
Three-level Customization of Software Products
Using a Product Line Approach

Abstract

Many office and enterprise business applications

are overloaded with features. As a result users strug-
gle in finding the functionality needed to support
their tasks. Customization support for existing appli-
cations is typically limited and often only accessible
to technical experts. Software product line ap-
proaches provide support for customizing complex
applications but typically focus on supporting soft-
ware producers in deriving customized products from
reusable components instead of supporting end-
users. We present a decision-oriented software prod-
uct line approach that supports customization at
three levels: suppliers deriving products for custom-
ers, customers configuring products to the needs of
specific user groups, and end-users customizing a
system to their personal needs. We describe tool sup-
port and illustrate the approach with a case study
from the domain of enterprise resource planning.

1. Introduction and Motivation

End-users of today’s office and enterprise busi-
ness applications often struggle to understand the
offered functionality. Typically, they only need a
small fraction of the features and are overwhelmed
by the many unneeded capabilities. Unfortunately,
applications provide only very limited capabilities for
customization to specific user needs (e.g., via user
preferences). The customization of applications re-
mains a challenging task relevant at different levels
and involving software producers, buyers, and end-
users.

It has been demonstrated that software product
lines provide a reasonable approach to customization
of complex software systems [16, 25]. A software
product line has been defined as “a set of software-
intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular
market segment or mission and that are developed
from a common set of core assets in a pre-scribed
way” [4]. Software product line engineering (SPLE)
covers processes for building, managing, and using
software product lines. It covers the areas of domain
engineering and application engineering [16]: During

domain engineering, the variability of the product
line’s solution components is explicitly captured in
variability models. During application engineering,
customized products are derived from the product
line by using these models and deploying the needed
solution components. The fundamental idea of SPLE
is that the efforts of defining the product line in do-
main engineering should be outweighed by the bene-
fits of being able to quickly derive customized prod-
ucts from the common core of shared, reusable assets
during application engineering [7]. So far, product
lines have mainly been used by software producers to
derive and deploy customized products for different
customers. In this paper, we demonstrate that product
lines can be adopted to equally provide customization
support for end-users. If software suppliers succeed
in deriving customized products for their customers,
end-users should similarly benefit from product line
capabilities.

In our collaboration with several industrial and
academic partners from the domains of industrial
automation [20], enterprise resource planning [27],
and service-oriented systems [5] end-users have re-
quested easy-to-use capabilities allowing them to
customize an application to their personal needs. We
believe that software product line approaches can
facilitate such end-user customization. In a product
line approach variability models describe the possible
choices for customization. Making these models ac-
cessible by end-users requires role- and task-specific
views on the offered variability. Furthermore, from a
technical perspective, run-time adaptation mecha-
nisms are required as end-users should not have to
worry about installation and system restarts after cus-
tomization [27].

Figure 1 depicts the three levels of product cus-
tomization we address with our approach together
with the involved stakeholders. At each customiza-
tion level, more variability is resolved as shown by
the funnel:

Level 1 – Product derivation by suppliers. Suppli-
ers resolve the variability captured in product line
variability models to derive a product based on cus-
tomers’ requirements. We have described our support
for this conventional product derivation in earlier
work, e.g., [18, 27].

Figure 1. Levels of product customization:

The three levels provide different views on
the same product line variability model.

Level 2 – Product configuration by customers.

Customers can further customize the product to or-
ganizational specifics, for example, to accommodate
different tasks and roles in different departments. In
many cases such as in enterprise resource planning
(ERP) customers are not the end-users but rather ac-
company the introduction of the product for other
customers.

Level 3 – Product customization by end-users.
The end-users of the product further customize the
product to their specific needs and wishes again using
the variability models [12]. They personalize the ap-
plication (ideally at run-time) to their tasks and re-
sponsibilities.

The remainder of this paper is structured as fol-
lows. Section 2 presents our approach and tool sup-
port for the mentioned levels of customization. In
Section 3, we present a case study of applying our
approach and tools in the enterprise resource plan-
ning domain for our industrial partner BMD. In Sec-
tion 4 we discuss related work. Section 5 rounds out
the paper with conclusions and an outlook on future
work.

2. Approach

Our three-level product customization approach is
based on DOPLER [8], a decision-oriented approach
to software product line engineering we have devel-
oped influenced by work of Schmid and John [21]
and the results of the Synthesis project [24]. DO-
PLER provides integrated capabilities for domain
engineering to define a product line and its variability
in models [9] as well as application engineering to

use the product line models for deriving and custom-
izing concrete products [18].

