
Dynamic Application Composition with Plux.NET
Composition Model, Composition Infrastructure

Dissertation
Submitted in fulfillment of the requirements for the academic degree

Dr. rer. soc. oec.

Doctor of Social and Economic Sciences

Completed at
Christian Doppler Laboratory for Automated Software Engineering

Institute for System Software

By
Reinhard Wolfinger

Supervised by
o. Univ.-Prof. Dr. Dr. h.c. Hanspeter Mössenböck

a. Univ.-Prof. Dr. Johannes Sametinger

Linz, January 2010

A-4040 Linz, Altenberger Straße 69, Internet: http://www.jku.at, DVR 0093696

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne fremde
Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht verwendet und die
den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen deutlich als solche ken-
ntlich gemacht habe.

Linz, im Jänner 2010 Reinhard Wolfinger

Abstract

Although modern applications are often designed to have a component-based architecture,
they are usually deployed as a monolithic piece. The monolith causes problems when applica-
tions get feature-rich and should be made customizable. Dynamic composition allows devel-
opers to build an application where users only load components they need for their current
work. This keeps the application small and simple. Moreover, dynamic composition means
that an application can be reconfigured on the fly by dynamically swapping sets of compo-
nents without programming or configuration.

Plux.NET is a component model and infrastructure for dynamic composition: The component
model specifies requirements and provisions among components declaratively using the com-
ponent's metadata. The discovery core supports automatic discovery of components using ex-
changeable discovery mechanisms. The composition core uses the metadata to compose an
application by matching requirements and provisions, and stores connections between compo-
nents in the composition model. Component developers use an event-based programming
model, which gives host components a uniform mechanism to integrate contributor compo-
nents at startup as well as at run time when an application dynamically changes.

If an application can be reconfigured while it is running, then the user interface must also
change dynamically. Best practice guidelines for user interface design show how to consider
that the user interface will be adaptable at run time. Special widgets bind to the composition
model and simplify the implementation of dynamic user interfaces, because they automatical-
ly update their content and state when the composition model changes.

Page i

Page ii

Kurzfassung

Moderne Programme haben eine komponentenbasierte Architektur und werden dennoch meist
als Monolith ausgeliefert. Das verursacht Probleme, wenn man große Programme mit vielen
Funktionen für einzelne Benutzer anpassen will. Mit dynamischer Komposition lassen sich
Programme entwerfen, bei denen ein Benutzer nur jene Komponenten lädt, die er für seine
aktuelle Aufgabe benötigt. Das hält Programme klein und einfach. Wenn sich die Aufgabe des
Benutzers ändert, konfiguriert er das Programm um, während es läuft. Dabei tauscht er die
nicht mehr benötigten Komponenten durch andere Komponenten aus. Dieser Vorgang er-
fordert weder Programmierung noch Konfiguration.

Plux.NET ist ein Komponentenmodell und eine Infrastruktur für dynamische Komposition.
Das Komponentenmodell spezifiziert Anforderungen und Garantien zwischen Komponenten
deklarativ mit Steckplätzen und Steckern in den Metadaten der Komponenten. Der Discovery-
Kern unterstützt dynamisches Entdecken von Komponenten mittels austauschbarer Mechanis-
men. Der Composer-Kern baut eine Anwendung auf Basis der Metadaten zusammen, indem
er Stecker und Steckplätze verbindet. Entwickler verwenden ein ereignisbasiertes Program-
miermodell. Der Mechanismus zur Integration anderer Komponenten ist dabei einheitlich,
egal ob Komponenten beim Programmstart, oder zur Laufzeit, wenn das Programm angepasst
wird, zusammengesteckt werden.

Wenn Programme angepasst werden während sie laufen, muss sich die Benutzerschnittstelle
dynamisch ändern. Best Practice-Richtlinien beschreiben wie man eine Benutzerschnittstelle
so entwirft, dass sie zur Laufzeit angepasst werden kann. An Steckplätze gebundene
Steuerelemente vereinfachen die Implementierung von dynamischen Benutzerschnittstellen,
weil sie ihren Inhalt und Zustand bei Änderungen im Kompositionsmodell automatisch
ändern.

Page iii

Page iv

Table of Contents

1 Introduction 1..
1.1 Research Context 1..
1.2 Problem Statement 3..
1.3 Research Approach and Contributions 5......................................
1.4 Project History 6..
1.5 Structure of the Thesis 8...

2 State of the Art 11...
2.1 Historical Overview 11..
2.2 Component Terminology 12..
2.3 Elements of a Component Model 13..
2.4 Existing Component Systems 15...
2.5 Deficiencies of Existing Component Systems 16...........................

2.5.1 Lack of Granularity 17..
2.5.2 Lack of Dynamic Reconfiguration Support 18...................

3 Plux.NET Composition Model 31...
3.1 Characteristics of the Plux Approach 31.......................................
3.2 Prerequisites for Plux.NET 32...
3.3 Composition with Slots and Plugs 33...
3.4 Meta Elements 34...
3.5 Discovering Extensions 36...
3.6 Qualifying Extensions 36..
3.7 Composing Extensions 38..

3.7.1 Relationships between Extensions 38................................
3.7.2 Creating Extensions 40..
3.7.3 Maintaining Composition Relationships 41.......................
3.7.4 Configuring Composition 50...

3.8 Extension Life-Cycle 53..
3.8.1 Type Life-Cycle 53..
3.8.2 Instance Life-Cycle 54...

3.9 Composing an Application 54..
3.9.1 Notifying Hosts and Contributors with Events 55..............
3.9.2 The Core Extension 58..
3.9.3 Composing an Example Application 59............................
3.9.4 Queueing Composition Operations 66..............................

4 Plux.NET Composition Infrastructure 69...
4.1 Attributes for Type Meta Elements 69...

4.1.1 Attributes for Slot Definitions 69.......................................
4.1.2 Attributes for Contributor Extensions 70............................
4.1.3 Attributes for Host Extensions 71.......................................

4.2 Architecture Overview 73..
4.3 Type Store 74...

4.3.1 Type Qualifier Interface 76...
4.3.2 Type Store Reader Interface 76...
4.3.3 Type Store Observable Interface 77..................................
4.3.4 Type Builder Interface 77..

Page v

4.3.5 Type Store Modifier Interface 78.......................................
4.4 Discovery Core 79...

4.4.1 Discoverer Interface 79...
4.4.2 Discovery Registrar Interface 80..

4.5 Bootstrap Discoverer 80...
4.6 Assembly Analyzer 81..
4.7 Instance Store 82..

4.7.1 Instance Store Reader Interface 83....................................
4.7.2 Instance Store Observable Interface 84.............................
4.7.3 Instance Store Modifier Interface 84..................................

4.8 Composition Core 86...
4.8.1 Creator Interface 86..
4.8.2 Composer Interface 86..
4.8.3 Configurator Interface 87..
4.8.4 Observing the Type Store 87...
4.8.5 The Core Extension 88..

5 Plux.NET Applications 91..
5.1 Creating Startup Extensions 91...
5.2 Creating Host Extensions Using Slots 95.......................................

5.2.1 Specifying a Slot Definition 97..
5.2.2 Slot with a Single Contributor 99......................................
5.2.3 Slot with Multiple Contributors 102..................................
5.2.4 Manually Registering Contributors 103.............................
5.2.5 Manually Plugging Contributors 105.................................
5.2.6 Manually Selecting Contributors 106................................

5.3 Shared, Unique, and Singleton Contributors 107..........................
5.3.1 Sharing Contributors 108..
5.3.2 Unique Contributors 109..
5.3.3 Singleton Contributors 110...

5.4 Best Practices for Dynamic User Interface Design 111.................
5.4.1 The Action Slot 111..
5.4.2 The View Slot 115..
5.4.3 The Control Slot 122...
5.4.4 The DataSource Slot 124..

5.5 Binding Widgets to Slots 128...
5.5.1 Widgets with Plug Behavior 128.......................................
5.5.2 Widgets with Select Behavior 130.....................................

5.6 Case Study: Cross-Compiler and IDE 132.....................................
5.6.1 Compiler Design 132..
5.6.2 IDE Design 132...

6 Summary 137...
6.1 Contributions 137..
6.2 Conclusions 138..
6.3 Future Research 138..
6.4 Current State 139...

Bibliography 141...

List of Figures 143..

List of Tables 145...

Page vi

Chapter 1: Introduction

Modern applications are often designed to have a component-based architecture and are built
with object-oriented application frameworks. In a nutshell, a component is a modular part of a
system. It defines its behavior in terms of provided and required interfaces. The process to
construct an application from components is essentially a matching of requirements and pro-
visions. This component assembly process is called composition.

In practice, decomposition produces rather coarse-grained business logic or presentation com-
ponents and features are usually deployed as a monolithic piece. Existing composition ap-
proaches perform component assembly rather early in an application's life-cycle. Static ap-
proaches compose programmatically and set everything in stone already at compile time.
Partly dynamic approaches compose at startup and actually allow coarse-grained dynamic ad-
ditions, but fail when components should be dynamically removed. This causes problems
when applications get feature-rich and should be made customizable.

This thesis presents a fully dynamic approach to composition. The approach follows the plug
and play metaphor allowing composition of applications without programming. Dynamic
composition allows developers to build applications where users only load those components
which they need for their current work. Moreover, dynamic composition means that an appli-
cation can be reconfigured on the fly by dynamically swapping sets of components. This
keeps applications small, simple, and always aligned with the working situation at hand.

Section 1.1 discusses why customization, extensibility and dynamic reconfiguration are im-
portant in the business software domain. Section 1.2 explains why dynamic composition is
useful for any feature-rich application and what problems current component frameworks
have in regard to dynamic composition. Section 1.3 explains the research process and high-
lights the contributions of this thesis. Section 1.4 overviews the history of the Plux.NET
project, introduces the Plux.NET team, and lists results of other Plux.NET contributors. Sec-
tion 1.5 outlines the remaining chapters of this thesis.

1.1 Research Context

The initiative to this thesis came from the business software industry. Our research project
was conducted in close collaboration with an industry partner: BMD Systemhaus GmbH is a
medium-sized company offering Enterprise Resource Planning (ERP) software mainly to

Page 1

small and medium enterprises. The company has a significant market share in Austria, Ger-
many, and Hungary.

Rich client business software typically has a component-based architecture and is deployed in
coarse-grained components. Eventually, all customers get the same application, while config-
uration or license codes determine whether particular features are enabled or not. This one-
size-fits-all approach causes three major problems for the manufacturer of the business
application:

■ Business software is inherently complex and feature-rich, while individual users only
need a small fraction of the features. Hence, if the user interface of an application is
cramped with features for all business processes, users struggle to find features they
really need for their tasks.

■ Customer requirements for business applications are characterized by a large variation
and depend on industry or company size. It is impossible for a business application of
any size to fully meet customer requirements with an off-the-shelf product. Even if an
application covers the major business-relevant scenarios, customers typically ask for
more features addressing their special needs. Some of these features are highly indus-
try-specific and thus outside the manufacturer's core competence. Thus the manufac-
turer may decide to not include them in the product. Still, customers need a way to add
features that are important to them.

■ Business customers tend to be conservative about deploying patches. Often one busi-
ness unit urges to deploy a certain patch, while another business unit is reluctant to do
so yet. The coarse-grained deployment model assumes that patching means to replace
large parts of the application. This rules out selective patch deployment scenarios.

BMD Systemhaus derived the following goals for a new generation of business software from
these problems. Those goals should be generally worthwhile for any large application:

■ The business application should be made customizable to the needs of individual
users. The application should be broken up into a slim core application that can be ex-
tended with features tailored to the user's needs. When a user changes to a new
working situation the application should adapt. The application dynamically adds fea-
tures for the new working situation, and it dynamically removes features which are no
longer needed.

■ The business application should me made extensible in order to close the gap between
what features customers need and what the manufacturer can provide in the base prod-
uct. End users and third parties should be able to contribute any functionality the man-
ufacturer did not already provide in the base product.

In cooperation with BMD we have developed a set of usage scenarios demonstrating the need
for a reconfigurable application with support for dynamic addition and removal. The scenar-
ios are motivated by the ERP application domain and BMD's market environment.

Scenario 1: Role-specific views. Business software is inherently feature-rich as large enter-
prises need to support a high number of success-critical business processes. Individual users
often participate only in a few of these processes. Hence, the user interface of an application
is often cramped with features not needed for a particular task. Dynamic reconfiguration en-

Page 2

ables customization of user interfaces to individual tasks and responsibilities on the fly. This
helps improving focus and reducing clutter. Users are involved in diverse business processes
and tasks during their working day. Dynamic reconfiguration relies on feature configurations
for the different roles and dynamic switching of roles.

Scenario 2: Optimizing training. A major problem in training is that new users are often over-
whelmed by the high number of features of the software application. A trainer explaining a
basic feature has to guide the trainees through numerous menus and user dialogs to activate a
function needed for the next training. Obviously, it is more promising to offer an individually
configured system to trainees in accordance with the training schedule. This allows starting
with a small configuration showing only some basic functions and adding new features for
each new training unit. Training can thus be organized in small steps adding complexity incre-
mentally and in coordination with the training program.

Scenario 3: On-the-fly product customization for sales process. Sales staff offers products
based on pre-defined feature sets to customers. Usually, this sales process leads to long lasting
discussions with customers about the value and cost of features as customers cannot explore
and experience the system before it is purchased and installed. Dynamic reconfiguration sup-
ports a more rapid and interactive sales process. Salespersons explore feature combinations
together with customers, and rapid reconfiguration of the application allows a live preview of
the system by the customer taking into account the IKIWISI ("I know it when I see it") phe-
nomenon. The salesperson can instantly demonstrate the software in the desired configuration
and explain the provided functions.

Scenario 4: Renting features. It is an interesting business case for customers to rent and use
particular product features for a limited period instead of purchasing them permanently. Dy-
namic reconfiguration allows customers browsing the available rentable features, immediately
installing them from a remote site, trying out features during an evaluation period, and using
the features for a defined period. Customers can continuously keep track of the accumulated
rental fees.

A business application that is customizable, extensible, and does support these dynamic re-
configuration scenarios requires a composition approach with support for dynamic addition
and removal. The next section discusses why existing composition approaches and applica-
tion frameworks do not adequately support dynamic reconfiguration.

1.2 Problem Statement

This thesis pursues the problem of how to build customizable, extensible, and reconfigurable
applications. Section 1.1 discussed why these characteristics are important for ERP applica-
tions. These were just motivating examples. Extensibility, customization and dynamic recon-
figuration are universally applicable non-functional requirements for any domain, as soon as
an application grows larger. How such applications can be built, and what an adequate archi-
tecture looks like, is an open research problem.

If the problem can be solved, developers could build applications where users will load only
components they need for their current work thus keeping the application small and simple.
Applications can be reconfigured on the fly for different user roles by dynamically swapping

Page 3

sets of plug-in components. Applications seamlessly integrate extensions from third-parties,
where the manufacturer did not provide the functionality in the base product.

The starting point to solve this problem is too look at existing component technologies and
question where they fail. The reason why most existing composition approaches do not ade-
quately support dynamic reconfiguration is that they perform component assembly too early
in the process. Composition approaches can be grouped in three categories. Firstly, approach-
es which assemble components at compile time, such as hard-wired Java programs, cannot be
reconfigured at all. Secondly, approaches which assembly components at startup time, such as
Dependency Injection Frameworks (Pico 2009), or Service Loaders (Sun 2006, Boudreau et
al. 2007) can be reconfigured, but require a restart. Thirdly, the dynamic approaches in current
Plug-in Frameworks (Eclipse 2003, OSGi 2006, Chatley et al. 2004) rudimentarily allow
users to dynamically add components without requiring a restart, but they completely fail
when components should be dynamically removed.

Composition approaches that require component assembly to happen at development time are
completely inappropriate for our purpose. Other approaches that rely on programmatic effort
for assembling components (Eclipse 2003, OSGi 2006) are not automated enough. Recently
the concept of plug-in components emerged as a promising way of building applications
which are inherently extensible and customizable. The plug-in approach is based on the con-
cept of a small core application which is extended with plug-in components. Plug-ins can plug
into the core application or into other plug-ins where they are integrated seamlessly by their
host.

Several plug-in systems have already found their way into software development practice
(Eclipse 2003, OSGi 2006). Despite the success of plug-in systems so far, they still suffer
from several deficiencies. Plug-in systems provide some of the mechanisms required for re-
configurable applications, but some open issues remain:

■ Lack of granularity. A plug-in application depends on a set of deployed components.
The deployed configuration may vary per user, which allows customized applications.
Current plug-in frameworks support only one granularity level. Often the smallest unit
of variability is a plug-in, which is a rather coarse-grained customization granularity.
Although, the underlying component model could be misapplied by designing for nu-
merous small plug-ins, the composition operations would still support only the one
granularity level. With only one granularity level the architect has two choices: Either
he designs for coarse-grained plug-ins and his customization options are limited. Or he
designs for fine-grained plug-ins and the lacking structure makes reconfiguration con-
fusing and cumbersome.

Another aspect of granularity is the question which parts of the system are affected by
a change. In existing plug-in frameworks changes always have system-wide effect. It
is not possible to add or remove components only in selective parts of the application.
The open research question is: how can we provide more fine-grained customization?

■ Plug-in integration requires programmatic effort. In plug-in systems, such as OSGi or
Eclipse, developers face significant programming effort when they deal with plug-in
integration. In the extensibility model of plug-in systems the plug-in host is the active
part. The programmer of the host has to provide code that looks up plug-ins in a reg-

Page 4

istry, code that instantiates the plug-in, and more code that connects the plug-in host
with the plug-in. The open research question is: how can we automate the integration
of plug-ins?

■ Dynamic change support is optional. The composition approach in most plug-in sys-
tems is focused on wiring components at startup, and provides basic support for dy-
namic addition. But the programming model neither requires plug-in hosts to be aware
of plug-ins being removed, nor do the programming interfaces provide operations to
remove components. The open research question is: how does a programming model
for dynamic reconfiguration look like?

■ Non-uniform programming model for startup and dynamic change. The plug-in pro-
gramming model is not uniform, in the sense that the code for integrating a plug-in at
startup is different from the code for integrating it at run time. The programmer of the
host plug-in has to provide two different implementations. The open research question
is: how does a uniform programming model for plug-in integration look like?

The lack of dynamic reconfiguration in current plug-in systems can be observed in the market
place. Plug-in based application are indeed customizable and extensible, and they can be re-
configured, but many need to be restarted when a plug-in is added, and all of them need to be
restarted when a plug-in is removed. Since this thesis envisions applications that can be re-
configured on the fly without being restarted, the issues need to be addressed.

1.3 Research Approach and Contributions

The research method in a scientific discipline depends on which research goal the science fol-
lows. This is a thesis in software engineering, the area of research is component-based archi-
tecture. The goal is to create a composition model and a prototypical implementation of a
composition infrastructure.

The used research methodology follows the experimental paradigm. The experimental para-
digm requires an experimental design, observation, data collection and validation on the arti-
facts being studied. According to the classification of Basili, this thesis uses the engineering
method, which is a variation of the scientific method (Basili 1993). The engineering method
is applied in this thesis with the following research process:

a) Observe existing solutions. Systematically analyze existing component models on the
basis of sample applications to study their characteristics in terms of dynamic recon-
figuration. In particular with regard to the research issues developed in the problem
statement (see page 3-5).

b) Propose better solution. Design a composition model based on existing models with
improved support for dynamic reconfiguration. The particular focus is on fine-grained
customizability, dynamic addition and removal, automated integration, and a simple
uniform programming model.

c) Build/develop. Implement the composition model in a composition framework. The
prototypical implementation is the technical foundation for the case studies. The

Page 5

framework implementation allows building applications that demonstrate the capabili-
ties of the composition model and its practical applicability.

d) Measure and analyze. Measure and analyze characteristics in dynamic reconfiguration
on the basis of the case studies.

e) Repeat the process until no more improvements are possible. Repeat steps 1 to 4 until
deficiencies of existing component models are clarified. Then repeat steps 2 to 4 until
the case studies show the aspired improvements in measurements.

