
XVIII CONFERENCE ON APPLIED MATHEMATICS

Novi Sad, 2010, pp. 95–100

EXTENSIBLE EXPRESSION EVALUATOR FOR
THE DYNAMIC GEOMETRY SOFTWARE

GEOMETRIJICA
Davorka Radaković, Ðord̄e Herceg1, Markus Löberbauer2

Abstract

We present an extensible expression evaluator, which was developed as a com-
ponent of our dynamic geometry software called Geometrijica. The evaluator
supports numerical and text data types, as well as mathematical functions and a
number of object data types, representing geometrical shapes. It maintains a list of
defined expressions and their dependencies and also provides a notification mecha-
nism which reports changes in expression values. We devised a method for adding
new functions, which requires the developer only to implement a single method
per function.

Key words and phrases: dynamic geometry, expression evaluation

1 Introduction
The dynamic geometry software Geometrijica can visualize geometrical drawings. A
geometrical drawing consists of geometrical objects such as points, lines and curves.
These objects can depend on other objects. For example, a line defined by two points
depends on these points, and a circle defined with a point as its center and the radius
defined by the length of a line depends on the point and the line. A change in an object
causes cascading changes in all dependent objects, and subsequent repainting of the
geometrical drawing on screen.

Geometrijica consists of an evaluation core and extensions like a graphical user
interface, see Figure 1. The evaluation core contains an evaluation engine, a function
library and a varibale storage. The evaluation engine evaluates expressions, the func-
tions used in these expressions must be known in the function library. The function
libarary provides built-in and custom functions, custom functions can be added with
library files. Results of expressions can be stored in variables and used in other ex-
pressions, these variables are held in the variable storage. Outside the evaluation core

1Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia, e-mail:
davorkar@dmi.uns.ac.rs, herceg@dmi.uns.ac.rs

2Institute for System Software, Johannes Kepler University, Altenberger Strasse 69, 4040 Linz, Austria,
e-mail: loeberbauer@ssw.jku.at



96 D. Radaković, Ð. Herceg, M. Löberbauer

Geometrijica provides a user interface that accepts text input and displays the geomet-
rical drawings. The user interface uses a parser to convert the text input into expression
trees for the evaluation engine. Further extensions can be attached to Geometrijica as
customers, e.g., a software component that draws geometrical objects on the screen.

Figure 1: Components of Geometrijica

2 Representation of geometrical drawings
Geometrical shapes are entered in textual form, as functions applied to arguments.
Each shape is represented by a corresponding function, e.g., a point can be declared
as A = Point(2,3). For often used primitive shapes, such as a point, there is also
a short notation which omits the function name, e.g., a point can also be declared
as B = (0,-1). Properties of geometrical shapes are accessed using the dot no-
tation, e.g., the length of a segment can be accessed with Segment(A,B).Length.
The usual C# expression syntax is also supported, which allows expressions such as
D = 2 + Sqrt(3), or E = (A.X, B.Y/2). The basic idea is to represent everything
as functions applied to arguments, as it is done in some functional programming lan-
guages, for example Mathematica. In order to implement member access (i.e. access-
ing properties of objects) and reading of variable values as functions, we introduced
the ValueOf and MemberOf functions.

Thus the expressions D+1 and A.X are transformed to ValueOf("D") + 1 and
MemberOf(ValueOf("A"), "X") respectively. Furthermore, since addition is repre-
sented by the Plus function, the first expression now becomes Plus(ValueOf("D"), 1).

Each function is implemented as a separate class deriving from the base class
Expression, see Figure 2. These classes can have properties that are accessible using
the dot notation. For example, the class EPoint has the properties X and Y, represent-
ing coordinates of a point in plane, and the class ELine has the properties P1 and P2,



Extensible expression evaluator for the dynamic geometry software 97

which represent two points in plane that define the line.

Figure 2: Excerpt of the expression class hierarchy in Geometrijica

The parser builds an expression tree from the text input, which is then passed to
the evaluation engine, which evaluates expression trees in bottom-up order. An expres-
sion tree can be evaluated or assigned to a variable. If the expression is assigned to a
variable it can be used in further expressions. To make sure that the expressions re-
main computable, the evaluation engine prohibits circular references, e.g., A = f(A)
and broken dependencies, e.g., A = f(B) where B is undefined. Variables contain-
ing expressions that reference other variables are recalculated every time a referenced
variable changes.

If the evaluation of a function fails, e.g., because of a division by zero, an Error
object is returned. In compound expressions, such as f(g(x)), where g(x) yields
error, the Error result bubbles up the expression tree.

public override Expression Eval() {
Expression first = _x.Eval();
Expression second = _y.Eval();

if ((first is Number))!
Error("Argument ’{0}’ is not a number.", _x.ToString());

if ((second is Number))!
Error("Argument ’{0}’ is not a number.", _y.ToString());

return new Number((Number)first + (Number)second);

Listing 1. An example of the full format of authority record for the author

The Eval() method, implemented in each expression class, is called by the eval-
uation engine when it evaluates the expression. The example in Listing 1 shows the
Eval() method of the expression class Plus. The two arguments of the function are
evaluated, the result types are checked, and then the sum is calculated.