2.1 Product line variability model

The key elements of our model are shown in Fig-

ure 2:

Figure 2. A product line variability model
defines the reusable assets and decisions
specifying their variability. Users are pro-
vided with role-specific views on the deci-
sions to derive and customize products.

Assets represent all reusable elements of a product

line, for example, architectural elements, software
components, documentation, test cases, requirements,
etc. Assets can depend on each other, for example, a
component can require another component to func-
tion properly. In our approach, we first define the
assets to be modeled and their possible dependencies
in a meta-model specific for a particular domain. Our
approach allows defining arbitrary asset types, attrib-
utes, and dependencies to allow its use in different
domains [9].

Decisions represent the variation points in a prod-
uct line variability model. They allow documenting
and planning variability in domain engineering, guid-
ing users during derivation, and automating product
configuration. Decisions have a name and are repre-
sented by questions for different users of the variabil-
ity model. Questions can be asked to address variabil-
ity in both problem space and solution space. For
instance, a supplier might have to answer the ques-
tions “Shall the Archive plug-in be delivered?” and
“Shall the Scanning plug-in also be included?” These
questions are phrased in solution space language and
require deep technical understanding. A single deci-

sion documentManagement represented by the ques-
tion “How do you manage documents?” with the pos-
sible answers “archive” and/or “scan new” can in-
stead be provided in problem space language to make
the question more easily understandable by end-
users.

Decisions can depend on each other hierarchically
(e.g., a decision needs to be taken before another one)
and/or logically (e.g., taking a decision changes the
value of another one). This way, by modeling de-
pendencies, processing sequences for taking the deci-
sions can be defined. Decisions are related with as-
sets by explicitly modeling inclusion conditions.
Such conditions define for each asset when it will be
part of a product. The inclusion conditions thus also
establish trace links between user decisions and the
core assets. In our example (cf. Figure 3), the inclu-
sion condition of the Archive plug-in is con-
tains(documentManagement, {“archive”}) while for
the Scanning plug-in it is contains (documentMan-
agement, {“scan new”}). Answers can be selected in
arbitrary combinations, however, if the user selects
“scan new” (because Scanning requires Archive) the
answer “archive” is also selected and thereby also the
Archive plug-in.

Views help dealing with the complexity of prod-
uct line variability models that can easily contain
thousands of assets and hundreds of decisions with
thousands of often non-trivial dependencies among

them. Our approach allows creating views on such
large decision spaces. Decisions can be grouped in
views which allow treating several decisions as one
entity. Grouped decisions can also be prioritized
within views. For product derivation, such views can
be seen as a structure of the provided variability for
those who have to take the decisions. In our example,
the view ClaimsManagementView groups decisions
relevant for claims agents while the view MailView
groups decisions relevant for mail agents. Decisions
may be part of more than one view, i.e., ClaimsMan-
agementView also groups decisions that are relevant
for the MailView.

Roles allow defining responsibilities for views.
For instance, the role MailAgent is allowed to see
decisions in the MailView but not those in the
ClaimsManagementView which are only available for
the ClaimsAgent role.

Users. Different people are responsible for taking
decisions. In our approach users can be assigned one
or more roles. They have a default role and can
switch roles. The roles define which views are visible
to the user which in turn defines the decisions a user
is allowed to see and take. In our example (cf. Figure
3), user Jane can take on the roles of a MailAgent or
of a ClaimsAgent which makes the ClaimsManage-
mentView and the MailView visible for her. User Joe
only has the role MailAgent and can only work with
decisions visible in the MailView.

Figure 3. Partial BMD variability model (L1, L2, L3 denote the levels of customization).

All presented elements of our approach are useful
for supporting the three levels of customization (cf.
Figure 1). The supplier creates variability models
with assets and decisions. Based on these models, the
supplier derives a product for a particular customer.
The supplier further defines views, roles, and users
for its customers. Based on these views and roles,
customers can further configure their product and
define views, roles, and users for the end-users. The
end-user eventually only has quite a small view on
the provided variability but this small view allows
him to customize the product to his particular needs
determined by his role.

2.2 Tool support

We have developed three tools to support our de-

cision-oriented product line approach. Figure 4 de-
picts how these tools support our three-level customi-
zation approach:

Figure 4. Tool support for the three levels
of product customization.