The approach is oriented on evolutionary improvement. It analyzes existing component mod-
els, and modifies or refines aspects of the model in order to improve the aspects being
studied.

The defined research process produced the following contributions:

■ Composition Model. The Plux.NET composition model enables plug-and-play compo-
sition of plug-in-based applications. The three novelties of the composition model are:
First, unlike existing plug-in systems, the composition model does not operate as a
passive registry where the components themselves drive composition. Instead, the
composition model defines a composition service which actively controls composi-
tion. Second, the composition model stores which host component uses which contrib-
utor component. Thirdly, the components adhere to an event-based programming mod-
el. They react to the event notifications of the composition service. These three
novelties are the key to applications which can be extended and reconfigured without
a restart. The composition service plugs together a set of components for one working
context, and swaps them with another set of components for another working context.

Section 3 presents the Plux.NET composition model.

■ Composition Framework. The Plux.NET composition framework illustrates how to
implement the composition model in a programming model that automates plug-in in-
tegration, and uniformly handles startup configuration and dynamic reconfiguration.
The composition framework refines the concept of a plug-in framework with a focus
on dynamic reconfiguration. The novelties are fine-grained customization support, de-
clarative composition with automated plug-in integration, and a uniform programming
model for composition at startup, or configuration changes while the application is
running.

Section 4 presents the Plux.NET composition infrastructure. Section 5 gives an in-
troduction on how to build applications with the composition framework.

1.4 Project History

The Plux.NET project is carried out at the Christian Doppler Laboratory for Automated Soft-
ware Engineering associated with the Institute for System Software at the Johannes Kepler
University Linz. At the time of this writing the Plux.NET team members are Reinhard Wolfin-
ger, Markus Jahn, and Markus Löberbauer.

Page 6

The research project has been conducted in close collaboration with our industry partner
BMD Systemhaus GmbH. BMD's software product is a comprehensive suite of ERP applica-
tions for customer relationship management, accounting, cost accounting, payroll, enterprise
resource planning, as well as production planning and control. BMD's target market is fairly
diversified, ranging from small tax counselors to medium-sized auditing firms or large corpo-
rations. Customized products are an essential part of BMD's marketing strategy to address the
needs of those markets. The results of this thesis should create momentum for a customizable
next generation of BMD software.

First ideas of Plux.NET go back to the master thesis of Deepak Dhungana in 2006 (Dhungana
2006). He developed a plug-in framework for Microsoft .NET called Client Application Plat-
form .NET (CAP.NET). CAP.NET realized extension points known from the Eclipse Platform
for Microsoft's .NET platform. Dhungana changed the mechanism to specify extension points.
Where Eclipse uses XML files to specify provided and required interfaces, CAP.NET uses
.NET attributes to declare the composition aspects directly in the source code of an applica-
tion. The benefit is that CAP.NET specifies everything in one place, where Eclipse needs two
separate artifacts. Building on CAP.NET, we adapted the terminology of CAP.NET to in-
troduce Plux.NET's slot and plug metaphor and published the extensibility model (Wolfinger
2006).

In early 2007, we published a first generation prototype of the Plux.NET composition frame-
work. With the composition runtime built by Stephan Reiter, we demonstrated for the first
time how we can compose an application in a plug and play fashion by adding and removing
components while the application is running. Our visualization tool instantly showed the ar-
chitectural changes. Together with Herbert Prähofer, we published models for host and plug-
in integration that addressed execution of plug-ins in reliable settings and allowing indepen-
dent evolution of core applications and plug-ins (Wolfinger 2007).

Stephan Reiter has worked on a case study where he ported the customer relationship man-
agement (CRM) application of our industry partner from Borland Delphi to Delphi.NET. The
port was preparatory work for an initiative to decompose the monolithic CRM application
into plug-ins. We published an experience paper with our porting experiences (Reiter 2007).

Later in 2007, we started a cooperation with the product line engineering group from our lab-
oratory. Together with Stephan Reiter, Deepak Dhungana, Paul Grünbacher, and Herbert
Prähofer, we designed an approach to integrate a component framework with a product line
engineering tool suite. During this cooperation we also developed the new usage scenarios de-
scribed in the research context section of this chapter (see pages 1-3). We published the
results of the cooperation in a paper (Wolfinger 2008a).

In summer 2007, Christian Mittermair joined the team to decompose and re-architecture the
CRM case study that Stephan Reiter ported to .NET as a plug-in-based application. He com-
pleted the project in spring 2009 and also contributed to the Plux.NET framework.

In early 2008, Markus Jahn joined the Plux.NET project and built the second generation pro-
totype of the composition framework. Shortly after that, the first Plux.NET-based application
was completed. Mario Eder built ContentWatcher for his master thesis, a tool that crawls the
web to detect updated content (Eder 2008). Sabine Weiss started a master thesis project with
the goal to create a Plux.NET reference application. The reference application emphasizes

Page 7

fine-grained decomposition and fully utilizes Plux.NET to create a highly customizable and
extensible application. In summer 2008, we narrowed our research issues and published the
intended research process at the OOPSLA 2008 Doctoral Symposium (Wolfinger 2008b).

Early in 2009, we continued our cooperation with the product line group from our laboratory.
Rick Rabiser used our CRM case study to illustrate his three-level customization approach
with software product lines. We published the approach and the results of the case study (Ra-
biser 2009). Markus Jahn completed the yet most comprehensive Plux.NET-based applica-
tion. The cross-compiler Atac and the corresponding integrated development environment
(IDE) showed how to build applications with a composition-oriented programming style
(Jahn 2009a).

In 2009, Markus Löberbauer joined Plux.NET as an architect and we created the third-genera-
tion prototype with a focus on stability. We cleaned up the programming interfaces and the
implementation. The development tools group of our industry partner lead by Horst Hag-
müller initiated a project to build a pilot version of their next-generation ERP applications
based on Plux.NET. Markus Jahn has started his PhD project where he has brought the idea of
dynamic composition and run-time reconfiguration to web applications (Jahn 2009b).

Also in 2009, Andreas Gruber finished the implementation of his bachelor project where he
developed a graphical composition tool for Plux.NET. Zóltan Tóth, Rainer Pichler, and Mario
Mlinaric implemented a script interpreter based on Microsoft Powershell that allows configur-
ing Plux.NET applications with a scripting language. Rainer Pichler completed his bachelor
project Metrix, which is a measurement tool for the Plux.NET run-time environment. He pub-
lished his bachelor thesis in autumn 2009 (Pichler 2009).

1.5 Structure of the Thesis

This thesis is organized as follows: Chapter 2 discusses the state of the art in dynamic compo-
sition. A historical overview shows how component-based software engineering evolved from
the beginnings of modularization to plug-in frameworks. A definition section introduces im-
portant terminology for component technology. Then a section introduces typical representa-
tives of current component systems, before a detailed analysis explains the deficiencies of ex-
isting component systems.

Chapter 3 describes a composition model which addresses the deficiencies described in Chap-
ter 2. The composition model defines meta elements for components and their relationships,
and it specifies services for discovery, qualification, and composition. The composition model
is the foundation for the composition infrastructure described in Chapter 4.

Chapter 4 describes a composition infrastructure which implements the composition model
described in Chapter 3. The composition infrastructure allows building rich client applications
which support fine-grained customization and dynamic reconfiguration using plug-and-play
composition.

Chapter 5 describes how to design and implement applications with the Plux.NET application
programming interface (API). The Plux.NET runtime core is universally applicable and can
be used for any kind of .NET application.

Page 8

Chapter 6 summarizes the main contributions, recapitulates how those contributions address
the problem statement, and concludes the thesis with an outlook on future research.

Page 9

Page 10

Chapter 2: State of the Art

Assembling systems from pre-fabricated building blocks has been regarded as an appealing
approach to software construction since the early days of software engineering. Although we
have seen much progress into this direction in the last decades, component-based software en-
gineering still has not reached a level of maturity that is comparable to other engineering dis-
ciplines. Building software systems by assembling components in a plug-and-play fashion has
not become reality so far. Therefore, component-based software engineering is still a topic
needing significant advances and research.

This chapter is structured as follows: Section 2.1 gives a historical overview from the begin-
nings of modularization to current plug-in component systems. Section 2.2 defines component
terminology relevant for this thesis. Section 2.3 lists the elements of component models. Sec-
tion 2.4 presents a selection of existing component systems. This selection of systems is ana-
lyzed in Section 2.5 with regard to their deficiencies.

2.1 Historical Overview

The history of component-based software goes back to the idea of modularization. Modular-
ization aims towards structuring a system in-the-large and the subject of modularization is the
design of system architecture. System architecture means the segmentation of a system in
components and their interfaces. A component's interface specifies its functional behaviour,
its interaction with other components, and its required resources.

Procedural imperative programming improved functional abstraction, but was not adequate
for the architecture of large systems, because certain data structures needed to be declared
globally. This led to vast interdependencies between procedures and hindered changeability.
Modular programming improved on these problems by decomposing a system into modules.
A module is a compound of algorithms and data structures for a specific task. The usage of a
module did not presume any knowledge about the internal structure or about the implementa-
tion of the encapsulated algorithms and data structures. A module combined procedures and
their shared data into a larger abstract unit. The procedures and data were invisible from the
outside, except for those distinguished procedures that represented the module's interface.

Modules are essentially used to implement abstract data structures. An abstract data structure
is a data structure that is accessed via its interface only. The interface defines what can be

Page 11

done with the data, and the implementation defines how data and operations are realized. The
concept behind abstract data structures is information hiding (Parnas 1972). The goal is to
hide implementation details from the user in order to improve changeability. When the data
structure is accessible only via the interface, users of the data structure are not affected when
the implementation changes. Information hiding also prevents any unintended use of the data
structure.

An abstract data structure represents a single instance whereas an abstract data type allows
the creation of multiple instances, while preserving the benefits of encapsulation. Like ab-
stract data structures, abstract data types use procedures as an interface. However, instead of
encapsulating the data in the module, the data are passed as an argument to the procedures.
The abstract data type specifies the type's name and interface procedures. How actual vari-
ables of this type are structured is hidden from the user. When the internal structure of the
type changes, the user of the type is not affected.

In object-oriented programming objects encapsulate data like any abstract data type does. Ob-
jects are a combination of data and operations that can be performed on the data. The basic
premise of object-orientation is to construct programs from sets of interacting and collaborat-
ing objects. When in procedural programming a programmer calls a procedure, he specifically
determines which algorithm is executed. In object-oriented programming different objects can
have different algorithms for the same operation. A method call sends a message to an object.
Which algorithm gets called is determined at run time. The user of an object does not consider
the differences.

Component-based technology can be seen as an evolution of object-oriented technology
(Meyer and Mingins 1999). Nearly all modern component models are based on the object-ori-
ented programming paradigm. However, the concepts of components and objects are indepen-
dent. The premise of interacting and collaborating objects does not change with components.
Like classes, components define object behavior and make their functionality available
through interfaces. The most important distinction is that components conform to standards
defined by a component model (Weinreich and Sametinger 2001).

Originally appearing in Web browsers, plug-in components and systems represent an interest-
ing and promising approach for providing reusable building blocks. An application can be ex-
tended by plugging in components at startup time or even at run time. The plug-ins are inte-
grated seamlessly into the system. Eclipse (Eclipse 2003) is the most outstanding
representative of these systems and has driven the idea to its extreme ("Everything is a plug-
in!" (Beck and Gamma 2003)). Surprisingly, Eclipse has succeeded where previous approach-
es have failed, namely in building a real component market. A huge community of developers
and software vendors has committed itself to Eclipse as the technological basis for developing
reusable components and thousands of Eclipse plug-ins can be found on the Web.

2.2 Component Terminology

A software component is a software element that conforms to a component model and can be
independently deployed and composed without modification according to a composition
standard (Councill and Heineman 2001). A component model defines specific interaction and

Page 12

composition standards. A component model implementation is the dedicated set of executable
software elements required to support the execution of components that conform to the mod-
el. A software component infrastructure is a set of interacting software components designed
to ensure that a software system or subsystem is constructed using those components and that
their interfaces will satisfy clearly defined specifications.

The interaction standard specifies actions between two or more software elements. The un-
derlying concept of a component is that it has clearly defined interfaces. An interface is an ab-
straction of the behavior of a component. A component supports a provided interface if the
component contains an implementation of all operations defined by that interface. A compo-
nent needs a required interface if the component requests an interaction defined in that inter-
face and the component expects some other component to support that interface. Clients inter-
act with a component using the component's clearly defined and documented interfaces.

The composition standard specifies how two or more software components can be combined,
thereby yielding a new component behavior at a different level of abstraction. The character-
istics of the new component behavior are determined by the components being combined and
by the way they are combined.

A component model operates on two levels. First, a component model defines how to con-
struct an individual component. Second, a component model defines how components will
communicate and interact with each other. A component model enables composition by
defining an interaction standard that promotes unambiguously specified interfaces. The term
component assembly includes the different forms in which components are composed, such as
wrapping, static and dynamic linking, and plug-and-play.

The component model implementation is the dedicated set of executable software elements
necessary to support the execution of components within the component model. The compo-
nent model implementation is typically a thin layer that executes on top of an operating sys-
tem. Interfaces are typically defined by using an interface definition language and are regis-
tered with an interface repository associated with the component model implementation. The
component model implementation makes it possible to execute components that conform to
the component model.

2.3 Elements of a Component Model

According to Weinreich and Sametinger (2001) a component model defines a set of standards
for component implementation, naming, interoperability, customization, composition, evolu-
tion, and deployment. The component model also defines standards for an associated compo-
nent model implementation, the dedicated set of executable software entities required to exe-
cute components that conform to the model.

■ Interfaces, Contracts, and Interface Definition Languages. The main purpose of soft-
ware components is reuse. Black-box reuse is based on the principle of information
hiding (Parnas 1972), and relies on interfaces, which are specifications of component
behavior. An interface serves as a contract between a component and its clients. An in-
terface specifies the services a client may request from a component, and the compo-
nent must provide an implementation of these services. Elements of an interface are

Page 13

names of operations, their parameters, and valid parameter types. Interface specifica-
tions are a central element in a component model.

■ Naming. A global component marketplace requires uniquely identifiable components
and interfaces. Name clashes have to be avoided or at least should be unlikely. Thus a
standardizing naming schema is a necessary part of a component model.

■ Meta Data. Meta data is information about interfaces, components, and their relation-
ships. This information provides the basis for scripting and is used by composition
tools. A component model must specify how meta data is described and how it can be
obtained. Component model implementations must provide dedicated services allow-
ing the meta data to be retrieved.

■ Interoperability. Software composition is possible only if components from different
vendors can be connected and are able to exchange data and share control through
well-defined communication channels. Component interoperability or wiring
standards are thus a central element of any component model.

■ Customization. Customization is the ability of a user to adapt a component prior to its
installation or use. Since components are treated as black-boxes, they can only be cus-
tomized using clearly defined customization interfaces. Customization tools may learn
about the customization interfaces of components using meta data services.

■ Composition. Component composition or assembly is the combination of two or more
software components that yields new component behavior. A component composition
standard supports the creation of a larger structure by connecting components within
an existing structure. Such a structure is a component infrastructure, sometimes called
a component framework. The components within a component infrastructure interact
with each other, typically through method invocations. The two basic types of compo-
nent interactions are client/server and publish/subscribe. Components act as clients,
calling methods in other components. A component may register itself with another
component to receive notifications. The component model must define how to design
interfaces to support such composition. Component frameworks enable not only reuse
of individual components but of an entire design.

■ Evolution. Component-based systems require support for system evolution. Compo-
nents might be replaced with newer versions, with a different implementation or modi-
fied interfaces. Existing clients of such components should be affected as little as pos-
sible. Rules and standards for component evolution and versioning are thus an
important part of a component model.

■ Packaging and Deployment. A component model must describe how components are
packaged, so they can be independently deployed. A component is deployed, that is,
installed and configured, in a component infrastructure. The component must be de-
ployed with anything that will not exist in the component infrastructure.

An important part of a component model is the standardization of the run-time environment to
support the execution of components. In object-based component systems this includes the
specification of interfaces, object creation, life-cycle management, object-persistence support,
and licensing.

Page 14

2.4 Existing Component Systems

Today, there are several component-based approaches which are quite diverse and partly over-
lapping. Many approaches cannot be regarded as complete component models, because they
focus on specific component model elements. This work focuses on component models for
rich client applications. Distributed component technologies, with CORBA, COM+, and EJB
(Szyperski 2002) as the prime representatives, have different goals. They provide a wiring and
interaction standard and a run-time infrastructure for distributed computing and client/server
systems.

JavaBeans (Sun 1996) have extended object-oriented programming technology by concepts
for clear interface specification, component customization at build time and component de-
ployment. The Java Service Loader (Sun 2006) extends the interaction standard, adds meta
data, and allows composition at startup time. The Java Service Loader implements a locator
for Java services. A Java service is a set of interfaces and abstract classes. A service provider
is a specific implementation of a service. The classes in the provider typically implement the
interfaces and subclass the classes defined in the service itself. Service providers can be in-
stalled in an implementation of the Java platform in the form of extensions, i.e. jar files placed
into any of the usual extension directories. Providers can also be made available by adding
them to the application's class path.

The NetBeans Lookup API (Boudreau et al. 2007) is another example for a service locator.
The client side lookup works similar to the Java Service Loader, the provider side actually
uses the same Java services as the Service Loader. The NetBeans Lookup API offers a general
registry permitting clients to find instances of services. The distinguished feature of the
Lookup API is that it is designed with dynamic change in mind.

The PicoContainer (Pico 2009) is a well-known implementation of the dependency injection
pattern (Fowler 2004). The basic idea of an inversion of control container is that the container
is a separate object, that actively resolves dependencies between components. During compo-
sition, when a client needs a component, the container searches available provider compo-
nents, and injects a reference to the provider into the dependent component.

The OSGi framework (OSGi 2006) is a module system for Java that defines a standard for de-
ploying and managing coarse-grained components. The component model defines life-cycle
management of components (called bundles in OSGi), a service registry, and an execution en-
vironment. In OSGi allows components to be started, stopped or replaced without requiring a
reboot. Technically, the OSGi service framework is essentially based on a custom Java class
loader and a service registry that is globally accessible within a single Java virtual machine
(Hall and Cervantes 2004).

Eclipse (Eclipse 2003) can be regarded as the most outstanding representative of plug-in sys-
tems today. Eclipse plug-ins (so-called extensions) are fine-grained components with a well-
defined and published interface that can plug into so-called extension points of other compo-
nents. Extensions and extension points are specified in XML files, which Eclipse uses for dis-
covery and loading of plug-ins. The Eclipse IDE comprises wizards which make it easier for
developers to create the XML files.

Page 15

MagicBeans (Chatley et al. 2004) is a Java framework which enables automatic component
assembly at run time. It relies on reflection to inspect Java class files and to match and bind
interface definitions and corresponding class implementations. The MagicBeans component
model is simplistic in the sense, that it does not support meta data that can be used for compo-
sition, or that it cannot distinguish between extension points that share the same interface.

The MADAM system presented in (Hallenstein et al. 2006; Floch et al. 2006) is another inter-
esting approach. It uses dynamic discovery of components to support system adaptation of
mobile devices to changing environmental conditions such as available bandwidth or network
connectivity. It uses an architecture variability model to guide system adaptation and
reconfiguration.

2.5 Deficiencies of Existing Component Systems

In the problem statement (see page 3) we argued that rich client application should be cus-
tomizable, extensible, and reconfigurable at run time. In existing component systems, we see
two major shortcomings with regard to customizability and dynamic change:

■ Lack of granularity. Fine-grained composition options are required to recompose an
application for each working situation. Thus the feature set is always aligned to the
task at hand. Existing component systems are designed for coarse-grained composi-
tion. Existing component systems only allow to replace plug-ins as a whole. They do
not allow to keep some parts of a plug-in, while replacing other parts with custom ex-
tensions. The composition operations in existing component systems have system-
wide affect, because interface registries deliver change notifications system-wide.
Such systems cannot change components only in specific parts of the system.