98 D. Radaković, Ð. Herceg, M. Löberbauer

3 Extending the parser
The Input language for Geometrijica recognizes expressions and value assignments as
statements. Expressions are built from literals and variables, using the arithmetic op-
erations (+, -, * and /), function calls and member access. All expressions are written
in prefix notation as functions applied to lists of arguments. For simplicity, however,
arithmetic operations can also be written in infix notation, and member access using
the dot notation. The parser for this language is generated in C# from an attributed
grammar using the compiler generator Coco/R.

As our goal is to make both the parser and the evaluation engine easily exten-
sible with new functions, the parser creates function objects with the factory class
FunctionFactory. If the function names were hard-coded in the grammar and the
factory class, then each added function would result in several modifications of the
source code:

• Add the function name to the grammar,
• Add the function implementation to the C# project,
• Add the function name to the function factory class and implement object cre-

ation,
• Recompile the entire project.

In order to simplify this process, we use reflection to obtain all relevant information
from the function implementation and then propagate the information to the parser
and the FunctionFactory. The parser recognizes new function names and generates
appropriate objects during parsing.

The grammar rules for function calls are:

<Function> := <Identifier> <ArgumentList>
<ArgumentList> := ’(’ { <Expression> { ’,’ <Expression> } } ’)’

The FunctionFactory maintains a mapping between known function names and
corresponding classes and creates appropriate objects during parsing. If an unknown
function name is encountered, an exception is raised.

The class Fn serves as a base class for all functions. This class provides common
code, used by all functions in Geometrijica. Thereby, for a new function only the
implementation of the method Eval() must be given in the deriving class. Further
this class must be annotated with the attribute Function, to specify the function name,
which will be used during input.

The example in Listing 2 demonstrates the implementation of the mathematical
function square root. It can be observed that there is no error handling code. Instead,
error handling is performed by the evaluation engine. Thus writing the function classes
comes down to implementing the method Eval().



Extensible expression evaluator for the dynamic geometry software 99

[Function("Sqrt")]
public class Sqrt : Fn {

public override Expression Eval() {
if (Args.Count = 1) !

Error("Invalid number of arguments.");
} else {

Number ex = (Number)Args[0].Eval(depth+1);
return new Number(Math.Sqrt(ex.Value));

}
}

}

Listing 2. The implementation of the square root function

Custom functions can be added to the parser and the evaluation engine by putting
the compiled dll file in the installation directory of Geometrijica. Geometrijica searches
for classes that implement functions in the dll files in this directory, found classes are
added to the function factory and thus become usable.

4 Conclusion
The parser and expression evaluator in Geometrijica can be easily extended by imple-
menting a new function derived from the base class Fn, annotating it with the Function
attribute, and implementing the method Eval(). This approach enables us to have a
single point for adding new functions, without the need for changes in Geometrijica.

References
[1] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilers – Principles, Techniques

and Tools, Addison-Wesley publishing company, 1986

[2] Hanspeter Mössenböck - Coco/R - A Generator for Fast Compiler Front-Ends,
Report 127, Feb. 1990
ftp://ftp.ssw.uni-linz.ac.at/pub/Reports/Coco.Report.ps

[3] Hanspeter Mössenböck, The Compiler Generator Coco/R – User Manual, Jo-
hannes Kepler University Linz, Institute of System Software
http://ssw.jku.at/Coco/

[4] P. D. Terry, Compiler and compiler generators – an introduction with C++, Inter-
national Thompson Computer Press, 1997
http://www.scifac.ru.ac.za/coco/



100 D. Radaković, Ð. Herceg, M. Löberbauer

[5] Coco R-plugin for VS.NET
http://www.ssw.uni-linz.ac.at/Teaching/Projects/CocoPlugin/

[6] Hanspeter Mössenböck, Data Structures in Coco/R, Johannes Kepler University
Linz, Institute of System Software, April 2005
http://www.ssw.uni-linz.ac.at/Coco/Doc/DataStructures.pdf

[7] Hanspeter Mössenböck, Tutorial on the Compiler Generator Coco/R, Johannes Ke-
pler University Linz, Institute of System Software
http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/Tutorial/

[8] Albrecht Wöß, Markus Löberbauer, Hanspeter Mössenböck, LL(1) Conflict Res-
olution in a Recursive Descent Compiler Generator, Johannes Kepler University
Linz, Institute of System Software
http://www.ssw.uni-linz.ac.at/Coco/Doc/ConflictResolvers.pdf