DecisionKing [10] supports variability modeling

and management. The tool allows to model assets and
decisions with their attributes and dependencies. It
can be parameterized by creating a meta-model defin-
ing the assets to be modeled and their possible de-
pendencies. This allows creating variability models
for arbitrary domains. Users of DecisionKing use a
self-developed rule language (based on JBOSS
Rules1) to define dependencies between decisions and
assets. DecisionKing is based on a flexible plug-in
architecture that allows extending it with arbitrary
company-specific tools.

ProjectKing [18] supports preparing and guiding
product derivation and customization. Based on the
assets and decisions created with DecisionKing, the
user of ProjectKing can define views, roles, and us-
ers. The tool also allows defining default answers for

1 http://www.jboss.com/products/rules

decisions. Furthermore, meta-information and rec-
ommendations on decisions can be modeled by using
multimedia objects (e.g., audio or video files) that
provide further details and rationale for taking deci-
sions.

ConfigurationWizard [17] supports taking deci-
sions in product derivation and customization. It dis-
plays decisions’ questions for users based on their
assigned roles and views. Currently required assets
(calculated based on the taken decisions) can also be
displayed. By default, ConfigurationWizard displays
decisions as a flat list (cf. Figure 5). However, deci-
sions can also be visualized in graphs and trees
(based on decisions’ dependencies) to ease naviga-
tion in complex variability models [19]. Configura-
tionWizard is based on a flexible plug-in architecture
that allows the integration of domain-specific con-
figuration generators. In our case study (cf. Section
3), such a generator adapts a plug-in-based system at
run-time based on the list of required assets (which
changes by taking decisions) [27].

3. Case Study

We have conducted a case study in collaboration
with our industrial partner BMD Systemhaus GmbH2,
a medium-sized company offering enterprise soft-
ware products to 18.400 customers and 45.000 active
users mainly in Austria, Germany, and Hungary.
BMD Software is a comprehensive suite of enterprise
applications for customer relationship management
(CRM), accounting, cost accounting, payroll, enter-
prise resource planning, as well as production plan-
ning and control. BMD's target market is fairly diver-
sified, ranging from small tax counselors to medium-
sized auditing firms or large corporations. Custom-
ized products are an essential part of BMD's market-
ing strategy to address the needs of those markets.

3.1 Problem: Customizing legacy software

BMD’s software has evolved over time to its cur-

rent state but has originally not been created as a
product line. Still it supports product customization
on different levels through configuration mecha-
nisms.

At the supplier level BMD offers its software as
seven solutions that can be individually licensed and
composed into five main products covering major
markets, for example BMD-Consult for chartered
accountants or BMD-Commerce for corporations.
However, the deployed binaries are the same for each
product, regardless of the actual product features. An

2 http://www.bmd.com

individual license key shipped with the binaries de-
termines which features are licensed. Unlicensed fea-
tures can be either configured as visible but disabled
or completely hidden from the user interface. While
this approach worked well for a long time its down-
side is the monolithic application architecture result-
ing in huge binaries.

At the customer level configuration is accom-
plished in a similar fashion through permissions. A
customer can build individual feature subsets for dif-
ferent departments by revoking permissions for un-
needed features. Features for which a user lacks
privileges can thus be hidden.

At the end-user level, the permission mechanism
can also be applied to individual user accounts. A
user account can be granted permissions to individual
feature sets. However, since in practice this is typi-
cally done also by system administrators, end-users
have only limited ways to customize.

BMD's customization approach of deploying the
full feature set and simply hiding unused features
resulted in three problems: (i) The application execu-
table is about 90 megabytes in size, regardless of how
many features are used. This leads to a high network
load and constitutes problems for customers without
a broadband connection when deploying patches over
the internet. (ii) Another problem with patching is
when multiple users use the same deployed applica-
tion and one user urges a patch, while another user is
worried to apply a patch now, because it might break
other things. (iii) Furthermore, end-user customiza-
tion by disabling features in the user account is cum-
bersome when end-users want to perform adaptations
frequently, e.g., to specific working situations, sev-
eral times a day.