■ Lack of dynamic reconfiguration support. Support for dynamic change is required to
reconfigure an application on the fly by swapping sets of components. Reconfigura-
tion means to dynamically add, remove, or replace components. In existing compo-
nent systems, support for dynamic change is weak mainly for three reasons: Firstly,
the client alone is responsible to compose the providing components programmatical-
ly. The component infrastructure has no control over whether, how, or when a client
looks for components. Secondly, clients typically compose only at startup. Support for
dynamic change in existing component infrastructures is optional, if supported at all.
Eventually, some components are aware of dynamic change, but most components are
not, thus hindering pervasive support for dynamic change. Thirdly, existing compo-
nent models have different API's for startup composition and for dynamic change.
That obligates programmers to provide two different implementations.

Weinreich and Sametinger (2001) use an analogy of operating systems to clarify the short-
comings. In the analogy, operating systems are component model implementations for appli-
cations, which may be viewed as coarse-grained components. Once a component model im-
plementation is developed, multiple vendors can develop applications that use the services
provided by the component model implementation. Components at the application level can
be used, but they insufficiently enable widespread reuse. The lack of reuse occurs because ap-
plications are too coarse-grained and they lack composition support. This is also true, if we

Page 16

understand reuse in the context of dynamic reconfiguration within the same application.
When we want to reconfigure for a specific configuration, the coarse-grained model is a
problem.

In order to improve reuse, Weinreich and Sametinger define several goals for component-
based software engineering. Two of those goals are relevant for this thesis:

■ Applications are to coarse-grained to improve software reuse. Application developers
are often required to design and implement common functionality that any application
may have. Component-based software engineering seeks to factor out these common-
alities into either services provided by the component model implementation or com-
ponents that could be purchased and integrated into a component infrastructure. A cen-
tral concept of component-based software engineering is to develop technologies for
smaller, fine-grained components and enable a similar degree of reuse on the level of
application parts as was possible at the application level.

■ While applications have long been units of independent deployment, there has typical-
ly been no support for composition. In fact, operating systems ensure that applications
execute in complete isolation from each other. While applications deploy in the oper-
ating system, they are rarely units of composition. The goal of component-based soft-
ware engineering is to develop systems by composing reusable components at a finer
level of granularity than applications.

In the remainder of this section we show what existing component systems offer with regard
to customizability and dynamic change, and what limitations they have.

2.5.1 Lack of Granularity

Granularity in a component model matters two-fold. Firstly, when a component model defines
how components are constructed, it defines the construction granularity. And when a compo-
nent model defines how components are assembled, it defines the composition granularity.
Secondly, a component model defines what parts of an application are affected by composi-
tion, thereby defining the scope of a change operation.

As a component model is about components, it allows composition with component granulari-
ty. For more fine-grained customization options, a more fine-grained granularity would be
useful. When a component provides multiple interfaces, the component model could allow
composing individual interfaces. Table 1 (on page 18) gives an overview how existing com-
ponent systems construct components, and what granularity they support in composition.

A component model defines what parts of an application are affected by composition, thereby
defining the scope of a change operation. In existing component systems change operations
that add or remove a component have system-wide effect. A more fine-granular model could
allow adding a component only to specific parts of an application, or removing a component
only from specific parts of an application.

JavaBeans, NetBeans, and MagicBeans (Sun 1996, Boudreau et al. 2007, Chatley et al. 2004)
offer the same level of granularity. In these models, a component is a JavaBean, a Java object
that is composable by following specific naming conventions. Multiple JavaBeans can be

Page 17

combined and deployed as a Jar file. When deployed as a Java service, the Service Loader
(Sun 2006) allows composing Jar files. Composition scope is always system-wide.

The Pico-Container (Pico 2009) is a representative for inversion of control containers. In
Pico, the component is a Java class implementing a specific interface. Before assembly, the
components are installed into a Pico container. The container allows composition on an inter-
face-level. Pico also supports scoped containers with parent/child relationships as unit of
composition.

Component
System

Component
Construct

Construction
Granularity

Composition
Granularity

Composition
Scope

JavaBeans/NetBeans/
MagicBeans

Bean Bean
Jar

Jar System-wide

PicoContainer Component Component Interface
Container

Container
System-wide

OSGi Bundle Service
Bundle

Service
Bundle

System-wide

Eclipse Extension Extension
Plug-in

Extension System-wide

Table 1. Components and granularity of existing component systems

The OSGi service platform (OSGi 2006) uses so-called bundles as components. A bundle is a
Jar file that contains multiple Java classes and meta information. One bundle can register mul-
tiple services in the OSGi service registry. Services and bundles are units of composition with
system-wide scope.

The Eclipse platform (Eclipse 2003) uses extensions as components. An extension is a class
that implements an interface. A plug-in combines multiple extensions in a Jar file together
with XML meta data. The sole unit of composition is the extension, since the extension reg-
istry has no operations on plug-in level. Independent from the core Eclipse component model,
the Eclipse Integrated Development Environment (IDE) adds two coarser elements above the
extension. A feature combines multiple plug-ins as a unit that can be deployed and installed
together. A product packages a combination of features into their own instance of the Eclipse
IDE. A product can be perceived as an individual application. Composition scope is always
system-wide.

2.5.2 Lack of Dynamic Reconfiguration Support

Dynamic reconfiguration requires support in the component model. Composition operations
for dynamic addition or removal must be provided in the component model and in the compo-
nent model implementation. Support for dynamic change is weak in existing component sys-
tems for three reasons:

■ The client (not the component infrastructure) composes providers programmatically.
The component infrastructure has no control over whether, how, or when a client com-
poses providers.

Page 18

■ The client typically composes only at startup, the support for dynamic change is optio-
nal. Some components are aware of dynamic change, but most are not, thus hindering
pervasive reconfiguration support.

■ The component systems offers different programming models for composition at start-
up and for dynamic change. The component programmer is obligated to provide two
different implementations.

The remainder of this section discusses the three reasons in their own subsections. We use a
sample movie application to demonstrate in detail the deficiencies of current component sys-
tems from the view of a component programmer.

Movie Application Example

This section uses a sample program to discuss the weaknesses in current component systems.
The example is intentionally kept simple, but it is sufficient to visualize what the problems
are. Fig. 1 shows the static structure of the movie application with three components. The
movie application component uses a move lister component that provides a list of movies di-
rected by a particular director. The point we focus on in this example is where the movie lister
component uses one or more finder components. The movie lister asks each finder component
to return every movie it knows about.

Figure 1. Class diagram of movie application example

Our starting point is an object-oriented Java implementation of the movie application. The ap-
plication comprises the three components MovieApplication.jar, MovieLister.jar, and Ba-
sicMovieFinder.jar. The components are decoupled by the MovieLister and MovieFinder in-
terfaces. All finder components know the findAll method.

public interface MovieFinder {
 Movie[] findAll();
}

The implementation of the listByDirector method in class MovieListerImpl is straight-
forward. The method uses an array of interface MovieFinder to keep references to provider
components. We will see later how each component system fills that array. For the moment,
we take the provider array as given. The movie lister gets an array with movies from each
provider and filters for the director's name.

public List listByDirector(String director) {
 private MovieFinder[] finderArray = ...;
 List result = new LinkedList();

Page 19

 for(MovieFinder finder: finderArray)
 for(Movie movie: finder.findAll())
 if(movie.getDirector().indexOf(director) > -­‐1)
 result.add(movie);
 return result;
}

With the MovieFinder interface, we have achieved that lister and finder are decoupled. How-
ever, at some point we have to come up with a concrete class for the finder. The following
sections show how to do this in the respective component system. They also discuss why this
is a problem for dynamic change.

Provider integration requires programming effort

The first reason why existing composition systems are weak with regard to dynamic reconfig-
uration is that composition is done programmatically inside the client component. Thus it is
the programmer's responsibility to control how the composition is performed. Most systems
have some kind of interface registry where components register their services. The client
queries the registry to look for providers. Typically the client does this only at startup. Sup-
port for dynamic change is optional, if supported at all.

To complete our plain Java implementation from above, we statically bind the provider imple-
mentation at compile time in the array constructor. We statically bind two provider classes,
BasicMovieFinderImpl and FileMovieFinderImpl.

private MovieFinder[] finderArray = new MovieFinder[] {
 new BasicMovieFinderImpl(),
 new FileMovieFinderImpl()
};
for(MovieFinder finder: finderArray) { ... }

The problem with this implementation should be obvious. The movie lister component is stat-
ically bound to the two providers specified in the source code. There is no way for a user to
change the configuration.

Java Service Loader

The Java Service Loader (Sun 2006) solves the compile time dependency problem. The lister
uses the movie finder service, which is specified by the MovieFinder interface. The load
method of the service loader class dynamically discovers available service providers. A ser-
vice provider is a specific implementation of a service. The service loader loads providers on
demand and caches instances for later access.

ServiceLoader<MovieFinder> loader = ServiceLoader.load(MovieFinder.class);
for(MovieFinder finder: loader) { ... }

The discovery mechanism uses a simple configuration file. The name of the file designates
the fully qualified service name, and the file contains a list of fully qualified names of con-
crete provider classes. If for example movies.impl.BasicMovieFinderImpl is an imple-
mentation of the MovieFinder service, then its Jar file contains a file named:

META-­‐INF/services/movies.MovieFinder

This file contains the single line:
movies.impl.BasicMovieFinderImpl

Page 20

The service loader decouples service user and service provider. It discovers service providers
at run time. However, the lister client has to compose its providers programmatically. The typ-
ical implementation does this only once at startup. It is not possible to change providers
thereafter.

NetBeans Lookup

NetBeans Lookup (Boudreau et al. 2007) solves the dependency problem similar to the Java
Service Loader. On the client side, the classes in package Lookup work similar to the service
loader. The lister client queries the default lookup implementation for providers. The registra-
tion of service providers is exactly the same as with the Java Service Loader.

Lookup.Template template = new Lookup.Template(MovieFinder.class);
final Lookup.Result result = Lookup.getDefault().lookup(template);
...
Collection<? extends MovieFinder> finders = result.allInstances();
for(MovieFinder finder: finders) { ... }

With NetBeans Lookup, the client programmatically composes in a similar way as the Java
Service Loader does. The shown implementation is default in NetBeans. It does not support
dynamic change. However, NetBeans Lookup optionally offers support for dynamic change
(see page 25).

PicoContainer Dependency Injection

An Inversion of Control container solves the compile time dependency problem by moving
the composition code outside of the client. The container uses the Dependency Injection pat-
tern to inject the provider object into the client object. In a Pico application, the lister class
has an array of finders, and a constructor with the same array as a parameter. In this example,
we use constructor injection to set the dependency via the object's constructor. Pico supports a
slew of other injection mechanisms, for example field or method injection (Pico 2009). All
the lister has to do, is to provide a constructor with arguments for its dependencies.

public class MovieListerImpl implements MovieLister {
 private final MovieFinder[] finders;
 public MovieListerImpl(MovieFinder[] finders) {
 this.finders = finders;
 }
 public List listByDirector(String director) {
 ..
 for(MovieFinder finder: finders) { ... }
 ..
 }
}

The composition code is outside of the client component, for example in the movie applica-
tion component. In the main method, we create a new pico container and add all components
to the container. When we call getComponent on the container to create the lister, the Pico
container injects instances of all classes which are assignable to the MovieFinder interface in
the movie lister constructor. Thus, the movie lister is configured with the BasicMovieFind-­‐
erImpl class and the FileMovieFinderImpl class.

Page 21

public static main(String[] args) {
 pico = new DefaultPicoContainer(...);
 pico.addComponent(MovieApplication.class);
 pico.addComponent(MovieListerImpl.class);
 pico.addComponent(BasicMovieFinderImpl.class);
 pico.addComponent(FileMovieFinderImpl.class);
 pico.start();

 MovieLister lister
 = (MovieLister) pico.getComponent(MovieLister.class);
 lister.listByDirector("Ang Lee");
}

The inversion of control container decouples service client and provider. It moves the compo-
sition code away from the client component to some main part of the application. The inver-
sion of control container constitutes a separate composer instance responsible for composition
and thereby offers a solution for the problem of programmatic integration. However, the Pico
container also composes only at startup. It does not allow changing the composition at run
time.

OSGi Service Registry

The OSGi service registry (OSGi 2006) solves the dependency problem similar to the Java
Service Loader. The lister uses a tracker to get all registered service providers. The tracker de-
livers references to all registered services.

ServiceTracker tracker = new ServiceTracker(...,
 MovieFinder.class.getName(), null);
tracker.open();
for(ServiceReference ref: tracker.getServiceReferences()) {
 MovieFinder finder = (MovieFinder) tracker.getService(ref);
 ...
}

Unlike the Java service loader, OSGi bundles programmatically register their services in the
service registry. The bundle registers the service when the run-time environment loads the
bundle. The service registry identifies a service by its name. Optionally, the provider can reg-
ister a dictionary with properties. During composition, the client can use those properties to
filter service providers.

public void start(BundleContext context) {
 MovieFinder finder = new BasicMovieFinder();
 context.registerService(MovieFinder.class.getName(), finder, null);
}

The service registry decouples service client and service provider. However, the client itself
composes programmatically. The provider also has to provide code to register a service in the
registry. When hosts use this simple programing model, it is not possible to dynamically
change services from outside. The OSGi service registry optionally offers a different model
with support for dynamic change (see page 26).

Eclipse Extension Registry

Eclipse (Eclipse 2003) builds on an OSGi implementation called Equinox. However, Eclipse
uses its own Extension Registry instead of the OSGi service registry. As far as provider inte-

Page 22

gration is concerned, both work similar, but we will see later, that they are different when it
comes to dynamic reconfiguration.

The lister uses the extension registry to get a reference to the extension point. The extension
point retrieves a collection of available extensions. The mechanism for selecting the desired
provider from the list of all retrieved extensions is cumbersome. The client must search the
configuration elements of every extension for the desired class name before he can create an
instance of the provider class.

IExtensionPoint point = Platform.getExtensionRegistry()
 .getExtensionPoint("at.jku.ase.MovieFinder");
for(IExtension ext: point.getExtensions()) {
 IConfigurationElement element;
 for(IConfigurationElement e: ext.getConfigurationsElements()) {
 if(e.getName().equals("MovieFinder")) {
 elem = e;
 break;
 }
 }
 MovieFinder finder = elem.createExecuteableExtension("class");
 ..
}

In contrast to the programmatic approach in the OSGi service registry, the registration of ex-
tensions in the Eclipse extension registry is declarative. Each extension provides a plugin.xml
configuration file. This file specifies the target extension point, and the class implementing
the service.

<plugin>
 <extension point="at.jku.ase.MovieFinder">
 <MovieFinder class="movie.impl.BasicMovieFinderImpl"/>
 </extension>
</plugin>

The extension registry decouples client and provider extension through an extension point.
The provider uses declarative specification, but the client has to compose the extensions pro-
grammatically, typically at startup. Using the shown implementation, it is not possible to dy-
namically change providers at run time. Optionally, the extension registry offers a different
mechanism for dynamic reconfiguration (see page 27).

Summary

The mechanism how a client integrates providers is similar in most of the described compo-
nent systems. A client component provides code that queries some kind of registry at startup.
The fact that the client component controls when or how it integrates provider components,
and the circumstance that this is done typically only at startup, is one reason why dynamic re-
configuration is a problem.

Dependency injection is an exception here. The dependency injection container uses construc-
tor injection to wire up client and provider. The client component does not provide code for
contributor composition.

Page 23

Provider integration requires programmatic effort

hard-wired Java application Client queries collection of contributor classes

Java Service Loader Client queries service loader

NetBeans Lookup Client queries lookup

Pico Dependency Injection Container automatically injects provider

OSGi Service Registry Client queries service tracker

Eclipse Extension Registry Client queries extension registry

Table 2. Programmatic provider integration in existing component systems

Dynamic change support is optional

The second reason why existing composition systems are weak with regard to dynamic recon-
figuration is that composition systems primarily focus on composition at startup. When we
look at dynamic change, composition systems can be subdivided into two groups. One group
lacks support for dynamic change, and the other group has some support for it, but whether a
component supports dynamic change is optional. In practice, when dynamic change aware-
ness is optional, some components do support it, and others don't. This is a problem, because
it hinders pervasive support for dynamic change.

When in an application some components are dynamic-aware and others are not, the resulting
problems differ depending on the kind of change. When we dynamically add a component,
those components that are aware, will integrate the new functionality, while those components
that are not aware, will ignore it. The composition result might at least be partly usable. When
we dynamically remove a component, the consequences are more severe. If there are compo-
nents in the system that do not stop using the removed component, the component cannot ef-
fectively be removed.

Of course, our statically bound Java version of the movie application does not support dynam-
ic change. The dependency to the finder providers was introduced at compile time and cannot
change.

private MovieFinder[] finderArray = new MovieFinder[] {
 new BasicMovieFinderImpl(),
 new FileMovieFinderImpl()
};
for(MovieFinder finder: finderArray) { ... }

Java Service Loader

The Java service loader (Sun 2006) class has operations to manually load or reload the collec-
tion of service providers. However, the client is not notified when the set of available service
providers changes. The only way to update the dependencies is to periodically reload the set
of service providers and determine added or removed providers by calculating the difference
between two consecutive calls.

Page 24

ServiceLoader<MovieFinder> loader = ServiceLoader.load(MovieFinder.class);
for(MovieFinder finder: loader) { ... }

The service loader does not support dynamic change, because there is no change notification
mechanism.

NetBeans Lookup

NetBeans Lookup (Boudreau et al. 2007) offers a mechanism for dynamic change notifica-
tion. The example uses a lookup template to request providers for the movie finder interface.
The result of the lookup request allows registering a change listener. The lookup result can
call back the change listener's resultChanged method when providers are added or removed.

public List listByDirector(String director) {
 Lookup.Template template = new Lookup.Template(MovieFinder.class);
 final Lookup.Result result = Lookup.getDefault().lookup(template);
 result.addLookupListener(new MyListener());
 ...
 Collection<? extends MovieFinder> finders = result.allInstances();
 for(MovieFinder finder: finders) { ... }
}

class MyListener implements LookupListener {
 public void resultChanged(LookupEvent e) { ... }
}

However, the information the client component gets when the lookup result changes is sparse.
The lookup just advises the client that the result has changed, with not additional information
about the kind of change. The client component cannot determine whether something has
been added, or removed, nor does it know which providers are affected by the change. As a
response to that change, the client can either recompose all contributors, or if it wants to se-
lectively add or remove components, it can compare the states before and after the change
manually.

The NetBeans Lookup discovers the Java extensions in the same way as the Java Service
Loader API. In addition to that, the NetBeans platform allows programmers to specify a
change listener. However, none of the lookup providers that come with NetBeans does sup-
port this listener. To implement dynamic change in NetBeans, a programmer still has to pro-
vide his own implementation of a lookup provider.

PicoContainer Dependency Injection

Inversion of control containers like Pico (Pico 2009) are designed to inject dependencies once
at startup. Once the dependency is injected, it can neither be rejected from the container, nor
can further providers be added.

In the sample code below, we add the lister and the basic movie finder to the composition
container. Then we call getComponent to create the lister component with the basic movie
finder as the only provider. Each addComponent or removeComponent call after creation of
the lister will effect newly created listers, however it cannot affect already composed
components.

Page 25

MutablePicoContainer pico = new DefaultPicoContainer(...);
pico.addComponent(MovieApplication.class);
pico.addComponent(MovieListerImpl.class);
pico.addComponent(BasicMovieFinderImpl.class);
MovieLister lister = (MovieLister) pico.getComponent(MovieLister.class);

pico.removeComponent(BasicMovieFinderImpl.class);
pico.addComponent(FileMovieFinderImpl.class);
// does not affect 'lister'

The dependency injection model does not support dynamic change. The constructor injection
mechanism is by definition made for startup composition only.

