3. Research Issues
Despite the success of plug-in systems so far, many open re-
search issues remain as current plug-in systems still suffer
from several deficiencies:

(1) Run-time adaptation of systems, where users can decide
which features should be made available, is not fully auto-

mated in current systems. How can we support end users a t
run time to adapt an application to changing working sce-
narios?

(2) In Eclipse as well as in OSGi, the integration of plug-ins
may still require a significant programming effort. How can we
automate the integration of plug-ins?

(3) Application design in general is a challenging task, but
plug-in-based applications and run-time adaptation bring up
additional design issues. How can we provide guidance for
software architects on designing customizable and extensible
plug-in applications?

(4) Contract specification is an issue which we consider to
be rather immature. In Eclipse, for example, component con-
tracts are described as extension points and extensions in
dedicated XML files, an approach that we found to be rather
tedious. How can we make contract specification more effec-
tive and easier to maintain?
Moreover, OSGi targets embedded systems and Eclipse targets
tool environments. No plug-in approach is known which spe-
cifically targets enterprise applications. However, when apply-
ing the plug-in approach in the enterprise domain, new
challenges and requirements emerge:

(5) In the enterprise domain customers expect high avail-
ability of systems. Integrating plug-ins that have been con-
tributed by unknown third parties can represent an
unpredictable risk for the stability of the system. Current
plug-in systems do not offer a solution for this problem. How
can extensible applications take precautions against being
taken down by a flawed or malicious extension?

(6) An open plug-in system allows third parties to contrib-
ute functionality. The creator of a host application might want
to restrict what a plug-in can do and what it cannot do. Current
plug-in systems cannot restrict composition aspects, as would
be required, for example, to control which contributor can con-
tribute to which parts of the system. How can extensible appli-
cations constrain the permissions of plug-ins?

4. Research Approach
Our approach is to adopt the concept of plug-in component
architectures in the domain of enterprise software in order to
improve extensibility and customizability there. We will come
up with a new architecture, new design approaches and accom-
panying design guidelines.

In a first project phase we have conducted an comprehen-
sive review of the research literature as well as current industry
standards for flexible software architecture. Our research issues
address several weaknesses in state-of-the-art architecture.
Furthermore we have analyzed the enterprise software of our
industry partner BMD Systemhaus GmbH and have identified
additional requirements for plug-in based appliations in the
enterprise domain [2]. Together with our industrial partner we
have developed several usage scenarios for run-time adapta-
tion in the enterprise domain confirming the need of such an
approach [3].

As a follow-up step we have been designing a plug-in plat-
form featuring an ultra-thin core layer as well as a slot and
extension mechanism that enables developers to build highly
flexible applications. Our design and implementation address
the research issues (1), (2), (4), and (5) from Section 3. The
plug-in platform is based on the metaphor of slots and exten-
sions for specifying interaction and integration of compo-
nents. A slot specifies a contract for extending a piece of
software (called the slot host). An extension is a plug-in com-
ponent that fills a slot [1]. The core layer acts as a run-time

environment that automatically composes applications from a
set of available plug-ins. In contrast to other platforms, an
application can be dynamically reconfigured by addition or
removal of plug-ins without restarting the application [3]. Our
platform allows developers to restrict the permissions of plug-
ins, which attach to a specific slot, or to protect the host appli-
cation against crashes of buggy or malicious plug-ins taking
specific precautions for isolating the plug-in from the rest of
the application [2].

In 2008 and 2009 we plan to address the remaining research
issues (3) and (6) from Section 3 and to validate our approach:

Guidelines and Patterns. We currently conduct a case study
where we reengineer our industry partner's Customer Relation-
ship Management (CRM) application to fit our plug-in plat-
form. During the case study we identified design issues
specific for plug-in-based applications and run-time adapta-
tion. For instance, software architects need to find the right
level of granularity for plug-ins, to design stable slot inter-
faces before opening them to the public, or to consider that the
application's user interface will be adaptable at run time. On
those and other issues we want to provide guidance. We plan
to identify recurring patterns and best practices that we plan to
collect, categorize and document, e.g.:
• Classification. A plug-in based application is assembled

from different types of plug-ins. Some of our design pat-
terns will apply to all types, while others are specific to
certain plug-in types. In order to organize our design pat-
terns, we first categorize plug-ins.

• Patterns. In software engineering design patterns offer best
practice solutions to common design problems. They es-
tablish a common vocabulary and ease communication be-
tween developers. In a similar way we want to make our
design knowledge reusable for plug-in developers.

• Guidelines. We will provide guidance on how to proceed in
application design, i.e., how to apply our patterns in plug-
in design, and how to assemble the application by integrat-
ing plug-ins using our slot and extension mechanism.
Security constraints. We plan to refine the security mecha-

nisms in our platform for compositional purposes. This will
allow a slot host to control who is allowed to contribute based
on the provider's identity.

Evaluation. We plan to evaluate the plug-in platform and
design guidelines in a comparison study within the context of
students from a software engineering course. Additionally we
will continue the case study with our partner's CRM applica-
tion in order to evaluate run-time adapation scenarios. We plan
to present our evaluation strategy at the symposium's work-
shop and would appreciate feedback on how to best evaluate
our plug-in platform and design guidelines.

References
[1] Wolfinger, R., Dhungana, D., Prähofer, H., and Mössenböck, H.: A

Component Plug-in Architecture for the .NET Platform. 7th Joint
Modular Languages Conference (JMLC 2006), Oxford, UK, Sep-
tember 13-15, 2006.

[2] Wolfinger, R., and Prähofer, H.: Integration Models in a .NET Plug-
in Framework. SE 2007 - the Conference on Software Engineering,
Hamburg, Germany, March 27-30, 2007.

[3] Wolfinger, R., Reiter, S., Dhungana, D., Grünbacher, P., and
Prähofer, H.: Supporting Runtime System Adaptation through Prod-
uct Line Engineering and Plug-in Techniques. 7th International
Conference on Composition-Based Software Systems (ICCBSS
2008), Madrid, Spain, February 25-29, 2008 (Best Paper Award).