3.2 Converting the legacy software to a prod-
uct line

The main goal of our case study was to validate

the multi-level customization approach using a real-
world system. BMD’s software has a total size of 4
MLOC. To test our approach, we decided to first im-
prove the customizability of one significant subsys-
tem of BMD’s software. We chose BMDCRM which
has a total size of about 890 KLOC (420 KLOC are
specific to BMDCRM, 470 KLOC are framework
code used by all of BMD’s solutions). To be able to
improve the customizability of BMDCRM at the
supplier, customer and end-user level, we first had to
decompose the monolithic legacy software into a
small core system and a set of pluggable extensions
[27]. Each extension should contain a single user-
visible feature which can be integrated with the core
system using plug-in techniques. To understand and

document the possible combinations of these plug-ins
and to support customization, we applied our product
line approach and modeled the variability of the plug-
in-based BMDCRM system:

We identified the features available in BMDCRM
and organized them hierarchically on three levels of
granularity: Fine-grained plug-ins contain single
user-visible features that integrate individually into
the application's user interface; packages combine
tightly related features that are commonly used to-
gether into groups; coarse-grained solutions combine
packages into a solution, in our case study only one
solution (BMDCRM) was modeled. We defined
plug-ins, packages, and solutions as product line asset
types (cf. Figure 2). Solutions can contain packages
and packages can again contain plug-ins. Plug-ins
can require each other functionally. For example, the
plug-in Scanning providing document scanning func-
tionality requires the plug-in Archive providing
document archiving functionality. Archive can be
used without Scanning but Scanning requires Ar-
chive. We identified artifacts such as source code and
resources related to a feature to decompose features
to the granularity of plug-ins. We then reengineered
the individual components such that they can be used
with a plug-in platform as well as the core application
such that plug-ins can be integrated. For the resulting
plug-in solution (comprising 20 specific plug-ins and
28 components for the core system), we created a
variability model by defining plug-ins, packages and
solutions as assets and relating them with each other.
We modeled possible adaptations as decisions for the
three levels of customization. Decisions on higher
levels abstract decisions on lower levels. The rela-
tions between decisions and assets are described us-
ing inclusion conditions (see Section 2). Because of
these conditions, taking decisions allows determining
the set of required solutions, packages, and plug-ins.
Please note that there is no 1:1 mapping between de-
cisions and plug-in assets. Taking a decision can in-
clude/exclude several plug-ins at once. Overall, for
BMDCRM, the variability model contains 7 deci-
sions, 20 plug-ins, 4 packages, and 1 solution. Figure
3 partly depicts this variability model. Some depend-
encies (especially those between assets) have been
omitted in this figure for the sake of simplicity.

3.3 Applying the three-level customization
approach

The following scenario illustrates how our tool-

supported approach supports customizing BMDCRM
according to the three levels of customization:

Level 1 – Product derivation by suppliers. Based
on the product line variability model created with

DecisionKing BMD can use ConfigurationWizard to
derive a product for a customer. The partial example
shown in Figure 5 shows two decisions: “Do you
want to derive a full solution or choose particular
packages?” and “Which solution do you want to de-
rive?” A user might choose to derive the BMDCRM
solution which configures the default BMDCRM
product (top left in Figure 5) based on the underlying
variability model. All subordinate lower level deci-
sions are determined automatically and a list of re-
quired plug-ins is compiled. These can be deployed
together with the plug-in run-time environment and
constitute a product that can be shipped to customers.

The user at BMD then uses ProjectKing to create
views on the variability, to define roles responsible
for these views, and to specify users which can be
assigned the roles. This way, BMD can define which
open decisions later can be taken by the customer.
The customer is not allowed to change the chosen
solution but can only select additionally available
packages and particular plug-ins not included in the
solution by default.

Level 2 – Product configuration by customers.
The binaries of the BMDCRM solution are deployed
to the customer together with the BMD variability
model. Decisions taken at the supplier level constrain
the decision space for customers who use the vari-
ability model to configure products for internal use.
The customer also gets the ProjectKing and Configu-
rationWizard tools. Using ConfigurationWizard the
customer can further configure the BMDCRM solu-
tion based on the variability model. In the example
shown in Figure 5, this step is omitted for the sake of
simplicity. Customers can choose additional pack-
ages and configure chosen packages by taking the
decision "What are your tasks?" For example, the
sales department typically answers “Customer Man-
agement” or “Claims Management” which includes
packages from the BMDCRM solution. In the same
way as at supplier level, based on the taken decisions,
ConfigurationWizard computes a list of required
plug-ins for each internal product. These plug-ins
constitute the department's customized product and
are deployed to individual department locations.

Figure 5. Product derivation and (run-time) product customization of the BMDCRM system

with the ConfigurationWizard based on the product line variability model.