OSGi Service Registry

The OSGi service registry (OSGi 2006) is designed to start and stop services dynamically. If a
client component wants to support dynamic change, it implements a service tracker. The
client component subclasses the service tracker and overrides the methods addingService
and removedService.

class MovieFinderTracker extends ServiceTracker {
 // Collection finders declared in outer class
 public MovieFinderTracker(BundleContext context) {
 super(context, MovieFinder.class.getName(), null);
 }
 public Object addingService(ServiceReference reference) {
 MovieFinder finder = (MovieFinder) context.getService(reference);
 finders.add(finder);
 return finder;
 }
 public void removedService(ServiceReference reference, Object service) {
 MovieFinder finder = (MovieFinder) service;
 context.ungetService(reference);
 finders.remove(finder);
 }
}

The specialized movie finder tracker is an inner class in the movie lister implementation. The
tracker automatically keeps the collection with the movie finder providers up to date.

public class MovieListerImpl implements MovieLister {
 private final MovieFinderTracker tracker;
 private Collection finders =
 Collections.synchronizedCollection(new ArrayList());
 public MovieListerImpl(BundleContext context) {
 tracker = new MovieFinderTracker(context);
 }
 public ServiceTracker getTracker() { return tracker; }
 public List listByDirector(String director) {
 MovieFinder[] finderArray = (MovieFinder[])
 finders.toArray(new MovieFinder[finders.size()]);
 for(MovieFinder finder: finderArray) { ... }
 ...
 }
}

The code in the BundleActivator below shows how to add or remove services to the service
registry. The registerService method in class BundleContext registers a service object

Page 26

under the specified interface name into the service registry. The unregister method in inter-
face ServiceRegistration unregisters the service object from the service registry. After a
service has been unregistered, associated ServiceReference objects can no longer be used to
interact with the service.

public class BasicMovieFinderActivator implements BundleActivator {
 private ServiceRegistration registration;
 public void start(BundleContext context) {
 MovieFinder finder = new BasicMovieFinderImpl();
 registration = context.registerService(
 MovieFinder.class.getName(), finder, null);
 }
 public void stop(BundleContext context) {
 registration.unregister();
 }
}

The service registry supports dynamic change, however, whether a client uses a sub-classed
service tracker is optional.

Eclipse Extension Registry

The Eclipse extension registry (Eclipse 2003) allows adding extensions dynamically. If a host
component wants to support dynamic change, it implements an extension change handler. The
handler gets change notifications for a given extension point. The addExtension method is
called whenever an extension is added. The removeExtension method is called whenever an
extension is removed.

IExtensionRegistry reg = Platform.getExtensionRegistry();
IExtensionPoint xp = reg.getExtensionPoint("at.jku.ase.MovieFinder");
IExtensionTracker tracker = new ExtensionTracker(reg);
IFilter filter = ExtensionTracker.createExtensionPointFilter(xp);
IExtensionChangeHandler h = new MyHandler();
tracker.registerHandler(h, filter);

class MyHandler implements IExtensionChangeHandler {
 public void addExtension(IExtensionTracker t, IExtension ext) {
 // read configuration and create extension executable extension
 }
 public void removeExtension(IExtension ext, Object[] objects) {
 // release references to extension
 }
}

The extension registry has methods for adding and removing entries from the registry. The
addContribution method adds extension points, extensions or a combination of those de-
scribed in a plugin.xml file. The removeExtension method removes an extension from the
registry. Those calls trigger the notification of change handlers like the one shown above.

IExtensionRegistry reg = Platform.getExtensionRegistry();

// add an extension
Bundle bundle = Activator.getDefault().getBundle();
IContributor contributor = ContributorFactoryOSGi.createContributor(bundle);
InputStream stream = new FileInputStream("plugin.xml");
reg.addContribution(stream, contributor, false, null, null, null);
stream.close();

Page 27

// remove an extension
IExtension ext = ...;
reg.removeExtension(ext, null);

The Eclipse methods for dynamic change are part of an interim API that is still under devel-
opment. At this early stage, it is made available to solicit feedback. The primary composition
mechanism in Eclipse is still startup composition. Support for dynamic change is optional,
and to date almost no plug-in does it. This fact can be easily observed in the Eclipse IDE, be-
cause when a feature is removed, the IDE requires a restart.

Summary

The support for dynamic change varies among the component systems described in this chap-
ter. The Java Service Loader and Pico Dependency Injection are limited to startup composi-
tion. NetBeans Lookup has dynamic change in the API, however, none of the lookup
providers that come with NetBeans allows triggering changes from outside. The Eclipse ex-
tension registry does support dynamic change, but since dynamic change support is optional,
most Eclipse plug-ins do not support it. Finally the OSGi service registry supports dynamic
change and services can be added and removed freely. The unpleasant thing with OSGi is that
dynamic change support requires a lot of code to write.

Dynamic change support is optional

hard-wired Java application no dynamic change

Java Service Loader no dynamic change

NetBeans Lookup API for dynamic change support, but not imple-
mented in NetBeans lookup providers

Pico Dependency Injection no dynamic change

OSGi Service Registry dynamic change support, but optional

Eclipse Extension Registry experimental dynamic change support, plug-ins do
not support it

Table 3. Optional dynamic change support in existing component systems

Non-uniform programming model for startup and dynamic change

The previous two sections explained two problems for dynamic change. Firstly, the compo-
nent infrastructure cannot trigger change operations dynamically, because components will
not react. Client components programmatically compose providers at startup and do not
change their composition thereafter. Secondly, even if a component system supports dynamic
change, it makes support for dynamic change optional. Thus, even if the component system
supports dynamic change, most components do not.

This section discusses a third problem which is sort of a combination of the other two. Exist-
ing component systems use different programming models for initial composition at startup,
and for dynamically adding or removing components. This is a problem because component
programmers are obliged to provide two different implementations.

Page 28

OOP, Java Service Loader, and Pico Dependency Injection are excluded from this section, be-
cause they do not support dynamic change at all.

NetBeans Lookup

NetBeans Lookup (Boudreau et al. 2007) distinguishes startup composition and dynamic
change. At startup, the client component queries the lookup repository for all matching in-
stances of providers. In order to react to dynamic change, the client component additionally
registers a change listener.

Lookup.Template template = new Lookup.Template(MovieFinder.class);
final Lookup.Result result = Lookup.getDefault().lookup(template);
// do startup composition
Collection<? extends MovieFinder> finders = result.allInstances();
for(MovieFinder finder: finders) { ... }
// register change listener
result.addLookupListener(new MyListener());

class MyListener implements LookupListener {
 public void resultChanged(LookupEvent e) {
 // react to change
 }
}

The code in the change listener is completely different from the code for integrating compo-
nents at startup. Since there is no information about the kind of change, the client component
has to manually find out changes by comparing old and new state.

OSGi Service Registry

The OSGi service registry (OSGi 2006) actually is the positive exception, because the sub-
classed service tracker handles startup composition and dynamic change in a uniform model
(see page 26). A small caveat is that support for dynamic change is still not mandatory. A
client component can choose between the special service tracker with dynamic support, and
the basic service tracker without dynamic support (see page 22).

Eclipse Extension Registry

The Eclipse extension registry (Eclipse 2003) distinguishes startup composition and dynamic
change. At startup, the client component queries the extension point for initial extensions. In
order to react to dynamic change, the client component registers a registry change handler.

IExtensionPoint point
 = Platform.getExtensionRegistry()
 .getExtensionPoint("at.jku.ase.MovieFinder");
for(IExtension ext: point.getExtensions())
 addExtension(ext);

IExtensionTracker tracker = new ExtensionTracker(reg);
IFilter filter = ExtensionTracker.createExtensionPointFilter(xp);
IExtensionChangeHandler h = new MyHandler();
tracker.registerHandler(h, filter);

class MyHandler implments IExtensionChangeHandler {
 public void addExtension(IExtensionTracker t, IExtension ext) {
 addExtension(ext);
 }

Page 29

 public void removeExtension(IExtension ext, Object[] objects) {
 removeExtension(ext);
 }
}

private void addExtension(IExtension ext) { ... }
private void removeExtension(IExtension ext) { ... }

The change listener represents a different model for composition than the initial query at start-
up. The programmer of the client component has to provide two implementations.

Summary

Among those component systems that support dynamic change, all but one use separate
mechanisms for startup and dynamic changes. Typically, there is some kind of central
provider registry. When a component is activated, it gets a collection of available providers
from the registry. This comprises the initial composition. Then the host component has to pro-
vide an additional implementation. Typically it registers a listener in the registry to handle dy-
namic change. In all systems the implementation for dynamic change is optional and can be
omitted by a client component. The consequence is that some components support dynamic
change, while others do not.

Non-uniform programming model for startup and dynamic addition

hard-wired Java application no dynamic change

Service Loader no dynamic change

Lookup separate code for startup and dynamic change

Dependency Injection no dynamic change

Service Registry uniform model

Extension Registry separate code for startup and dynamic change

Table 4. Non-uniform programming models in existing component systems

Page 30

Chapter 3: Plux.NET Composition Model

This chapter describes a composition model (CM) which addresses the deficiencies described
in Section 2.5. The CM is the foundation for the composition infrastructure described in
Chapter 4. The CM defines meta elements for components and their relationships, and it spec-
ifies services for discovery, qualification, and composition.

This chapter is structured as follows: Section 3.1 describes key characteristics of the
Plux.NET approach. Section 3.2 describes how Plux.NET is related with the .NET Frame-
work. Section 3.3 describes the Plux.NET CM based on the metaphor of slots and plugs. Sec-
tion 3.4 describes the meta elements in the CM. Section 3.5 to 3.7 describe the discovery ser-
vice, the qualification service, and the composition service. Section 3.8 describes the life-
cycle of meta elements. Section 3.9 describes how the discovery, qualification and composi-
tion service compose an application.

3.1 Characteristics of the Plux Approach

Plux.NET is a plug-in component framework focussing on the concept of dynamic composi-
tion. Like existing plug-in systems, Plux.NET is based on the concept of a small core that is
extended with plug-in components. Plug-ins can be plugged into the core or into other plug-
ins where they are integrated seamlessly by their host. This plug-in component foundation al-
lows developers to build extensible and customizable applications with Plux.NET.

Unlike in existing systems, the plug-in discovery mechanism is not an integral part of the
Plux.NET composition infrastructure. Instead, the composition infrastructure can be extended
with custom discovery plug-ins. The discovery plug-in is responsible for detecting additions
or removals of plug-ins. In Plux.NET, discovery is designed for dynamic change, allowing ad-
dition and removal of plug-ins at run time. Discovery plug-ins themselves can also be dynam-
ically replaced, thus allowing applications to use different discovery mechanisms for launch-
ing and while they run. Since the discovery plug-in is also responsible for meta data
provision, the meta data mechanism can be replaced.

Unlike existing plug-in systems, the Plux.NET composition infrastructure does not operate as
a passive registry where components themselves drive composition. Instead, the composition
infrastructure comprises a composer which actively controls composition from the core. The

Page 31

components have a passive role in the composition process, i.e., they are controlled by the
composer.

The active composer is a precondition for plug-and-play composition. The composition infra-
structure specifies that components declare their requirements and provisions with meta data.
The composer uses the composition infrastructure to obtain those meta data, and tries to
match requirements and provisions. It creates component instances and notifies host compo-
nents that a contributor component became available. The composition infrastructure stores
which host component uses which contributor component. The composer uses these stored
connections when it needs to notify host components that a contributor component becomes
unavailable. This is done before it releases a component instance. The host components strict-
ly adhere to an event-based programming model. They react to the event notifications of the
composer and dynamically add or remove contributor components. This plug-and-play ap-
proach allows composing applications without programming.

The composition infrastructure supports an automatic and a manual mode for plug-and-play
composition. In automatic mode, the composer integrates any plug-in which becomes avail-
able. This makes composing applications as simple as dropping plug-ins in the application di-
rectory. In manual mode, composition tools use the public interface of the composer to
connect plug-in components.

3.2 Prerequisites for Plux.NET

The .NET moniker in the name Plux.NET suggests a connection between Plux.NET and the
.NET Framework. This connection should be understood as "the version of Plux for .NET",
because the CM is not tied to .NET, and could, for example, be adapted for the Java Runtime
Environment.

The reason why the Plux.NET composition infrastructure requires a base technology such as
the .NET Framework is that Plux.NET does not specify all elements of a complete component
model (see page 13). The Plux.NET CM specifies standards for interfaces and contracts, nam-
ing, meta data, customization, and composition. It does not specify standards for inter-
operability, evolution, packaging, and deployment. Instead, Plux.NET declares those elements
as prerequisites. The Plux.NET composition infrastructure as described in Chapter 4 meets the
prerequisites with capabilities of .NET. The .NET Common Language Infrastructure (CLI)
provides standards for component interoperability, evolution, packaging, and deployment
(ECMA 2006).

The choice of .NET as a platform for the Plux.NET composition infrastructure is primarily
motivated by our industry partner's willingness to participate in case studies and pilot
projects, provided that the base technology is compatible with his ERP applications (Reiter
2007, Wolfinger 2008a, Rabiser 2009).

Page 32

3.3 Composition with Slots and Plugs

The Plux.NET CM uses the metaphor of extensions with slots and plugs. It composes an ap-
plication of extensions with well-defined interfaces. An extension is a functional component
which provides services to other extensions or uses services provided by other extensions. As
Fig. 2 shows, an extension opens a slot when it wants to use the service of other extensions,
and it provides a plug when it provides a service to other extensions. Non-trivial extensions
can have multiple slots and plugs. The CM defines the mediating process which matches re-
quired and provided services, or in other words, which composes an application by plugging
plugs into slots.

Extension

Slot

Extension

Plug

Host Contributor

uses

provides

Figure 2. Slot and plug in host and contributor extension

A slot specifies how other extensions are intended to extend the functionality of this exten-
sion, whereas a plug specifies how this extension makes contributions to others. Therefore,
slot and plug specifications have to match. In essence, a slot declares the kind of information
an extension expects and the plug fills these information slots. Accordingly, an extension
which opens a slot is called host extension, whereas an extension filling a slot is called con-
tributor extension. Contributor extensions again can open their own slots where other exten-
sions can contribute allowing the whole application to grow.

Interface

Param1

Param2

Class

Value1

Value2

Slot Plug

Contributor ExtensionHost Extension

Slot Definition

Interface

Param1

Param2

Figure 3. Slot definition in host and contributor extension

Contributions occur on the level of run-time behavior, i.e. host and contributor will communi-
cate based on a defined protocol to accomplish a particular task. The collaboration between
host and contributor is defined by a slot definition in the form of a required and a provided in-
terface. The host defines the required interface and the contributor has to provide an imple-
mentation for it. Fig. 3 shows a slot definition which specifies the structure of a slot in the
host extension and the corresponding plug in the contributor extension. The interface in the
host and the implementing class in the contributor constitute the agreed collaboration proto-
col. Additional parameters and their values define other properties that the host requires to

Page 33

make use of the extension. The host defines required parameters and the contributor has to
provide values for them.

Functionally related extensions are packed in a plug-in and thus can be installed jointly. Simi-
larly, functionally related slot definitions are packed in a contract. Slot definitions are kept
separate from the extensions, because they need to be published to contributors without also
publishing the extensions that open these slots.

3.4 Meta Elements

The CM uses meta data to describe extensions and their relationships. Type meta elements de-
scribe the static elements of contracts and plug-ins. Fig. 4 shows that contracts contain slot
definitions, and slot definitions contain parameter definitions. Plug-ins contain extension
types, extension types contain slot types and plug types, and plug types contain parameters.
Instance meta elements describe instances of composed extensions which are connected via
their slots and plugs.

Instance Meta ElementsType Meta Elements

Contract

Slot Definition

Extension Type

Slot TypePlug Type

Plug-in
Extension

Slot
Plug

Parameter
Definition

Parameter

Figure 4. Plux.NET composition model meta elements

For better readability of the text in the remainder of this chapter, we refer to type meta ele-
ments shortly as types, and to instance meta elements shortly as instances, wherever the short-
ening is appropriate. We also refer to slot types as slots, to plug types as plugs, and to exten-
sion types as extensions, if the distinction between type and instance emanates from the
context.

In the CM, an extension meta element represents a real extension object of a .NET application
in an one-to-one relation (see Fig. 5). The Object property of an extension references the asso-
ciated .NET object. In the same way, an extension type meta element represents the according
.NET type from which the .NET object was created. The Type property of an extension type
references the associated .NET type. In this thesis, types are depicted as dashed boxes, and in-
stances are depicted as boxes.

Page 34

E
P

.NET

Object

S

Extension

Plug Slot

.NET Application

CM Elements

instance of.NET

Type

E
P Par S

Extension Type

Plug Type Slot Type

Parameter

Instance Meta ElementsType Meta Elements

Object propertyType property1:1 1:1

1 0..n

Figure 5. Relationships between meta elements and application objects

1..n

Contract

File: Assembly*

SlotDefinition

Interface: Type*

ParamDefinition

Type: Type*
DefaultValue: Object*

0..n

Plugin

File: Assembly*

ExtensionType

Class: Type*
Singleton: bool
AutoRelease: boolSlotType

Multiple: bool
SelectionMode:enum
Unique: bool
AutoOpen: bool
AutoRegister: bool
AutoPlug: bool
LazyLoad: bool
AutoRelease: bool

PlugType

AutoRegister: bool
AutoPlug: bool

Parameter

Value: Object*

Extension

Object: Object*
IsShared: bool
AutoRelease: bool

Slot

IsOpen: bool
SelectionMode: enum
Unique: bool
AutoOpen: bool
AutoRegister: bool
AutoPlug: bool
LazyLoad: bool
AutoRelease: bool

Plug

AutoPlug: bool

0..n 1..n

1

1

0..n 1..n

1..n

1 0..n

0..n

1

MetaElement

Name: string
Id: int

Qualifiable

State: enum
Qualify()

all elements implement
this interface

is plugged in0..n 0..n

is registered in0..n

0..n

is selected in
0..n 0..n

all Type/Definition elements
implement this interface

0..n 0..n

Data types marked with *
are from the .NET Framework

Figure 6. Class diagram of Plux.NET composition model

Page 35

The class diagram in Fig. 6 shows the structure of the CM. It shows the meta elements, their
attributes, and the relationships between meta elements. Every meta object can be identified
by its name or by an identification number. Slot definitions must be named uniquely. Other
types must be named uniquely within their parent element. Instances derive their name from
their corresponding types. To distinguish instances with the same name, the composition ser-
vice numbers instances consecutively per type. In the remainder of this chapter, we will show
algorithms which use the attributes and relationships shown in the class diagram.

3.5 Discovering Extensions

Discovery plug-ins detect when components are added to or removed from a monitored com-
ponent repository and provide meta data for the components. The discovery service integrates
these discovery plug-ins and provides an Add operation and a Remove operation.

A discovery plug-in calls the Add(Contract) operation to add slot definitions, or the Add(Plu-
gin) operation to add extensions to the CM. After the discovery service has added an exten-
sion, the extension is known in the CM. In the figure below, the discovery service has added
extension E2. Extension E2 has a plug P2 and a parameter value V2.

Extension E2 has been ADDEDE2
P2 The extension is known in the CM.V2

A discovery plug-in calls the Remove(Contract) operation to remove slot definitions, or the
Remove(Plugin) operation to remove extensions from the CM. After the discovery service has
removed an extension, the extension is no longer known in the CM. In the figure below, the
discovery service removed extension E2.

Extension E2 was REMOVEDE2
P2

The extension is no longer known in the CM.

3.6 Qualifying Extensions

Before types can be used in composition, the qualification service checks whether a type qual-
ifies. If a type does not qualify, it is ignored in composition. The Qualify(TypeMetaElement)
operation qualifies a type, if it complies with the standards of the CM. Table 5 (on page 37)
lists the qualification rules for types. When a rule requires a unique name, that means that
among multiple types with the same name, only one can be qualified. Which of multiple types
with the same name qualifies, depends on the sequence of qualification. For example, the CM
could contain multiple slot definitions with the same name. The slot definition which is tried
first will qualify, any subsequent attempt to qualify another slot definition with the same name
will fail, because its name is not unique.

Extensions, plugs, and parameters must comply with additional rules (bold typeface in Table
5). If an extension wants to contribute to a host extension, their slot and plug specifications
have to match, i.e. they have to specify the same slot name. The name specifies the agreed

Page 36

slot definition. A plug qualifies for a slot, if the implementation class in the extension pro-
vides a parameter-less constructor and an implementation for the interface in the slot defini-
tion. If the slot definition has parameters, the plug must provide qualified parameter. A param-
eter qualifies, if its type is assignable to the data type in the parameter definition. If a plug
does not qualify, the composition service issues a warning and ignores the plug.

The qualification states of types can change, when types are dynamically added or removed.
For example, if a plug specifies a slot definition which is not available, it does not qualify.
When the according slot definition is added later, the plug is checked again. Vice versa, when
a slot definition is removed, affected slots and plugs have to be checked again.

Extensions are qualified in a tolerant way. An extension with multiple plugs qualifies, if at
least one plug qualifies. Other plugs which do not qualify yet, may qualify later, when new
contracts are discovered.

Type meta element qualifies if

Parameter definition name is unique within slot definition.

Slot definition name is unique.

Contract name is unique within model,
and contains at least one slot definition.

Parameter value name is unique within plug type,
and a parameter definition with this name exists in slot definition,
and value is assignable to parameter definition in slot definition.

Slot type name is unique within extension type,
and a slot definition with this name exists,
and slot definition qualifies.

Plug type name is unique within extension type,
and a slot definition with this name exists,
and slot definition qualifies,
and extension type qualifies,
and implementation class in extension type implements interface in
slot definition,
and parameter values qualify.

Extension type name is unique within plug-in,
and at least one plug type qualifies,
and implementation class provides a parameter-less constructor.

Plug-in name is unique within model,
and contains at least one extension type.

Table 5. Qualification rules for type meta elements

Page 37

3.7 Composing Extensions

The composition service composes an application by creating extensions and by maintaining
relationships between them. Relationships between host and contributor define their
integration.

3.7.1 Relationships between Extensions

The CM defines two levels of host-contributor integration. Type integration integrates con-
tributor types by retrieving their parameter values. Instance integration means that a host in-
stantiates contributors and calls methods from their provided interfaces.

The CM defines three relationships for host-contributor integration:

■ Registered. The registered relationship means type integration and connects a slot with
a plug type in the CM. A plug of a contributor can be registered in the slot of a host, if
slot and plug match and if the plug qualifies. After a contributor has been registered in
a host, it is known to the host but not yet instantiated.

■ Plugged. The plugged relationship means instance integration and connects a slot with
a plug in the CM. It requires a previous registered relationship. A plug of a contributor
can be plugged into the slot of a host. After a contributor has been plugged into a host,
the contributor is in use.

■ Selected. The selected relationship selects a plugged relationship. It requires a previ-
ous plugged relationship. After a contributor has been selected, the contributor has the
focus. The selection can apply to one or several plugs connecting to a slot, depending
on how the slot has been configured.

Fig. 7a shows the meta objects required for host-contributor integration and their relationships
in the CM. In the remainder of this thesis we use the compact representation shown in Fig. 7b.

ET .. Extension Type
ST .. Slot Type
PT .. Plug Type

E .. Extension
S .. Slot
P .. Plug

PA .. Parameter
SD .. Slot Definition
PD .. Parameter Definition

E1
S P

E2

ET1
ST PT

SD
ET2

PA

PD

plugged

reg
ist
ere
d

selected

a) Detailed Representation

ET2
PT PA

E2E1
SPD P PA

ET1
STPD

plugged

reg
ist
ere
d

selected

b) Compact Representation

Figure 7. Relationships between meta elements in host and contributor

Page 38

To register an extensions means to make its type and its metadata known to a host without in-
stantiating the extension. To plug an extension means to create an instance of it and to connect
it with the host. In most cases, registration of an extension is immediately followed by plug-
ging. In certain situations, however, plugging should be delayed until the extension is actually
used. Delayed plugging corresponds to lazy loading of extensions which helps to shorten ap-
plication startup. For example, an application might use a menu for selecting a number of ac-
tions that are implemented as separate extensions. Registering those extensions makes their
metadata (e.g., their parameters) known. Every menu command extension provides a menu
command string as a parameter, which is used by the host to build and display the menu. If
the user selects a command from the menu the host plugs the corresponding extension, i.e. the
extension would be instantiated and connected to the host. The host now calls methods of the
extension in order to perform the desired action.

To select an extension means to put the focus on a plugged contributor. For example, an ex-
tension might use a menu where each entry represents one of multiple child windows in a
multiple document application. The window host displays the child windows, while the menu
host manages the menu. The agreed collaboration protocol specifies that all plugged contribu-
tors represent visible child windows, and that the selected child window has the focus. The
menu host displays a menu item for each plugged contributor in the window host. After the
user selects a command from the menu, the menu host selects the corresponding contributor
in the slot of the window host. The window host reacts to the selection by putting a focus on
the child window associated with the selected contributor.

Register Cardinality

Slots can configure the cardinality for registered plugs. A slot with cardinality single can reg-
ister one plug (see Fig. 8a), whereas a slot with cardinality multiple can register multiple
plugs (see Fig. 8b). Cardinality specifies the maximum number of registered plugs, a mini-
mum number cannot be specified. In single cardinality slots, the composition service registers
the plug which was discovered first. The property Multiple controls wether a slot allows mul-
tiple contributors (see class Slot Type in Fig. 6 on page 35). The default setting is false.

E4
P4

E3
P3

E1
S1

S1 { Multiple, SD1 }

E2
P2

b) Register multiple Plugs in a Slot

E4
S4

E3
P3

E1
S1

S1 { Single, SD1 }

E2
P2

a) Register a single Plug in a Slot

P2, P3, P4 { SD1 } P2, P3, P4 { SD1 }

Figure 8. Slots with single or multiple cardinality

Page 39

3.7.2 Creating Extensions

Extensions can be unique or shared. A unique extension can only connect to a single slot,
whereas a shared extension can be plugged into several slots. The property Unique controls
whether a slot requires unique or shared contributors (see classes Slot and Slot Type in Fig. 6
on page 35). The default setting is shared.

Contributor extensions can be singletons. A singleton extension can only have on instance.
The property Singleton controls whether an extension is a singleton (see class Extension Type
in Fig. 6 on page 35). The default setting is false.

The composition service provides operations for creating shared or unique extensions, and
operations for releasing an extension. The Create operations create an instance meta element
and the actual .NET object from the .NET class which implements the functional component.

In the remainder of this chapter, we use pseudo-code to show how the composition operations
work. Italic typeface highlights variables and references to other operations.

■ The CreateSharedExtension(ExtensionType) operation creates one extension per ex-
tension type which is designated as the shared extension. The shared extension in-
stance is shared among slots.

CreateSharedExtension(ExtensionType)
if(not Qualify(ExtensionType)) return
if(ExtensionType.IsSingleton and instance exists) return
E = create extension meta object for ExtensionType
make E shared instance of ExtensionType
E.Object = create .NET object for ExtensionType.Class
// Lazy Loading
for(all plugs P of extension E)

PT = type of P
for(all slots S where PT is registered)

if(S.LazyLoad and S.AutoPlug and not S.Unique)
Plug(S, P)

return E

The last section of the pseudo code implements lazy loading for shared slots. If a shared con-
tributor is created, it is plugged into all shared lazy-loading slots where the contributor is
registered.

In Fig. 9a, hosts E1 and E2 have opened slots S1 and S2. Both slots use the same slot definition
SD1, are configured for shared contributors, and have plug P3 of contributor E3 registered. The
composition service has created a shared extension E3 and has plugged it into both slots S1

and S2.

In this thesis, the registered relationship is depicted with a dashed line with an arrow on the
slot side. Extension types are depicted as boxes with dashed lines. The plugged relationship is
depicted with a solid line with an arrow on the slot side. Extensions are depicted as solid
boxes.

Page 40

P1

E1
S1

S1 { Shared, SD1 }

E2
S2

S2 { Shared, SD1 }

E2
Value1

E3
P3

E1
S1

S1 { Unique, SD1 }

E2
S2

S2 { Unique, SD1 }

E3
P3

E3a
P3

E3b
P3

b) Use unique Contributors exclusively in Slota) Share Contributor among Slots

P3 { SD1 }

P3 { SD1 }

Figure 9. Slots with shared or unqiue contributors

■ The CreateUniqueExtension(ExtensionType) operation creates a unique extension of
an extension type. Per extension type, an arbitrary number of extensions can be creat-
ed. For each slot which is configured for unique contributors, the composition service
creates a unique contributor.

CreateUniqueExtension(ExtensionType)
if(Not Qualify(ExtensionType)) return
if(ExtensionType.IsSingleton and instance exists) return
E = create extension meta object for ExtensionType
E.Object = create .NET object for ExtensionType.Class
return E

In Fig. 9b, hosts E1 and E2 have opened slots S1 and S2. Both slots use the same slot
definition SD1, are configured for unique contributors, and have plug P3 of contributor
E3 registered. The composition service has created unique extensions E3a and E3b, and
has plugged them into slot S1 and S2 respectively.

■ The Release(Extension) operation closes all slots of the extension, disposes the .NET
object and the instance meta object. Before the slots are closed, the extension is un-
plugged from all hosts where it is plugged.

Release(Extension)
UnplugWherePlugged(Extension)
for(all slots S of Extension)

CloseSlot(S)
dispose .NET object
dispose instance meta object

3.7.3 Maintaining Composition Relationships

The composition service provides operations for maintaining relationships between exten-
sions. Composition operations open slots, register plugs, plug plugs, and select plugs. Decom-
position operations close slots, deselect plugs, unplug plugs, and deregister plugs. The opera-
tions in detail are:

Page 41

■ The OpenSlot(Slot) operation opens a slot. After a slot has been opened, it is register-
ing contributors. In the figure below, the composition service opened slot S1.

OpenSlot(Slot)
if(Slot.IsOpen) return
change state of Slot to opened
RegisterAll(Slot)

Slot S1 was OPENED
The host is registering contributors.

E1
S1

■ The Register(Slot, PlugType) operation registers a plug type of a contributor in a slot
of a host. After a contributor has been registered, the contributor's type is known. In
the next step, the composition service will create and plug registered contributors (see
more operations and pseudo-code on page 44). In the figure below, plug P2 has been
registered in slot S1 and thus host E1 has integrated the type of contributor E2.

Plug type P2 was REGISTERED in slot S1

The contributor is known to the host.

E1
S1

E2
P2

■ The Plug(Slot, Plug) operation plugs a plug of a registered contributor into a slot of a
host. After a contributor has been plugged, the contributor is in use. In the next step,
the composition service will open the slots of the contributor (see more operations and
pseudo-code on page 46). In the figure below, plug P2 has been plugged into slot S1

and thus host E1 has integrated the instance of contributor E2.

Plug P2 was PLUGGED in slot S1E2
P1 "V1"

E1
S1

E2
P2 The contributor is in use.

■ The Select(Slot, Plug) operation selects a plug of a plugged contributor. After a con-
tributor has been selected, the contributor has the focus. In the figure below, plug P2

has been selected, and thus host E1 has set the focus on contributor E2. In this thesis,
the selection is depicted with a black circle on the line which depicts the plugged
relationship.

Select(Slot, Plug)
if(Plug is selected in Slot) return
if(Plug is not plugged in Slot) return
add selected relationship Slot/Plug

Plug P2 was SELECTED in slot S1

The contributor has the focus.

E3
P2 "V1"

E2
P1 "V1"

E1
S1

E2
P2

E3
P3

Page 42

■ The Deselect(Slot, Plug) operation deselects a plug of a selected contributor. After a
contributor has been deselected, the contributor looses the focus. In the figure below,
plug P2 has been deselected, and thus host E1 has removed the focus from contributor
E2.

Deselect(Slot, Plug)
if(Plug is not selected in Slot) return
if(Plug is not plugged in Slot) return
remove selected relationship Slot/Plug

E3
P2 "V1"

E2
P1 "V1"

Plug P2 was DESELECTED in slot S1

The contributor lost the focus.E1
S1

E2
P2

E3
P3

■ The Unplug(Slot, Plug) operation unplugs a plug of a plugged contributor from a slot
of a host. After a contributor has been unplugged, the contributor goes out of use (see
more operations and pseudo-code on page 49). In the figure below, plug P2 has been
unplugged from slot S1, and thus host E1 stops using contributor E2. If plug P2 was se-
lected, it is deselected before it is unplugged. If contributor E2 is not plugged in any
other host, it is released. Plug P2 stays registered.

Plug P2 was UNPLUGGED in slot S1

The contributor goes out of use.

E2
P1 "V1"

E2
P2

E1
S1

■ The Deregister(Slot, PlugType) operation deregisters a plug type of a registered con-
tributor from a slot of a host. After a contributor has been deregistered, the contribu-
tor's type is no longer known to the host (see more operations and pseudo-code on
page 45). In the figure below, plug P2 has been deregistered from slot S1., and thus
host E1 has disintegrated contributor E2. If contributors of type E2 were plugged into
slot S1, they are unplugged before the contributor is deregistered.

E1
S1

E2
P2

Plug type P2 was DEREGISTERED in slot S1

The contributor is no longer known to the host.

■ The CloseSlot(Slot) operation closes a slot. After a slot was closed, it is deregistering
contributors. In the figure below, the composition service closed slot S1. In this thesis,
a closed slot is depicted strike-through.

CloseSlot(Slot)
if(not Slot.IsOpen) return
change state of Slot to closed
DeregisterAll(Slot)

E1
S1

Slot S1 was CLOSED
The host is deregistering contributors.

Page 43

Registering Contributors

The composition service provides multiple operations for registering contributors in hosts.
Fig. 10 overviews operations which register individual plugs in individual slots (a-c), and
operations which register all plugs of contributors in all matching slots of hosts (d-f):

a) Register(Slot, PlugType) registers a matching and qualified plug type in a slot. In the
next step, the CreateAndPlug operation creates and plugs the contributor (see page 46).

Register(Slot, PlugType)
if(not Slot.IsOpen) return
if(PlugType does not match Slot) return
if(PlugType is registered in Slot) return
if(not Slot.Multiple and a plug type is registered in Slot) return
if(not Qualified(PlugType)) return
add registered relationship Slot/PlugType
CreateAndPlug(Slot, PlugType)

b) RegisterPlug(PlugType) registers a plug type in all matching slots.

RegisterPlug(PlugType)
for(all slots S matching PlugType)

Register(S, PlugType)

c) RegisterAll(Slot) registers all matching plugs in a slot.

RegisterAll(Slot)
if(Slot.Multiple)

for(all plug types PT)
Register(Slot, PT)

else
PT = first discovered plug type matching Slot
Register(Slot, PT)

d) Register(Extension, ExtensionType) registers a contributor extension type in a host
extension.

Register(Extension, ExtensionType)
for(all slots S of Extension)

for(all plug types PT of ExtensionType)
Register(S, PT)

e) RegisterPlugs(ExtensionType) registers a contributor extension type in all hosts.

RegisterPlugs(ExtensionType)
for(all plug types PT of ExtensionType)

RegisterPlug(PT)

f) RegisterAll(Extension) registers all matching contributors in a host extension.

RegisterAll(Extension)
for(all slots S of Extension)

RegisterAll(S)

Page 44

a) Register a Plug Type PT
in a Slot S

b) Register a Plug Type PT
in all Slots

c) Register all Plug Types
in a Slot S

H1

S2

S1
C1

S2

S1

H2

S2

S1
C2

S2

S1

PTS
H1

S2

S1
C1

S2

S1

H2

S2

S1
C2

S2

S1

PT
H1

S2

S1
C1

S2

S1

H2

S2

S1
C2

S2

S1

S

f) Register all Extension Types
in a Host Extension H1

H1

S2

S1
C1

S2

S1

H2

S2

S1
C2

S2

S1

H1

S2

S1
C1

S2

S1

H2

S2

S1
C2

S2

S1

H1

S2

S1
C1

S2

S1

H2

S2

S1
C2

S2

S1

e) Register an Extension Type C1
in all Host Extensions

d) Register an Extension Type C1
in a Host Extension H1

Figure 10. Composition operations for registration

Deregistering Contributors

The composition service provides multiple operations for deregistering contributors from
hosts.

a) Deregister(Slot, PlugType) deregisters a registered plug type from a slot.

Deregister(Slot, PlugType)
if(PlugType is not registered in Slot) return
for(all plugs P connected to Slot)

Unplug(Slot, P)
remove registered relationship Slot/PlugType

b) DeregisterPlug(PlugType) deregisters a plug type from all slots where it is registered.

DeregisterPlug(PlugType)
for(all slots S in which PlugType is registered)

Deregister(S, PlugType)

c) DeregisterAll(Slot) deregisters all plugs from a slot.

DeregisterAll(Slot)
for(all plug types PT which are registered in Slot)

Deregister(Slot, PT)

Page 45

d) Deregister(Extension, ExtensionType) deregisters a registered contributor from a host.

Deregister(Extension, ExtensionType)
for(all slots S of Extension)

for(all plug types PT of ExtensionType)
Deregister(S, PT)

e) DeregisterPlugs(ExtensionType) deregisters a contributor from all hosts where it is
registered.

DeregisterPlugs(ExtensionType)
for(all plug types PT of ExtensionType)

DeregisterPlug(PT)

f) DeregisterAll(Extension) deregisters all contributors from a host.

DeregisterAll(Extension)
for(all slots S of Extension)

DeregisterAll(S)

Plugging Contributors

The composition service provides multiple operations for plugging contributors into hosts.
Fig. 11 overviews the operations which plug individual plugs in individual slots (a-c), and
operations which plug all plugs of contributors in all matching slots of hosts (d-f):

a) Plug(Slot, Plug) plugs a plug into a slot. In the next step, the OpenSlot operation opens
the slots of the plugged contributor.

Plug(Slot, Plug)
if(Plug is plugged in Slot) return
PlugType = type of Plug
if(PlugType is not registered in Slot) return
add plugged relationship Slot/Plug
Select(Slot, Plug)
E = extension containing Plug
for(all slots S of extension E)

OpenSlot(S)

CreateAndPlug(Slot, PlugType) combines the create and the plug operation. It creates a
unique or shared contributor, depending on the configuration of the slot, and calls the
Plug operation. If the contributor is a singleton and one instance already exists, a subse-
quent attempt to create a new instance fails. This can happen when the singleton in-
stance is shared, and a slot tries to create a unique contributor, or vice versa.

CreateAndPlug(Slot, PlugType)
if(PlugType is not registered in Slot) return
ExtensionType = extension containing PlugType
if(Slot.Unique)

Contributor = CreateUniqueExtension(ExtensionType)
else

if(shared extension of ExtensionType exists)
Contributor = shared extension of ExtensionType

Page 46

else
Contributor = CreateSharedExtension(ExtensionType)

if(Contributor == null) return // singleton existed
Plug = plug of Contributor which matches Slot
Plug(Slot, Plug)

b) PlugWhereRegistered(Plug) plugs a plug into all slots where it is registered.

PlugWhereRegistered(Plug)
PlugType = type of Plug
for(all slots S where PlugType is registered)

Plug(S, Plug)

CreateAndPlugWhereRegistered(PlugType) combines the create and the plug operation.
The result depends on the configuration of the slot. In shared slots, the contributor is
shared amongst slots (see b1 in Fig. 11). In unique slots, a unique contributor is created
for each slot (see b2 in Fig. 11).

CreateAndPlugWhereRegistered(PlugType)
for(all slots S where PlugType is registered)

CreateAndPlug(S, PlugType)

c) CreateAndPlugAllRegistered(Slot) creates and plugs all contributors which are regis-
tered in a slot.

CreateAndPlugAllRegistered(Slot)
for(all plug types PT which are registered in Slot)

CreateAndPlug(Slot, PT)

d) Plug(ExtensionHost, ExtensionContributor) plugs a contributor into a host.

Plug(ExtensionHost, ExtensionContributor)
for(all slots S of ExtensionHost)

for(all plugs P of ExtensionContributor)
Plug(S, P)

CreateAndPlug(Extension, ExtensionType) combines the create and the plug operation.

CreateAndPlug(Extension, ExtensionType)
for(all slots S of Extension)

for(all plug types PT of ExtensionType)
CreateAndPlug(S, PT)

e) PlugWhereRegistered(Extension) plugs a contributor into all hosts where it is registered.