The customer uses ProjectKing to define the
views, roles, and users for end-users. Thereby the
customer specifies which end-users can take which
decisions to further customize the solution to their
personal needs.

Level 3 – Product customization by end-users.
End-users are provided with an already pre-
configured application. However, the application still
allows further customization by end-users using the
ConfigurationWizard. The tool utilizes the variability
model and the views, roles, and users defined by the
customer. The end-user level comprises two aspects
of customization:

Customizing application environments for indi-
vidual users. Different users have different tasks. For
example, a user Joe in the sales department might be
responsible for incoming mail orders and take the
decision "What are your tasks?" by answering
“Document Management”. For the subsequent deci-
sion "How do you manage documents?" he selects
scanning and archiving incoming letters to customize
the document management features.

Dynamically adapting the system to a working
situation at hand. A user Jane might decide her re-
sponsibilities on certain occasions. Most of the time
she is responsible for incoming mails just like Joe.
But on some days she needs to step in for a colleague
who is a claims agent. Since most of the time she
does not deal with claims she does not need these
features constantly present. In the example shown in
Figure 5, Jane takes decisions to adapt the BMDCRM
solution to her needs regarding claims management.
Taking decisions automatically leads to run-time ad-
aptation of the BMDCRM system [27]. For example,
Jane answers the question “How are you communi-
cating with customers?” with “via phone” which in-
cludes phone tools in BMDCRM. She answers the
decision question “Which additional capabilities do
you need?” with “journal”, “memos”, and “task man-
ager” to denote that she needs to write a journal as
well as memos and that she needs to manage tasks for
claims management. Jane answers the question “How
do you manage documents?” with “read existing” as
she does not need to archive, scan, and/or import
documents as a claims agent. Based on Jane’s an-
swers, the required plug-ins are automatically se-
lected and BMDCRM adapts at run-time. Whenever
Jane changes her working situation from mails to
claims she now just has to switch her role. Already
taken decisions are stored but can be changed later.

3.4 Benefits

Even though in the case study we only focused on

one of BMD’s solutions, we were able to test the fea-

sibility of our tool-supported approach. Our three-
level customization approach improves customizabil-
ity on all three levels from product derivation down
to end-user customization. On the supplier level
BMD can use the new technology to generate the
same solution as before, but additionally diverse
combinations of plug-ins can now be derived from
the product line by taking decisions. Decomposing
the monolithic application results in smaller binaries
to deploy; patches are much smaller and can be selec-
tively deployed for affected components. When com-
paring that to the existing way of customizing we
achieved a substantial improvement: Where in the
prior approach the deployed binary used to be about
90 megabytes in size, the binaries now are just 25
megabytes, i.e., for the BMDCRM solution. Each
additional solution adds another 5-15 megabytes.
Patches also got a lot lighter since individual plug-ins
now range from less than 100 kilobytes to a maxi-
mum of 2 megabytes for large framework compo-
nents. At the customer level the configuration process
is easier because of the tool support. Different com-
binations of packages and plug-ins can easily be se-
lected by answering the questions presented with
ConfigurationWizard. At the end-user level, where
end-users before had to use a preference dialog in a
user manager to manually activate or deactivate sin-
gle features, they now can take high-level decisions
with ConfigurationWizard to adapt the application
for the working situation at hand. And where the ear-
lier solution required the application to be restarted to
conduct the required adaptation, the application now
instantaneously adapts on-the-fly at run-time [27].

4. Related Work

We focus our discussion of related work on prod-
uct derivation, configuration and personalization for
end-users, as well as run-time adaptation in SPLE.

Product derivation. Compared to the vast amount
of research results on domain engineering and the
definition of software product lines, comparably few
approaches and tools are available for product deriva-
tion. Deelstra et al. [7, 22, 23] present a product deri-
vation framework supporting configuration in indus-
trial product lines and report on problems and issues
based on their industrial experiences. Chastek et
al. [3] present a study on how different product line
organizations create products. Czarnecki et al. [6]
report on staged configuration with feature models,
an approach to resolve variability step-by-step in
product derivation. Halmans and Pohl [14] present
work on how to communicate product line variability
to customers. Ziadi et al. [28] describe product deri-
vation by using extended UML notations for repre-

senting product line variability. Bayer et al. [2] de-
scribe PuLSE-I, a process for product derivation as
part of the Product Line Software Engineering meth-
odology developed at Fraunhofer IESE (Institute for
Experimental Software Engineering).