PlugWhereRegistered(Extension)
for(all plugs P of Extension)

PlugWhereRegistered(P)

Page 47

Registered Contributors a) Create+Plug a Plug P
in a Slot S

b1) Create+Plug a Plug P
in all Registered Slots (Shared)

H1

S2

S1
C1

S2

S1

H2

S2

S1
C2

S2

S1

H1

S2

S1
C1

S2

S1

H2

S2

S1

H1

S2

S1

H2

S2

S1

C1

S2

S1S P P

b2) Create+Plug a Plug P
in all Registered Slots (Unique)

H1

S2

S1
C1a

S2

S1

H2

S2

S1

C1b

S2

S1

c) Create+Plug all Registered Plugs
in a Slot S

H1

S2

S1

H2

S2

S1
C2

S2

S1

C1

S2

S1P

P

S

H1

S2

S1
C1

S2

S1

H2

S2

S1

d1) Create+Plug a Contributor Extension C1
in a Host Extension H1 (Shared)

H1

S2

S1

H2

S2

S1

C1a

S2

S1

C1b

S2

S1

d2) Create+Plug a Contributor Extension C1
in a Host Extension H1 (Unique)

H1

S2

S1

H2

S2

S1

C1

S2

S1

e1) Create+Plug a Contributor Extension C1
in all Registered Host Extensions (Shared)

H1

S2

S1

H2

S2

S1

C1a

S2

S1

C1b

S2

S1

C1c

S2

S1

C1d

S2

S1

e2) Create+Plug a Contributor Extension C1
in all Registered Host Extensions (Unique)

H1

S2

S1

H2

S2

S1

C1

S2

S1

C2

S2

S1

f1) Create+Plug all Registered Contributor
Extensions in a Host Extension H1 (Shared)

H1

S2

S1

H2

S2

S1

C1a

S2

S1
C2a

S2

S1
C1b

S2

S1
C2b

S2

S1

f2) Create+Plug all Registered Contributor
Extensions in a Host Extension H1 (Unique)

Figure 11. Composition operations for creation and plugging

Page 48

CreateAndPlugWhereRegistered(ExtensionType) combines the create and the plug oper-
ation. The result depends on the configuration of the slots. In shared slots, the contribu-
tor is shared amongst slots (see d1, e1, f1 in Fig. 11). In unique slots, a unique contribu-
tor is created for each slot (see d2, e2, f2 in Fig. 11).

CreateAndPlugWhereRegistered(ExtensionType)
for(all plug types PT of ExtensionType)

CreateAndPlugWhereRegistered(PT)

f) CreateAndPlugAllRegistered(Extension) creates and plugs all contributors which are
registered in a host.

CreateAndPlugAllRegistered(Extension)
for(all slots S of Extension)

CreateAndPlugAllRegistered(S)

Unplugging Contributors

The composition service provides multiple operations for unplugging contributors from hosts.

a) Unplug(Slot, Plug) unplugs a plugged plug from a slot.

Unplug(Slot, Plug)
if(Plug is not plugged in Slot) return
if(Plug is selected in Slot)

Deselect(Slot, Plug)
remove plugged relationship Slot/Plug
Extension = extension containing Plug
if(Extension is not plugged in other hosts)

Release(Extension)

b) UnplugWherePlugged(Plug) unplugs a plug from all slots where it is plugged.

UnplugWherePlugged(Plug)
for(all slots S which Plug is connected to)

Unplug(S, Plug)

c) UnplugAll(Slot) unplugs all plugs from a slot.

UnplugAll(Slot)
for(all plugs P connected to Slot)

Unplug(Slot, P)

d) Unplug(ExtensionHost, ExtensionContributor) unplugs a plugged contributor extension from a
host extension.

Unplug(ExtensionHost, ExtensionContributor)
for(all slots S of ExtensionHost)

for(all plugs P of ExtensionContributor connected to S)
Unplug(S, P)

e) UnplugWherePlugged(Extension) unplugs a contributor extension from all host exten-
sions where it is plugged.

Page 49

UnplugWherePlugged(Extension)
for(all plugs P of Extension)

UnplugWherePlugged(P)

f) UnplugAll(Extension) unplugs all contributor extensions from a host extension.

UnplugAll(Extension)
for(all slots S of Extension)

UnplugAll(S)

3.7.4 Configuring Composition

To configure composition means to control through settings how the automatic procedure
composes extensions. With the default settings the composition is in automatic mode. In auto-
matic mode, the composition service opens every slot, and registers and plugs every contribu-
tor. In most scenarios this is the desired behavior. In certain situations, however, host exten-
sions want to control manually which slots open, which contributors register, or which
contributors plug. Section 5.2 (see page 95) shows scenarios for the manual mode.

Fig. 12 shows the properties which control the composition procedure. The properties can be
set on different scopes: for a slot, for a plug, for an extension, or for the composition service.
The connection between a settings on type level and a setting on instance level, for example
slot type and slot, is such, that on instantiation the settings are copied from the type to the in-
stance. After instantiation the settings of slot type and slot can be set independently. When the
composition service evaluates a setting, the setting must be true on each level, in order that a
composition step is performed.

In order to explain the affect of the settings, we extend the pseudo-code operations from Sec-
tion 3.7.3 (see page 41). In the pseudo-code, added statements are highlighted in bold
typeface:

■ AutoOpen controls whether the composition service opens slots when a contributor is
plugged. If AutoOpen=true for the composition service, and for a slot S of an exten-
sion E, the composition service automatically opens S when E is plugged. The proper-
ty AutoOpen affects the Plug(Slot, Plug) operation.

Plug(Slot, Plug)
if(Plug is plugged in Slot) return
PlugType = type of Plug
if(PlugType is not registered in Slot) return
add plugged relationship Slot/Plug
E = extension containing Plug
if(CompositionService.AutoOpen)

for(all slots S of extension E)
if(S.AutoOpen)

OpenSlot(S)

■ AutoRegister controls whether the composition service registers contributors when a
slot is opened. If AutoRegister=true for the composition service, for a slot S of a host
H, and for a plug type PT of a contributor C, the composition service automatically

Page 50

registers PT in S when S opens. The property AutoRegister affects the operations
OpenSlot(Slot) and RegisterAll(Slot).

OpenSlot(Slot)
if(Slot.IsOpen) return
change state of Slot to opened
if(CompositionService.AutoRegister and Slot.AutoRegister)

RegisterAll(Slot)

RegisterAll(Slot)
if(Slot.Multiple)

for(all plug types PT)
if(PT.AutoRegister)

Register(Slot, PT)
else

PT = first discovered plug type matching Slot
if(PT.AutoRegister)

Register(Slot, PT)

AutoOpen

AutoRegister

AutoPlug

LazyLoad

AutoRelease

Sl
ot

 T
yp

e

Sl
ot

Pl
ug

 T
yp

e

Pl
ug

Ex
te

ns
io

n
Ty

pe
Ex

te
ns

io
n

C
om

po
si

tio
n

Se
rv

ic
e

Scope

Se
tti

ng

AutoSelect

Figure 12. Settings for composition configuration

■ AutoPlug controls whether the composition service creates and plugs a contributor
when it is registered. If AutoPlug=true for the composition service, for a slot S, and
for plug type PT of a contributor C, the composition services automatically creates C
and plugs it into slot S. The property AutoPlug affects the operation Register(Slot,
PlugType).

Register(Slot, PlugType)
if(not Slot.IsOpen) return
if(PlugType does not match Slot) return
if(PlugType is registered in Slot) return

Page 51

if(not Slot.Multiple and a plug type is registered in Slot) return
if(not Qualify(PlugType)) return
if(registration creates cycle) return
add registered relationship Slot/PlugType
if(CompositionService.AutoPlug and Slot.AutoPlug and not Slot.LazyLoad

 and PlugType.AutoPlug)
CreateAndPlug(Slot, PlugType)

■ AutoSelect controls whether the composition service selects a plugged relationship
when a contributor is plugged. If AutoSelect=true for the composition service, for a
slot S, and for a plug P, the composition services automatically selects the plugged re-
lationship of plug P and slot S. The property AutoSelect affects the operation
Plug(Slot, Plug).

Plug(Slot, Plug)
if(Plug is plugged in Slot) return
PlugType = type of Plug
if(PlugType is not registered in Slot) return
add plugged relationship Slot/Plug
if(CompositionService.AutoSelect and Slot.AutoSelect and Plug.AutoSelect)

Select(Slot, Plug)
E = extension containing Plug
for(all slots S of extension E)

OpenSlot(S)

■ LazyLoad controls whether the composition service creates and plugs a contributor
when it is registered, in a slightly different way than the AutoPlug property does. Both
settings have in common, that when a hosts sets AutoPlug=false or LazyLoad=true,
the composition service will not create and plug the contributor after registration. The
host itself is responsible for that. The first difference is, that with lazy loading, the
composition service will automatically plug a contributor when it is created. Whereas
with auto plugging disabled, the host must manually call the plug operation after cre-
ation. The second difference matters when multiple shared slots with lazy loading
have the same contributor registered. As soon as any of the slots creates the shared
contributor, it is automatically plugged in all slots where the contributor is registered
(see CreateSharedExtension operation on page 40).

■ AutoRelease controls whether the composition service releases a contributor when it is
unplugged. If AutoRelease=true for the composition service and for a contributor C,
the composition service will release C as soon as it is unplugged from a slot S that also
has AutoRelease=true, but only if C is not plugged in any other slots.

Unplug(Slot, Plug)
if(Plug is not plugged in Slot) return
if(Plug is selected in Slot)

Deselect(Slot, Plug)
remove plugged relationship Slot/Plug
Contributor = extension containing Plug
if(CompositionService.AutoRelease and Slot.AutoRelease

Page 52

 and Contributor.AutoRelease
if(Contributor is not plugged in other hosts)

Release(Contributor)

3.8 Extension Life-Cycle

Discovery and qualification operations change the state of types, the creation operations cre-
ate and dispose instances, and composition operations change the state of types and instances.
The allowed sequence of these operations specify a life-cycle for types and instances.

3.8.1 Type Life-Cycle

The life-cycle of a type begins as soon as it is discovered. The state diagram in Fig. 13 shows
that the Add operation changes the state of a type to discovered. The life-cycle of a type ends
when the Remove operation disposes the type. The Qualify operation changes the state of a
qualifiable type to qualified. If qualification fails, the state of the type remains discovered.
The state qualified can be reset to discovered, when other types to which a type has dependen-
cies are removed.

The registered state applies to plug types only. The Register operation of the composition ser-
vice registers a qualified plug in a slot and changes the state of the plug to registered. The reg-
istered state of a plug applies in the context of a slot, because a plug can be registered in mul-
tiple slots. The Deregister operation deregisters a plug from a slot and changes the state of the
plug back to qualified. The Remove operation automatically deregisters a registered type.

Add

DISCOVERED

QUALIFIED

Qualify Remove (other types)

Register

REGISTERED

Deregister

Remove

Remove

* a plug can be registered in multiple slots

m:n*

Figure 13. State diagram of type meta element life-cycle

Page 53

3.8.2 Instance Life-Cycle

The life-cycle of an instance begins when it is created by the composition service. The state
diagrams in Fig. 14a+b show that the CreateUniqueExtension operation or the CreateShared-
Extension operation changes the state of an extension to active. The life-cycle of a slot/exten-
sion ends when the Release operation disposes the slot/extension.

The states for slots (see Fig. 14a) differ from states of extensions and plugs (see Fig. 14b).
The OpenSlot operation changes the state of a slot to opened. The CloseSlot operation
changes the state of a slot back to active. The Release operation automatically closes an
opened slot.

ACTIVE

PLUGGED

SELECTED

Plug Unplug

Select Deselect

Create* Release

ACTIVE

Create*

OPENED

OpenSlot

Release

a) Life-cycle of slots b) Life-cycle of plugs and extensions

CloseSlot

Release m:n**

m:n**

** a plug can be plugged/selected in multiple slots* CreateUniqueExtension,
 CreateSharedExtension

Figure 14. State diagram of instance meta element life-cycle

The plugged and selected states applies to plugs only. The Plug operation plugs an active plug
into an opened slot and changes the state of the plug to plugged. The plugged state of a plug
applies in the context of a slot, because a plug can be plugged in multiple slots. The Plug
operation requires that the corresponding plug type is registered in the slot. The Unplug oper-
ation unplugs a plugged plug from a slot and changes the state of the plug back to active. The
Release operation automatically unplugs a plugged plug. The Select operation selects a plug
and changes the state of the plug to selected. The selected state of plug applies in the context
of a slot, because a plug can be selected in multiple slots. The deselect operation deselects a
selected plug and changes the state of the plug back to plugged. The Unplug operation auto-
matically deselects a selected plug.

3.9 Composing an Application

In this section, we revisit the operations of the composition service, to add support for the
event-based programming model in hosts. Then we define a small core application, which is
used to start application composition. A detailed example will show how the composition ser-

Page 54

vice creates the core application, and how it composes an application by dynamically adding,
removing, and replacing extensions.

3.9.1 Notifying Hosts and Contributors with Events

Operations of the composition service only change the state of meta objects. They do not di-
rectly affect the state of the underlying .NET objects. For example, the plug operation
connects a slot meta object of a host to the plug meta object of a contributor. To allow the
.NET object of the host to communicate with the .NET object of the contributor, the composi-
tion service sends a Plugged event to the host. Generally, whenever the composition state of
an application changes, e.g., by opening slots or by creating, plugging or unplugging exten-
sions, the involved extensions get notified by an event to which they can react. Fig. 15 shows
the composition events and which notifications are sent.

In the following, we extend the pseudo-code operations from Section 3.7.3 (see page 41) with
the event notification. In the pseudo-code, added statements are highlighted in bold typeface:

■ Opened-Event. The OpenSlot operation opens a slot and notifies the host to which this
slot belongs.

OpenSlot(Slot)
if(Slot.IsOpen) return
change state of Slot to opened
send Opened event to slot host
if(CompositionService.AutoRegister and Slot.AutoRegister)

RegisterAll(Slot)

■ Registered-Event. The Register operation registers a plug type in a slot and notifies the
host to which this slot belongs to.

Register(Slot, PlugType)
if(not Slot.IsOpen) return
if(PlugType does not match Slot) return
if(PlugType is registered in Slot) return
if(not Slot.Multiple and a plug type is registered in Slot) return
if(not Qualify(PlugType)) return
if(registration creates cycle) return
add registered relationship Slot/PlugType
send Registered event to slot host
if(CompositionService.AutoPlug and Slot.AutoPlug and not Slot.LazyLoad

 and PlugType.AutoPlug)
CreateAndPlug(Slot, PlugType)

■ Plugged-Event. The Plug operation connects a plug of a contributor with the slot of
host and notifies the contributor and the host.

Plug(Slot, Plug)
if(Plug is plugged in Slot) return
PlugType = type of Plug
if(PlugType is not registered in Slot) return

Page 55

add plugged relationship Slot/Plug
send Plugged event to contributor
send Plugged event to slot host
if(CompositionService.AutoSelect and Slot.AutoSelect and Plug.AutoSelect)

Select(Slot, Plug)
E = extension containing Plug
if(CompositionService.AutoOpen)

for(all slots S of extension E)
if(S.AutoOpen)

OpenSlot(S)

Slot S Ext EPlug P
Notification sent to...

C
om

po
si

tio
n

ev
en

t

O
pe

ne
d

R
eg

is
te

re
d

Pl
ug

ge
d

Se
le

ct
ed

D
es

el
ec

te
d

U
np

lu
gg

ed

D
er

eg
is

te
re

d

C
lo

se
d

Pl
ug

ge
d

Se
le

ct
ed

D
es

el
ec

te
d

U
np

lu
gg

ed

C
re

at
ed

R
el

ea
se

d

slot S was opened

a plug type was registered for slot S

a plug P was plugged into slot S

a plug P was selected in slot S

a plug P was deselected in slot S

a plug P was unplugged from slot S

a plug type was deregistered from slots s

slot S was closed

contributor E was released

contributor E was created

Figure 15. Composition notifications for host and contributor

■ Selected-Event. The Select operation selects a plug and notifies the contributor and the
host.

Select(Slot, Plug)
if(Plug is selected in Slot) return
if(Plug is not plugged in Slot) return
add selected relationship Slot/Plug
send Selected event to contributor
send Selected event to slot host

■ Deselected-Event. The Deselect operation deselects a plug and notifies the contributor
and the host.

Deselect(Slot, Plug)
if(Plug is not selected in Slot) return
if(Plug is not plugged in Slot) return
remove selected relationship Slot/Plug

Page 56

send Deselected event to contributor
send Deselected event to slot host

■ Unplugged-Event. The Unplug operation unplugs a plug of a contributor from the slot
of a host and notifies contributor and host.

Unplug(Slot, Plug)
if(Plug is not plugged in Slot) return
if(Plug is selected in Slot)

Deselect(Slot, Plug)
remove plugged relationship Slot/Plug
send Unplugged event to contributor
send Unplugged event to slot host
Contributor = extension containing Plug
if(CompositionService.AutoRelease and Slot.AutoRelease

 and Contributor.AutoRelease
if(Contributor is not plugged in other hosts)

Release(Contributor)

■ Deregistered-Event. The Deregister operation deregisters a contributor plug type from
the slot of a host and notifies the host.

Deregister(Slot, PlugType)
if(PlugType is not registered in Slot) return
for(all plugs P connected to Slot)

Unplug(Slot, P)
remove registered relationship Slot/PlugType
send Deregistered event to slot host

■ Closed-Event. The CloseSlot operation closes a slot and notifies the host.

CloseSlot(Slot)
if(not Slot.IsOpen) return
change state of Slot to closed
send Closed event to slot host
DeregisterAll(Slot)

■ Created-Event. The CreateUniqueExtension and CreateSharedExtension operations
create a contributor and notify the contributor before the contributor is plugged.

CreateUniqueExtension(ExtensionType)
if(ExtensionType.IsSingleton and instance exists) return
E = create extension meta object for ExtensionType
E.Object = create .NET object for ExtensionType.Class
send Created event to extension
return E

CreateSharedExtension(ExtensionType)
if(ExtensionType.IsSingleton and instance exists) return
E = create extension meta object for ExtensionType
make E shared instance of ExtensionType
E.Object = create .NET object for ExtensionType.Class

Page 57

send Created event to extension
for(all plugs P of extension E)

PT = type of P
for(all slots S where PT is registered)

if(S.LazyLoad and S.AutoPlug and not S.Unique)
Plug(S, P)

return E

■ Released-Event. The Release operation closes the slots of the contributor and notifies
the contributor before it is disposed.

Release(Extension)
UnplugWherePlugged(Extension)
for(all slots S of Extension)

CloseSlot(S)
send Released event to contributor
dispose .NET object
dispose instance meta object

3.9.2 The Core Extension

A plug-in-based application is broken up into a small core application which is extended by
plug-in extensions. Extensions can be plugged into slots of the core application as well as into
slots of other extensions. To bootstrap the process, the CM defines a singleton core extension
with two slots for Discovery and Startup. Fig. 16 shows the core contract with the slot defini-
tions for Discovery and Startup, and the core plug-in with the Core extension type.

A discoverer in Plux.NET is an extension and is not integral part of the composition infra-
structure. To bootstrap, the composition infrastructure needs a discoverer to load the first ap-
plication extensions. Among these first application extensions is often the desired real dis-
coverer extension. A bootstrap discoverer is part of the core plug-in and it allows discovering
a set of contracts and plug-ins. The names of contracts and plug-ins can be specified as argu-
ments when the composition infrastructure is launched.

Core

Discovery

Startup

Discovery

Startup

Contract

Slot Definition

Extension Type

Slot Type

Plug-in

Discoverer

Discovery

Plug Type

Figure 16. Contract and plug-in of core extension

Page 58

3.9.3 Composing an Example Application

This section shows how the composition service composes an application. First, it creates the
core application and the bootstrap discoverer. Then, the bootstrap discoverer discovers sample
contracts and plug-ins, and the composition service composes the plug-ins. Finally, we show
how to use a composition tool for manually replacing extensions and for shutting down the
application by manually releasing the core extension.

Composing the Core Extension

In the following pseudo code, the composition service starts the core application. It adds the
core contract and the core plug-in to the CM and creates the core extension. The core exten-
sion cannot be plugged, because it is the root extension and does not have a plug. Instead, the
startup and discovery slots are opened.

Add(ContractCore)
Add(Plug-inCore)

ExtensionTypeCore = extension type with name "Core"
ExtensionCore = CreateSharedExtension(ExtensionTypeCore)
foreach(Slot in slots of ExtensionCore)

OpenSlot(Slot)

The log below shows the operations executed in the discovery and composition service when
the pseudo code above is executed. The figure shows the corresponding composition result.
The discovery service discovers the core contract and the core plug-in. Log messages of the
discoverer service are marked with [D]. The composition service creates the core extension
and opens its slots. Log messages of the composition service are marked with [C].

[D] Contract discovered: "Core"
[D] Slot definition found: "Discovery"
[D] Slot definition found: "Startup"

[D] Plugin discovered: "Core"
[D] Extension type found: 1:"Core"
[D] Slot type found: "Discovery"
[D] Slot type found: "Startup"
[D] Extension type found 2:"Discoverer"
[D] Plug type found: "Discovery"

[C] Extension created: 1:"Core"
[C] Slot opened: 1:"Discovery" (Core)
[C] Slot opened: 2:"Startup" (Core)

Core
Di

St

Core
Di

St
create open slots

Core
Di

St

The composition service registers the Discoverer extension in the core.
[C] Extension type registered: 2:"Discoverer" >> 1:"Core" (Discovery)

Page 59

Core

Di

St

Discoverer

Di

The composition service creates the Discoverer extension and plugs it into the core. The
bootstrap discoverer extension starts discovery now.

[C] Extension created: 2:"Discoverer"
[C] Extension plugged: 2:"Discoverer" >> 1:"Core" (Discovery)

Core

Di

St

Discoverer

Di

Adding Extensions with the Bootstrap Discoverer

Let us assume that the discoverer now discovers a contract Contract1 and two plug-ins Plugin1

and Plugin2. The discovery service finds the slot definitions from the contract and the exten-
sions from the plug-ins.

Add(Contract1)
Add(Plugin1)
Add(Plugin2)

Plugin1
E1

S1St
E2

S1

Plugin2
E3

S2S1

E4
S2

Contract1

S1 S2

[D] Contract discovered: "Contract1"
[D] Slot definition found: "S1"
[D] Slot definition found: "S2"

[D] Plugin discovered: "Plugin1"
[D] Extension type found: 3:"E1"
[D] Plug type found: "Startup"
[D] Slot type found: "S1"
[D] Extension type found: 4:"E2"
[D] Plug type found: "S1"

[D] Plugin discovered: "Plugin2"
[D] Extension type found: 5:"E3"
[D] Plug type found: "S1"
[D] Slot type found: "S2"
[D] Extension type found: 6:"E4"
[D] Plug type found: "S2"

The composition service looks for extensions which contribute to open slots. It finds contribu-
tor E1 and registers its startup plug in the core. The other extensions do not contribute to open
slots.

[C] Extension type registered: 3:"E1" >> 1:"Core" (Startup)

Page 60

Disco.

Di

E1
S1St

Core

Di

St

The composition service creates extension E1 and plugs it into the core.
[C] Extension created: 3:"E1"
[C] Extension plugged: 3:"E1" >> 1:"Core" (Startup)

Disco.

Di

E1
S1St

Core

Di

St

The composition service filled the slots of the core. Next it opens slot S1 of host E1 and regis-
ters contributors E2 and E3.

[C] Slot opened: 3:"S1" (E1)
[C] Extension type registered: 4:"E2" >> 3:"E1" (S1)
[C] Extension type registered: 5:"E3" >> 3:"E1" (S1)

E1
S1St

E2
S1

E3
S2S1

Core

Di

St

Disco.

Di

The composition services creates extension E2 and E3 and plugs them into host E1.
[C] Extension created: 4:"E2"
[C] Extension plugged: 4:"E2" >> 3:"E1" (S1)
[C] Extension created: 5:"E3"
[C] Extension plugged: 5:"E3" >> 3:"E1" (S1)

E1
S1St

E2
S1

E3
S2S1

Core
Di

St

Disco.
Di

Page 61

The composition service filled the slots of host E1. Host E2 does not have slots to open. Next
the composition service opens slot S2 of host E3 and registers contributor E4.

[C] Slot opened: 4:"S2" (E3)
[C] Extension type registered: 6:"E4" >> 5:"E3" (S2)

E1
S1St

E2
S1

E3
S2S1

Core

Di

St

Disco.

Di

E4
S2

The composition services creates an extension E4 and plugs it into host E3.
[C] Extension created: 6:"E4"
[C] Extension plugged: 6:"E4" >> 5:"E3" (S2)

E1
S1St

E2
S1

E3
S2S1

Core

Di

St

Disco.

Di

E4
S2

The composition service filled the slots of host E3. Host E4 does not have slots to open. All
discovered extensions are composed.

Manually Replacing Extensions

Let us assume that a composition tool deregisters extension E3 and discovers contract Con-
tract2 and plug-in Plugin3. Extension E5 should replace extension E3. Extension E5 has a slot
S2, like extension E3 did, and another slot S3. The composition tool calls the following meth-
ods from the composition service API.

Deregister(ExtensionType3)
Add(Contract2)
Add(Plugin3)

Plugin3
E5

S2S1

S3

Contract2

S3

The composition service deregisters extension E3. Before it releases extension E3, it closes
slot S2, and deregisters extension E4. After slot S2 is closed, extension E3 can be released and
deregistered.

Page 62

[C] Extension type deregistering: 5:"E3" << 3:"E1" (S1)
[C] Extension unplugged: 5:"E3" << 3:"E1" (S1)
[C] Extension releasing: 5:"E3"
[C] Slot closing: 4:"S2" (E3)
[C] Extension type deregistering: 6:"E4" << 5:"E3" (S2)
[C] Extension unplugged: 6:"E4" << 5:"E3" (S2)
[C] Extension releasing: 6:"E4"
[C] Extension released: 6:"E4"
[C] Extension type deregistered: 6:"E4" << 5:"E3" (S2)
[C] Slot closed: 4:"S2" (E3)
[C] Extension released: 5:"E3"
[C] Extension type deregistered: 5:"E3" << 3:"E1" (S1)

E1
S1St

E2
S1

E3
S1

Core
Di

St

Disco.
Di

E4
S2

The composition tool adds Contract2 and Plugin3 to the CM. The discovery service finds slot
definition S3 and extension E5.

[D] Contract discovered: "Contract2"
[D] Slot definition found: "S3"

[D] Plugin discovered: "Plugin3"
[D] Extension type found: "E5"
[D] Plug type found: "S1"
[D] Slot type found: "S2"
[D] Slot type found: "S3"

The composition service registers, creates and plugs contributor E5 in host E1. Next, it opens
slots S2 and S3 of host E5 and registers contributor E4. Then the composition service creates an
extension E4 and plugs it into host E5.

Extension type registered: 7:"E5" >> 3:"E1" (S1)
Extension created: 7:"E5"
Extension plugged: 7:"E5" >> 3:"E1" (S1)
Slot opened: 5:"S2" (E5)
Slot opened: 6:"S3" (E5)
Extension type registered: 6:"E4" >> 7:"E5" (S2)
Extension created: 8:"E4"
Extension plugged: 8:"E4" >> 7:"E5" (S2)

Page 63

E1
S1St

E2
S1

Core

Di

St

Disco.

Di

E4
S2

E5
S2S1

S3

The composition service finished the replacement. It replaced extension E3 with extension E5.
Since extension E5, like extension E3, opened a slot S2, slot S2 has been composed in the same
way as before. However, the original contributor E4 with id 6 has been released, and a new
contributor E4 with id 8 was created. If, for instance, the composition tool had disabled auto
releasing for contributor E4, the original contributor with id 6 would have been reused.

Manually Removing Extensions

Let us assume that a composition tool releases the core to shut down the application.

Release(Core)

The composition service closes the slots of the core extension. It closes the discovery slot and
deregisters the discoverer. It closes the startup slot and deregisters contributor E1.

[C] Extension releasing: 1:"Core"
[C] Slot closing: 1:"Discovery" (Runtime)
[C] Extension type deregistering: 2:"Discoverer" << 1:"Core" (Discovery)
[C] Extension unplugged: 2:"Discoverer" << 1:"Core" (Discovery)
[C] Extension releasing: 2:"Discoverer"
[C] Extension released: 2:"Discoverer"
[C] Extension type deregistered: 2:"Discoverer" << 1:"Core" (Discovery)
[C] Slot closed: 1:"Discovery" (Runtime)
[C] Slot closing: 2:"Startup" (Runtime)
[C] Extension type deregistering: 3:"E1" << 1:"Runtime" (Startup)
[C] Extension unplugged: 3:"E1" << 1:"Runtime" (Startup)
[C] Extension releasing: 3:"E1"

When host E1 is releasing, the composition service closes its slot S1 and deregisters contribu-
tor E2 from Slot S1. Host E2 does not have slots.

[C] Slot closing: 3:"S1" (E1)
[C] Extension type deregistering: 4:"E2" << 3:"E1" (S1)
[C] Extension unplugged: 4:"E2" << 3:"E1" (S1)
[C] Extension releasing: 4:"E2"
[C] Extension released: 4:"E2"
[C] Extension type deregistered: 4:"E2" << 3:"E1" (S1)

Page 64

E1
S1St

E2
S1

Core

Di

St

E4
S2

E5
S2S1

S3

The composition service deregisters contributor E5 and closes slot S2 of host E5. Next it dereg-
isters contributor E4.

[C] Extension type deregistering: 7:"E5" << 3:"E1" (S1)
[C] Extension unplugged: 7:"E5" << 3:"E1" (S1)
[C] Extension releasing: 7:"E5"
[C] Slot closing: 5:"S2" (E5)
[C] Extension type deregistering: 6:"E4" << 7:"E5" (S2)
[C] Extension unplugged: 8:"E4" << 5:"E3" (S2)
[C] Extension releasing: 8:"E4"
[C] Extension released: 8:"E4"
[C] Extension type deregistered: 6:"E4" << 7:"E5" (S2)
[C] Slot closed: 5:"S2" (E5)

E1
S1St

Core

Di

St

E4
S2

E5
S2S1

S3

The composition service closes slot S3 of host E5. After slots S2 and S3 are closed, extension E5

can be released and deregistered.
[C] Slot closing: 6:"S3" (E5)
[C] Slot closed: 6:"S3" (E5)
[C] Extension released: 7:"E5"
[C] Extension type deregistered: 7:"E5" << 3:"E1" (S1)

E1
S1St

Core

Di

St

E5
S2S1

S3

After slot S1 is closed, contributor E1 can be released and deregistered. After the startup slot is
closed, the core can be released and the application exits.

[C] Slot closed: 3:"S1" (E1)
[C] Extension released: 3:"E1"
[C] Extension type deregistered: 3:"E1" << 1:"Core" (Startup)
[C] Slot closed: 2:"Startup" (Core)

Page 65

E1
S1St

Core

Di

St

[C] Extension released: 1:"Core"

3.9.4 Queueing Composition Operations

The composition example in the previous section shows how the composition service com-
poses an application in layers. It fills the slots of a host, before it opens the slots of the
plugged contributors. Because the composition operations recursively call other composition
operations, the extension graph would actually grow depth-first instead of breadth-first. For
example, the Plug operation (see page 56) opens the slots of the plugged contributor. The
OpenSlot operation registers all contributors, and the RegisterAll operation calls the Plug
operation recursively.

Plug ― OpenSlot ― RegisterAll ― Register ― Plug

If composition would grow the application depth-first, a host extension could not react to a
notification of a plugged contributor, before the contributor's slots are filled. The desired be-
havior is to grow the application breadth-first, i.e. to fill the slots of a host before the slots of
the contributors are opened. To achieve that, the composition services serializes operations in
a first-in-first-out (FIFO) queue. The affected operations are OpenSlot, CloseSlot, all Register,
all Plug, and all CreateAndPlug operations.

Fig. 17 shows the FIFO queue resulting from the composition example from the previous sec-
tion. In step 0, the composition service enqueued the operations OpenSlot(SlotDiscovery) and
OpenSlot(SlotStartup), when it started the composition.

In step 1, the composition service dequeues the OpenSlot operation for the discovery slot
which enqueues the RegisterAll(SlotDiscovery) operation. Arrows indicate that an operation en-
queues another operation. Then it dequeues the OpenSlot operation for the startup slot which
enqueues the RegisterAll(SlotStartup) operation.

When step 1 continues, the RegisterAll(Slot) operations enqueue Register(Slot, PlugType)
operations, which in turn enqueue Plug(Slot, PlugType) operations. The plug operation propa-
gates composition to contributor E1, when the OpenSlot(S1) operation is enqueued. The com-
position service processes steps 2 and 3 in the same way.

Page 66

E1
S1St

E2
S1

E3
S2S1

Core
Di

St

Disco.
Di

E4
S2

Step 1 Step 2 Step 3Step 0

RA(St)OS(Di) RA(Di)OS(St) R(Di,Di/Disco) R(St,St/E1) P(Di,Di/Disco) P(St,St/E1) OS(S1)

RA(S1) R(S1,S1/E2) R(S1,S1/E3) P(S1,S1/E2) P(S1,S1/E3) OS(S2)

RA(S2) R(S2,S2/E4) P(S2,S2/E4)

Step 0 Step 1

Step 2

Step 3 OS .. OpenSlot(Slot)

RA .. RegisterAll(Slot)

R .. Register(Slot, PlugType)

P .. Plug(Slot, PlugType)

Step 1

OS(S1)

OS(S2)

Step 2

Figure 17. Task queue of the composition service

Page 67

Page 68

Chapter 4: Plux.NET Composition Infrastructure

This chapter describes a composition infrastructure (CI) which implements the composition
model described in Chapter 3. The CI allows building rich client applications which support
fine-grained customization and dynamic reconfiguration using plug-and-play composition.
This chapter describes how the CI is designed.

This chapter is structured as follows: Section 4.1 describes the custom .NET attributes used
for type meta element specification. Section 4.2 overviews the architecture of the Plux.NET
CI. Sections 4.3 to 4.8 describe the components of the CI, i.e., the type store, the discovery
core, the bootstrap discoverer, the assembly analyzer, the instance store, and the composition
core.

4.1 Attributes for Type Meta Elements

In the Plux.NET CI, the default mechanism to specify type meta data in contract and plug-in
assemblies are custom .NET attributes. Attributes are pieces of meta information which can
be attached to language constructs such as classes, interfaces, methods or fields in the source
code. At run time, the attributes attached to a language construct can be retrieved using reflec-
tion. In addition to pre-defined attributes in the .NET Framework, programmers can declare
custom attributes. Plux.NET declares such attributes for type meta elements in the CI.

4.1.1 Attributes for Slot Definitions

The SlotDefinition attribute specifies a slot definition and can be attached to interfaces. It
provides a member for a name. If multiple slot definition attributes are attached to one inter-
face, all slot definitions share the same interface and parameter definitions. The ParamDefin-­‐
ition attribute specifies a parameter definition and can be attached to interfaces. It provides
properties for a name, a .NET type, and a default value.

The example below defines a slot for menu commands. The interface ICommand has a Do
method which is called when the user selects the command from the menu. With the Text pa-
rameter, every contributor provides a menu command string, which is used by the host to
build and display the menu.

[SlotDefinition("Command")]
[ParamDefinition("Text", typeof(String), "(unavailable)"]
interface ICommand {
 void Do();
}

Page 69

Table 6 summarizes the Plux.NET attributes used for slot definitions.

Syntax

[SlotDefinition(name)] attachable to interfaces

!"!#!$%&'()*+,+'+&,!#!-!#!"#$#!.!#!/!

name a string specifying a user-defined name for the slot definition
Arguments

[ParamDefinition(name, properties)] attachable to interfaces

!"!#!$%&%'()*+,+-+.,!#!/!#!"#$#!0!#%&'$#"#!0!#($)"*+%#1#!2!#!1!

name a string specifying a user-defined name for the parameter definition

Syntax

Arguments

type a .NET type specifying the expected data type for the parameter
default a constant which is used as a default value if the contributor omits the

parameter

Table 6. Plux.NET attributes for slot definitions

4.1.2 Attributes for Contributor Extensions

The Extension attribute specifies an extension and can be attached to classes. It provides
properties for a name and for the singleton and auto releasing settings. The properties OnCre-­‐
ated and OnReleased specify event handlers for composer events (see page 55).

The Plug attribute specifies a plug and can be attached to extension classes. It provides prop-
erties for a name and for the auto registering and auto plugging settings. The properties On-­‐
Plugged and OnUnplugged specify event handlers for composer events.

The Param attribute specifies a parameter and can be attached to extension classes. It provides
properties for a name, for a value object, and optionally the name of a plug which this param-
eter value is associated to. Multiple parameter attributes can be attached to a class.

The example below defines a contributor for the Command slot. The contributor class Close-­‐
Command will appear in the menu with the command string "Close". The contributor is not a
singleton and will be automatically registered, plugged, and released. The contributor regis-
ters event handler methods for when it is created or released, and for when it is plugged or
unplugged.

[Extension("CloseCommand", Singleton=false, AutoRelease=true,
 OnCreated="HandleCreated", OnReleased="HandleReleased")]
[Plug("Command", AutoRegister=true, AutoPlug=true,
 OnPlugged="HandlePlug", OnUnplugged="HandleUnplug")]
[Param("Text", "Close", Plug="Command")]
public class CloseCommand : ICommand { ... }

Table 7 summarizes the Plux.NET attributes used for contributor extensions:

Page 70

[Extension(name, properties)] attachable to classes

Syntax
!"!#!$%&'()*+(!#"#!,!#,#!"#$#-#%&'%$&()#.#/#!0!#%&'%$&()#1#!.!#2#!2!

Arguments
name a string specifying a user-defined name for the extension; if omitted

the class name is used as extension name
Singleton=true if true, only one instance of this extension can be created (default:

false)
AutoRelease=true if true, the extension is automatically released after it was unplugged

(default: true)
OnCreated=meth a method name specifying a handler for the Created event
OnReleased=meth a method name specifying a handler for the Released event

[Plug(name, properties)] attachable to classes

Syntax
!"!#!$%&'!#!(!#!"#$#)#!*!#%&'%$&()#+#!,!#!-!

Arguments
name a string specifying the name of the slot into which this plug fits
AutoPlug=true if true, the extension is automatically plugged after it was registered

(default: true)
AutoRelease=true if true, the extension is automatically released after it was unplugged

(default: true)
OnPlugged=meth a method name specifying a handler for the Plugged event
OnUnplugged=meth a method name specifying a handler for the Unplugged event

[Param(name, properties)] attachable to classes

Syntax
!"!#!$%&%'!#!(!#!"#$%!)!%&"'($#"#!)!#)'(*#*#!+!#!*!

Arguments
name a string specifying the name of the parameter
value an object specifying a parameter value
plug a string specifying the name of the plug to which this parameter

belongs to; if omitted the parameter applies to all plugs of the
extension

Table 7. Plux.NET attributes for contributor extensions

Using the default values of the attribute properties the above example can be written as:
[Extension]
[Plug("Command", OnPlugged="HandlePlug", OnUnplugged="HandleUnplug")]
[Param("Text", "Close")]
public class CloseCommand : ICommand { ... }

4.1.3 Attributes for Host Extensions

The same Extension attribute is used for host extensions as well as for contributor exten-
sions, because typically extensions have both roles, the role of a contributor and the role of a

Page 71

host. The Slot attribute specifies a slot and can be attached to host extension classes. It pro-
vides properties for a name, for a slot definition, and for configuration settings. The properties
OnRegistered, OnPlugged, etc. specify handlers for composer events.

The example below defines a host with a Command slot. The menu host opens a slot with the
name Command which uses the slot definition Command. The slot accepts multiple shared con-
tributors, and it loads contributors lazily. The menu host handles the Registered event, where
it reads the Text parameter and builds the menu item. When the user selects the menu com-
mand, the menu host plugs the shared extension. Finally, the menu host handles the Plugged
event, where it calls the Do method from interface ICommand (see Section 5.4.1 on page 114
for an example how to implement such a host).