Configuration and personalization for end-users.
While product line approaches do typically not em-
phasize end-user customization this idea itself is not
novel. Some software producers already go beyond
providing basic installation wizards and provide more
sophisticated support for end-users. For example, the
enterprise business application SAP/R33 can be de-
livered with product configurators that allow users
adapting the application for their specific needs. An-
other example is the SuSE Studio configurator4 al-
lowing end-users to construct a customized Linux
distribution themselves using a web-based front-end.
Such configurators are however not based on vari-
ability models that can be used at multiple levels dur-
ing the customization process. Personalization aims
at providing users with applications customized to
their very specific needs and adapting “on-the-fly” if
their needs change. For instance, e-commerce appli-
cations can adapt themselves automatically based on
acquired user information to provide personalized
services [1]. In contrast to such knowledge-based
approaches we do not acquire the required informa-
tion automatically but present customization choices
to end-users based on product line variability models.

Run-time adaptation in SPLE. Diverse researchers
in different areas have developed approaches and
tools contributing to run-time adaptation of systems.
However, only few approaches combine software
product lines and run-time adaptation: Lee and
Kang [15] propose a feature-oriented approach for
dealing with run-time adaptation. In their approach,
reconfiguration is based on identifying binding units
in feature models. The authors do however only de-
scribe conceptual support for a reconfiguration tool
with no actual implementation. Wang et al. [26] de-
scribe an approach based on patterns and rules to
privacy that can be used to support feature adaptation
of web applications at run-time. They also describe a
prototypic implementation within the ArchStudio
product line architecture tool. In [13] Hallsteinsen et
al. present the MADAM approach which uses vari-
ability models to describe the choices for run-time
adaptation of component-based architectures. The
goal of MADAM is to support adaptation of mobile
devices to changing environmental conditions such as
available bandwidth or network connectivity. Their
variability models therefore define choices based on

3 http://www.sap.com
4 http://studio.suse.com/

sensed context information. Decisions are local to
particular components and not stored in a complete
decision model as in our case. While MADAM is
context-centered our approach leaves the decisions to
users at different levels.

5. Conclusions and Future Work

We presented a decision-oriented product line ap-
proach providing support for product customization
on three levels. At the first level the supplier uses
variability models to derive products from a product
line customized to the requirements of a particular
customer. At the second level the customer can refine
the configuration of the product to address organiza-
tion-specific aspects constrained by the variability
model used by the supplier before. End-users can
customize the product to their personal needs, again
using the same variability model. Going from level to
level means to resolve more variability. This is
achieved in our approach by defining decisions,
views on decisions, roles that are responsible for
these views and users that can be assigned roles. We
have presented three tools supporting our approach.
DecisionKing [10] supports creating variability mod-
els, ProjectKing [18] allows suppliers and customers
to define views, roles, and users, and Configuration-
Wizard [17] is an easy-to-use end-user tool for taking
decisions and thereby resolving variability.

An important conclusion is that variability needs
to be described in the language of the problem space.
To facilitate end-user product customization the vari-
ability offered by a complex software system needs
to be described in the language of the end-user, i.e.,
in problem space language. Our initial decision mod-
els represented the technical structure of the system
but did not provide the abstraction needed by end-
users. For instance, it is better to ask a claims agent in
what forms he wants to communicate with customers
instead of asking whether particular mail and/or
phone tool plug-ins should be included. Another ex-
ample is asking the end-user how he wants to manage
documents instead of asking about specific plug-ins
for retrieving, importing, archiving and/or scanning.

Another lesson we learned is that the amount of
variability resolved per level of customization is
variable. We have experienced that the amount of
variability resolved by different users at different
customization levels can differ from domain to do-
main. BMD does not resolve a lot of variability be-
forehand but delivers a highly customizable product
to its customers who then configure the product. In
another project where the system of interest was a
software product line for automation of continuous
casting in steel plants [11], we have seen that most of

the variability is resolved by the supplier and only
minor configuration is done by customers.

End-user customization results in additional chal-
lenges for support which we will investigate in future
work. In case of problems end-users seek for support,
e.g., by contacting a help desk. Help desk staff needs
capabilities to reproduce the exact configuration of
the end-user. As every customization decision is
stored in the underlying variability model in our ap-
proach we can utilize the model for exactly that pur-
pose. We have been developing an initial prototype
integrated with ConfigurationWizard that allows end-
users to send requests to help desk staff over net-
work. The help desk staff can then reproduce the
user’s configuration to handle the request.

The paper presented a case study of applying our
tool-supported approach in the ERP domain together
with our industrial partner BMD. In this case study,
we have also developed run-time adaptation capabili-
ties that allow customizing applications at run-time
by taking decisions [27]. We will also apply the
three-level customization approach in additional case
studies to validate its usefulness in other domains.
Also, we will convert additional BMD solutions to a
product line to further test our approach and tools.

Acknowledgements

This work has been conducted in cooperation

with BMD Systemhaus GmbH and has been sup-
ported by the Christian Doppler Forschungsgesell-
schaft, Austria. We also want to thank Iris Groher for
valuable feedback on earlier versions of this paper.

References

[1] G. Adomavicius and A. Tuzhilin, "Personalization
Technologies: A Process-Oriented Perspective," Communi-
cations of the ACM, vol. 48(10), pp. 83-90, 2005.
[2] J. Bayer, C. Gacek, D. Muthig, and T. Widen, "PuLSE-
I: Deriving Instances from a Product Line Infrastructure,
"Proc. of the 7th IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems
(ECBS), Edinburgh, Scotland, UK, IEEE Computer Soci-
ety, 2000, pp. 237-245.
[3] G. Chastek, P. Donohoe, and J. D. McGregor, "A Study
of Product Production in Software Product Lines,"
CMU/SEI-2004-TN-012 2004.
[4] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns: SEI Series in Software Engineer-
ing, Addison-Wesley, 2001.
[5] R. Clotet, D. Dhungana, X. Franch, P. Grünbacher, L.
López, J. Marco, and N. Seyff, "Dealing with Changes in
Service-Oriented Computing Through Integrated Goal and
Variability Modeling, "Proc. of the 2nd International
Workshop on Variability Modelling of Software-intensive

Systems (VAMOS 2008), Essen, Germany, ICB-Research
Report No. 22, University of Duisburg Essen, 2008, pp. 43-
52.
[6] K. Czarnecki, S. Helson, and U. W. Eisenecker, "Staged
configuration using feature models, "Proc. of the 3rd Inter-
national Software Product Line Conference (SPLC 2004),
Boston, MA, USA, Springer Berlin Heidelberg, 2004, pp.
266-283.
[7] S. Deelstra, M. Sinnema, and J. Bosch, "Product deriva-
tion in software product families: a case study," Journal of
Systems and Software, vol. 74(2), pp. 173-194, 2005.
[8] D. Dhungana, R. Rabiser, and P. Grünbacher, "Deci-
sion-Oriented Modeling of Product Line Architectures,
"Proc. of the Sixth Working IEEE/IFIP Conference on
Software Architecture, Mumbai, India, IEEE Computer
Society, 2007, pp. 22-25.
[9] D. Dhungana, P. Grünbacher, and R. Rabiser, "Domain-
specific Adaptations of Product Line Variability Modeling,
"Proc. of the IFIP WG 8.1 Working Conference on Situ-
ational Method Engineering: Fundamentals and Experi-
ences, Geneva, Switzerland, International Federation for
Information Processing, Springer Series in Computer Sci-
ence, 2007, pp. 238-251.
[10] D. Dhungana, P. Grünbacher, and R. Rabiser, "Deci-
sionKing: A Flexible and Extensible Tool for Integrated
Variability Modeling," in First International Workshop on
Variability Modelling of Software-intensive Systems - Pro-
ceedings, K. Pohl, P. Heymans, K.-C. Kang, and A.
Metzger, Eds. Limerick, Ireland: Lero - Technical Report
2007-01, 2007, pp. 119-128.
[11] D. Dhungana, R. Rabiser, P. Grünbacher, H. Prähofer,
C. Federspiel, and K. Lehner, "Architectural Knowledge in
Product Line Engineering: An Industrial Case Study, "Proc.
of the 32nd EUROMICRO Conference on Software Engi-
neering and Advanced Applications (SEAA), Cav-
tat/Dubrovnik, Croatia, IEEE Computer Society, 2006, pp.
186-197.
[12] P. Grünbacher, R. Rabiser, and D. Dhungana, "Product
Line Tools Are Product Lines Too: Lessons Learned from
Developing a Tool Suite, "Proc. of the 23rd IEEE/ACM
International Conference on Automated Software Engi-
neering, L'Aquila, Italy, IEEE/ACM, 2008 (to appear).
[13] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch, "Us-
ing Product Line Techniques to Build Adaptive Systems,
"Proc. of the 10th international on Software
Product Line Conference, Baltimore, Maryland, USA,
IEEE CS, 2006, pp. 141-150.
[14] G. Halmans and K. Pohl, "Communicating the Vari-
ability of a Software-Product Family to Customers," Infor-
matik - Forschung und Entwicklung, vol. 18(3-4), pp. 113-
131, 2004.
[15] J. Lee and K. C. Kang, "A Feature-Oriented Approach
to Developing Dynamically Reconfigurable Products in
Product Line Engineering, "Proc. of the 10th International
Software Product Line Conference (SPLC 2006), Balti-
more, MD, USA, IEEE CS, 2006, pp. 131-140.
[16] K. Pohl, G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles, and
Techniques: Springer, 2005.
[17] R. Rabiser and D. Dhungana, "Integrated Support for
Product Configuration and Requirements Engineering in

Product Derivation, "Proc. of the 33rd EUROMICRO Con-
ference on Software Engineering and Advanced Applica-
tions (EUROMICRO-SEAA’07), Lübeck, Germany, IEEE
Computer Society, 2007, pp. 219-228.
[18] R. Rabiser, P. Grünbacher, and D. Dhungana, "Sup-
porting Product Derivation by Adapting and Augmenting
Variability Models, "Proc. of the 11th International Soft-
ware Product Line Conference (SPLC 2007), Kyoto, Japan,
IEEE Computer Society, 2007, pp. 141-150.
[19] R. Rabiser, D. Dhungana, and P. Grünbacher, "Tool
Support for Product Derivation in Large-Scale Product
Lines: A Wizard-based Approach, "Proc. of the 11th Inter-
national Software Product Line Conference (SPLC 2007),
1st International Workshop on Visualisation in Software
Product Line Engineering (ViSPLE 2007), Kyoto, Japan,
Kindai Kagaku Sha Co. Ltd., 2007, pp. 119-124.
[20] R. Rabiser, D. Dhungana, P. Grünbacher, K. Lehner,
and C. Federspiel, "Product Configuration Support for Non-
technicians: Customer-Centered Software Product-Line
Engineering," IEEE Intelligent Systems, vol. 22(1), pp. 85-
87, 2007.
[21] K. Schmid and I. John, "A Customizable Approach to
Full-Life Cycle Variability Management," Journal of the
Science of Computer Programming, Special Issue on Vari-
ability Management, vol. 53(3), pp. 259-284, 2004.
[22] M. Sinnema and S. Deelstra, "Industrial Validation of
COVAMOF," Journal of Systems and Software, vol. 81(4),
pp. 584-600, 2008.

[23] M. Sinnema, S. Deelstra, and P. Hoekstra, "The CO-
VAMOF Derivation Process, "Proc. of the 9th Interna-
tional Conference on Software Reuse (ICSR 2006), Turin,
Italy, Springer Berlin Heidelberg, 2006, pp. 101-114.
[24] Software Productivity Consortium, "Synthesis Guide-
book," SPC-91122-MC. Herndon, Virginia: Software Pro-
ductivity Consortium 1991.
[25] F. van der Linden, K. Schmid, and E. Rommes, Soft-
ware Product Lines in Action - The Best Industrial Practice
in Product Line Engineering: Springer Berlin Heidelberg,
2007.
[26] Y. Wang, A. Kobsa, and A. van der Hoek, "PLA-
based Runtime Dynamism in Support of Privacy-Enhanced
Web Personalization, "Proc. of the 10th International Soft-
ware Product Line Conference, Baltimore, Maryland, USA,
IEEE CS, 2006, pp. 151-162.
[27] R. Wolfinger, S. Reiter, D. Dhungana, P. Grünbacher,
and H. Prähofer, "Supporting Runtime System Adaptation
through Product Line Engineering and Plug-in Techniques,
"Proc. of the 7th IEEE International Conference on Com-
position-Based Software Systems (ICCBSS), Madrid, Spain,
IEEE Computer Society, 2008, pp. 21-30.
[28] T. Ziadi, J. M. Jezequel, and F. Fondement, "Product
Line Derivation with UML, "Proc. of the Software Vari-
ability Management Workshop, Groningen, The Nether-
lands, 2003, pp. 94-102.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