[Extension("Menu")]
[Plug("Startup")]
[Slot("Command", Multiple=true, Unique=false,
 AutoRegister=true, AutoPlug=true, LazyLoad=true,
 OnRegistered="Command_Registered", OnPlugged="Command_Plugged", ...)]
public class MenuHost : IStartup { ... }

Table 8 summarizes the Plux.NET slot attribute for host extensions.

OnClosed=meth a method name specifying a handler for the Closed event

[Slot(name, properties)] attachable to classes

Syntax
!"!#!$%&'!#!(!#!"#$#)#!*!#%&'%$&()#+#!,!#!-!

Arguments
name a string specifying the name of the slot
Definition="Name" a string specifying the name of the slot definition; if omitted, the slot

name specifies the slot definition
Multiple=true if true, the slot allows registering multiple contributors (default: false)
Unique=true if true, the slot requires unique contributors (default: false)
AutoOpen=true if true, the slot is opened when the extension is plugged (default: true)
AutoRegister=true if true, contributors are automatically registered after the slot was

opened (default: true)

if true, contributors are automatically plugged after they were
registered (default: true)

AutoPlug=true

if true, contributors are automatically released after they were
unplugged (default: true)

AutoRelease=true

OnOpened=meth
OnRegistered=meth
OnPlugged=meth
OnSelected=meth
OnDeselected=meth
OnUnplugged=meth
OnDeregistered=meth

a method name specifying a handler for the Opened event
a method name specifying a handler for the Registered event
a method name specifying a handler for the Plugged event
a method name specifying a handler for the Selected event
a method name specifying a handler for the Deselected event
a method name specifying a handler for the Unplugged event
a method name specifying a handler for the Deregistered event

LazyLoad=true if true, contributors are not automatically plugged after they were
registered; when a host manually plugs a shared contributor, it is
automatically plugged in other sharing hosts (default: false)

Table 8. Plux.NET attribute for host extensions

Page 72

4.2 Architecture Overview

The Plux.NET composition infrastructure allows executing plug-ins which conform to the
Plux.NET composition model. Fig. 18 shows the components of the CI and their interactions.
This section contains a short description for each component. Subsequent sections contain de-
tailed specifications.

To bootstrap composition, the CI loads an bootstrap discoverer when it starts. The bootstrap
discoverer adds contracts and plug-ins which are specified as command line argument to the
type store. It uses the assembly analyzer to extract type meta elements from custom .NET
attributes in contract and plug-in assemblies. In typical scenarios, the bootstrap discoverer
loads a custom discoverer, which subsequently discovers the remainder of the application's
extensions.

The type store maintains types and acts as an observable object notifying about changes. Dis-
coverer extensions, such as the bootstrap discoverer, use the type builder interface to create
type meta elements for the type store. They use the type store modifier interface to add or
remove types. Other components, such as the composition core, use the type store reader in-
terface to read types. The composition core also uses the type qualifier interface to qualify
types before it uses them in composition. The type store observable interface allows the com-
position core to register a change listener. Upon changes in the type store, the composition
core automatically registers added types and deregisters removed types.

Composition Infrastructure

Type Store Instance Store

Composition Core

Bootstrap
Discoverer

Observable

Modifier

ComposerCreator

Reader ModifierReader

Register

Observable

Qualifier

Provided Interface
Required Interface

Configurator

Discoverer

Builder

Discovery Core

Assembly
AnalyzerAnalyzer

Figure 18. Architecture of the Plux.NET composition infrastructure

Page 73

The discovery core provides the infrastructure that is necessary to discover types. The actual
discovery mechanism is not part of the CI. Instead, the discovery core integrates external dis-
coverer extensions and provides the type builder interface of the type store to them.

The instance store maintains instances and their relationships. It acts as an observable object
notifying observers about changes. The composition core uses the instance store modifier in-
terface to add or remove instances as well as relationships between instances. It also uses the
instance store reader interface to determine requirements and provisions of hosts and contrib-
utors. The instance store observable interface is the place where host extensions register their
change listeners when they react to the events of the composition core. The instance store no-
tifies contributors when they are created and released, and it notifies hosts and contributors
when composition relationships change, for example when contributors become known for a
host.

The composition core creates instances and controls relationships between instances. It uses
the type store reader to determine requirements and provisions of hosts and contributors. It
uses the type qualifier to qualify types prior to their use in composition. The composition core
provides the creator interface with operations for creating extensions and the composer inter-
face with operations for controlling relationships. It also provides the composition configura-
tor interface that allows configuring the composition procedure. The composition core uses
the instance store modifier to store instances and their relationships. It also uses the type store
observable to monitor the type store. When an extension is added/removed to/from the type
store, the composition core registers/deregisters the extension in the instance store.

Composition tools use the composition configurator to configure the composition procedure
through settings. They deactivate automatic composition operations and switch from the auto-
matic mode to the manual mode. In manual mode, a composition tool can use the creator in-
terface to create extensions, and the composer interface to change relationships.

4.3 Type Store

The type store maintains type meta objects (short: types). The CI reads contracts and plug-ins
from .NET assemblies. An assembly is the smallest unit for loading, deployment, and version-
ing in .NET (ECMA 2006). Contracts and plug-ins are library assemblies with the file exten-
sion *.dll. The type store maintains meta objects about types which are stored in .NET
assemblies.

Fig. 19 shows a class diagram for contract and plug-in types. The class diagram extends the
composition model class diagram from Chapter 3 (see page 35). Classes for contract types use
the postfix Info or Definition in their name. Classes for extension types use the postfix Info in
their name. The classes in the type store take the attributes from the composition model and
explicitly add attributes for bi-directional navigation between meta elements. For example,
the SlotDefinitions attribute of a contract definition contains a reference to all slot definitions,
and each contained slot definition has a reference back in its Contract property. The class dia-
gram also adds attributes for the event handlers, which extensions use to react to composer
events. Each class implements the MetaElement interface and provides a name and an identi-
fication number. Identification numbers are consecutively numbered per kind.

Page 74

The value of the SlotDefinition attribute in the plug type and slot type classes depends on the
qualification state of the type. It can only be accessed if the type has been qualified before.
Otherwise, the attribute raises an invalid operation exception. This is not relevant for applica-
tion developers, because a host extension can only see registered contributors, and registered
contributors are qualified by definition. However, the composition core, or composition tools
must check the qualification state, before accessing the slot definition.

SlotTypeInfo
Attributes

Multiple: bool
Unique: bool
AutoOpen: bool
AutoRegister: bool
AutoPlug: bool
LazyLoad: bool
AutoRelease: bool

Relationships
Extension: ExtensionTypeInfo
Definition: SlotDefinition

Events Handlers
OnOpened
OnRegistered
OnPlugged
OnSelected
OnDeselected
OnUnplugged
OnDeregistered
OnClosed

PlugTypeInfo
Attributes

AutoRegister: bool
AutoPlug: bool

Relationships
Extension: ExtensionTypeInfo
Definition: SlotDefinition
Parameters: Parameter
RegisteredInSlots: SlotInfo[]

Operations
GetParam(string): System.Object

Events Handlers
OnPlugged
OnSelected
OnDeselected
OnUnplugged

ParameterInfo
Attributes

Value: System.Object

Relationships
Plug: PlugTypeInfo

ExtensionTypeInfo
Attributes

Class: System.Type
Singleton: bool
AutoRelease: bool

Relationships
Plugin: PluginInfo
Slots: SlotTypeInfo[]
Plugs: PlugTypeInfo[]

Events Handlers
OnCreated
OnReleased

PluginInfo
Attributes

File: System.Reflection.Assembly

Relationships
Extensions: ExtensionTypeInfo[]

1..n

0..n

0..n

0..n

1..n

MetaElement
Name: string
Id: int

all elements implement
this interface

Qualifiable
QualificationState: enum
Qualify()

all Type/Definition elements
implement this interface

ContractInfo
Attributes

File: System.Reflection.Assembly
Relationships

SlotDefinitions: SlotDefinition[]

SlotDefinition
Attributes

Interface: System.Type
Relationships

Contract: ContractDefinition
Parameters: ParameterDefinition[]

ParameterDefinition
Attributes

Type: System.Type
DefaultValue: System.Object

Relationships
Slot: SlotDefinition0..n

Figure 19. Class diagram of meta elements in the type store

The type store adds the following attributes and operations to support typical scenarios: First-
ly, a host extension typically retrieves a parameter value by its name. Thus the plug type class
provides the GetParameter operation which returns the parameter value for a given name. If a
plug type does not specify a parameter, it returns the default value from the parameter defini-
tion. If the plug is not qualified, the method raises an unsupported operation exception. Sec-

Page 75

ondly, the RegisteredInSlots enumeration contains all slots where a plug is registered. The
registered slots are retrieved from the instance store (see page 82).

4.3.1 Type Qualifier Interface

The type qualifier interface allows the composition core to qualify types prior to their use in
composition (see page 36). The composition core qualifies lazily, i.e. it does not qualify until
a type is registered in a slot.

Every type in the type store implements the Qualifiable interface. The Qualify method
tries to qualify a type. The property IsQualificationMissing is true when the type has not
been tried. The property IsQualified is true if the type has successfully qualified. The prop-
erty Errors returns error flags which indicate why a type did not qualify.

enum QualificationErrors {
 NameAlreadyExists=0x1, SlotDefinitionNotFound=0x2,
 InterfaceNotImplemented=0x4, ... }

interface Qualifiable {
 QualificationErrors Errors { get; }
 void Qualify();
 bool IsQualified { get; }
 bool IsQualificationMissing { get; }
}

For efficiency reasons, the composition core does not try to qualify failed types again. The
following pattern makes sure that qualification is only tried once.

bool TryQualify(Qualifiable q) {
 if(q.IsQualificationMissing) {
 q.Qualify();
 if(!q.IsQualified) PrintNotQualifiedMessage(q.QualificationState);
 }
 return q.IsQualified;
}

When the content of the type store changes, the qualification state of types can change (see
page 36). If a type references other types, and those other types are added/removed to/from
the type store, the type store resets the qualification state to QualificationMissing and trig-
gers a new qualification try.

4.3.2 Type Store Reader Interface

The type store reader interface allows the composition core and the discovery core to read
types from the type store. The iterator Contracts contains all contracts; the iterator Plugins
contains all plug-ins. The contracts and plug-ins provide iterator properties which allow navi-
gating through their child elements (see Fig. 18 on page 73).

interface TypeStoreReader {
 IEnumerable<ContractInfo> Contracts { get; }
 IEnumerable<PluginInfo> Plugins { get; }
 // convenience properties
 IEnumerable<SlotDefinition> SlotDefinitions { get; }
 IEnumerable<ExtensionTypeInfo> ExtensionTypes { get; }

Page 76

 IEnumerable<PlugTypeInfo> PlugTypes { get; }
 IEnumerable<SlotTypeInfo> SlotTypes { get; }
}

For convenient access, the reader provides properties which allow reading all slot definitions,
extension types, slot types, and plug types in the type store with a global iterator. For exam-
ple, the iterator SlotDefinitions contains all slot definitions of all contracts in the type store.

4.3.3 Type Store Observable Interface

The type store observable interface allows other components, such as the composition core, to
register a change listener. The type store notifies registered observers after a contract or plug-
in was added or removed.

interface TypeStoreObservable {
 event ContractEventHandler ContractAdded;
 event ContractEventHandler ContractRemoved;
 event PluginEventHandler PluginAdded;
 event PluginEventHandler PluginRemoved;
}

The observer registers event handler methods. When the type store fires an event, it includes
which contract or plug-in has changed as an argument.

delegate void ContractEventHandler(object s, ContractEventArgs args);
class ContractEventArgs : System.EventArgs {
 ContractInfo Contract { get; internal set; }
}

delegate void PluginEventHandler(object s, PluginEventArgs args);
class PluginEventArgs : System.EventArgs {
 PluginInfo Plugin { get; internal set; }
}

4.3.4 Type Builder Interface

The type builder interface allows discoverer extensions to create type meta elements. The dis-
coverer extracts the meta data from the contract and plug-in assemblies, builds the corre-
sponding type meta elements using the type builder, and passes the types to the discovery
core.

interface TypeBuilder {
 ContractInfo CreateContract(SlotDefinition[] slots);
 SlotDefinition CreateSlotDefinition(string name, System.Type interface,
 ParameterDefinition[] params);
 ParameterDefinition CreateParameterDefinition(string name,
 System.Type type, object defaultValue);
 PluginInfo CreatePlugin(
 string name, IEnumerable<ExtensionTypeInfo> extTypes);
 ExtensionTypeInfo CreateExtensionType(
 string name, System.Type clazz, SlotTypeInfo[] slots,
 PlugTypeInfo[] plugs, bool IsSingleton);
 SlotTypeInfo CreateSlotType(string name, SlotDefinition slot);
 Parameter CreateParameter(string name, object value);
 PlugTypeInfo CreatePlugType(string name, SlotDefinition slot,

Page 77

 Parameter[] params);
}

4.3.5 Type Store Modifier Interface

The type store modifier interface allows the discovery core to add and remove types in the
type store. The Add operation adds contracts or plug-ins to the type store; the Remove opera-
tion removes contracts or plug-ins from the type store. The GetTypeBuilder method allows
the discoverer to access the type builder.

interface TypeStoreModifier {
 void Add(ContractInfo[] contracts, PluginInfo[] plugins);
 void Remove(ContractInfo[] contracts, PluginInfo[] plugins);
 TypeBuilder GetTypeBuilder();
}

After the type store processed an Add or Remove call, it notifies registered observers about the
changes. Upon that notification, the composition core will update the composition with the
changed types. If a discoverer wants to make sure that multiple contracts and plug-ins are
added to the type store before the composition is updated, it must add those contracts and
plug-ins within a single call of the Add method. This is important for qualification, because
then all slot definitions will be available in the type store, when the extensions are tried to be
qualified. To allow a discoverer to add multiple contracts and plug-ins in a single call, the add
and remove methods accept arrays as arguments. This reasoning does not apply when types
are removed, because the sequence of removal is irrelevant. The Remove method implements
the same pattern anyway, for reasons of symmetry and convenience.

The following code shows how this pattern is implemented in the type store. At first, the Add
method adds all contracts to the type store, then it adds the plug-ins, and finally it notifies the
observers.

class TypeStore : TypeStoreModifier, ... {
 public void Add(ContractInfo[] contracts, PluginInfo[] plugins) {
 foreach(ContractInfo c in contracts) StoreType(c);
 foreach(PluginInfo p in plugins) StoreType(p);
 foreach(ContractInfo c in contracts)
 OnContractAdded(this, new ContractEventArgs { Contract = c; });
 foreach(PluginInfo p in plugins)
 OnPluginAdded(this, new PluginEventArgs { Plugin = p; });
 }
 private void StoreType(MetaElement elem) { /*not shown*/ }
 protected virtual void OnContractAdded(object s, ContractEventArgs args) {
 if(ContractAdded != null)
 ContractAdded(s, args);
 }
 ...
}

Following a convention in the .NET Framework, the class provides an OnContractAdded
method to raise the ContractAdded event. Table 9 shows all notification methods in the type
store.

Page 78

Type
Modifier Method

Type
Observer Event

Event Args

Add ContractAdded ContractEventArgs

Add PluginAdded PluginEventArgs

Remove ContractRemoved ContractEventArgs

Remove PluginRemoved PluginEventArgs

Table 9. Type store notifications

4.4 Discovery Core

Discovery is customizable in the Plux.NET composition infrastructure. The discovery core in-
tegrates discoverer extensions into the CI. Custom discoverers typically comprise two parts.
The discoverer part detects when contracts of plug-ins are added to or removed from a moni-
tored component repository. The analyzer part extracts type meta data from the assemblies.
The discoverer passes the type meta data to the discovery core. The discovery core stores the
type meta data into the type store.

The CI provides a bootstrap discoverer (see page 80) and an assembly analyzer for .NET
attributes (see page 81). The customizable discovery architecture allows replacing the dis-
coverer, e.g. by discovery from multiple directories, discovery over the web, or discovery by
user dialog. The assembly analyzer can also be replaced, e.g. to analyze XML files, or to ana-
lyze a custom composition language.

4.4.1 Discoverer Interface

A discoverer extension must implement the Discoverer interface. The discovery core calls
StartDiscovery to start the discoverer and passes the type builder. The discovery core regis-
ters an event handler in the DiscovererEvent of the discoverer. Upon changes in the compo-
nent repository, the discoverer calls back the discovery core.

[SlotDefinition("Discovery")]
interface Discoverer {
 void StartDiscovery(TypeBuilder builder);
 event DiscoveryEventHandler DiscoveryEvent;
}

When discovery starts, the discoverer should perform an initial discovery run. It should dis-
cover all types which are currently discoverable in the component repository. After initial dis-
covery, the discoverer should continue to monitor the component repository and notify the
discovery core upon changes.

Upon initial discovery and also upon later changes, the discoverer should always collect all
changed types to a batch. It should build types for all changed assemblies and fire one single
discovery event. Together with the event the discoverer sends DiscoveryEventArgs contain-
ing the type of change and the changed types.

Page 79

delegate DiscoveryEventHandler(object s, DiscoveryEventArgs args);

enum DiscoveryChangeType { Add, Remove }

class DiscoveryEventArgs : System.EventArgs {
 DiscoveryChangeType ChangeType { get; set; }
 ContractInfo[] Contracts { get; set; }
 PluginInfo[] Plugins { get; set; }
}

4.4.2 Discovery Registrar Interface

The discovery registrar interface allows discoverer extensions to register or deregister in the
discovery core. In this context, registration means to store a reference to the discoverer in the
discovery core. This should not be confused here with the registered relationship in the com-
position model.

interface DiscoveryRegistrar {
 void Register(Discoverer discoverer);
 void Unregister(Discoverer discoverer);
}

When a discoverer registers, the discovery core connects its event handler method to the dis-
coverer, then calls StartDiscovery, and passes the type builder. When a discoverer unregis-
ters, the discovery core disconnects his event handler. When the discovery extension fires a
discovery event, the discovery core updates the type store.

class DiscoveryCore : DiscoveryRegistrar {
 TypeStoreModifier typeStore = GetTypeStore();
 public void Register(Discoverer discoverer) {
 discoverer.DiscoveryEvent += OnDiscoveryEvent;
 discoverer.StartDiscovery(typeStore.GetTypeBuilder());
 }
 public void Unregister(Discoverer discoverer) {
 discoverer.DisocveryEvent -­‐= OnDiscoveryEvent;
 }
 void OnDiscoveryEvent(object s, DiscoveryEventArgs args) {
 switch(args.ChangeType) {
 case Add: typeStore.Add(args.Contracts, args.Plugins); break;
 case Remove: typeStore.Remove(args.Contracts, args.Plugins); break;
 }
 }
 ...
}

4.5 Bootstrap Discoverer

The bootstrap discoverer extension discovers a set of contracts and plug-ins, the names of
which were specified as command line arguments when the CI was launched. The bootstrap
discoverer class implements the Discoverer interface (see page 79). It expects an array of as-
sembly names and a type analyzer.

Page 80

[Extension]
[Plug("Discovery")]
class BootstrapDiscoverer : Discoverer {
 public BootstrapDiscoverer(string[] assemblies, Analyzer analyzer) { ... }
 public void StartDiscovery(TypeBuilder builder);
 public event DiscoveryEventHandler DiscoveryEvent;
}

A type analyzer provides meta data for .NET assemblies. The GetContracts method reads
contracts from an assembly, the GetPlugins method reads plug-ins from an assembly. The
AnalyzeFile method combines both operations in one method and reads contracts as well as
plug-ins.

[SlotDefinition("Analyzer")]
interface Analyzer {
 ContractInfo[] GetContracts(string file, TypeBuilder builder);
 PluginInfo[] GetPlugins(string file, TypeBuilder builder);
 bool AnalyzeFile(string file, TypeBuilder builder,
 out ContractInfo[] contracts, out PluginInfo[] plugins);
}

When the bootstrap discoverer is started by the discovery core, it processes the array with the
assembly names. It builds types using the type analyzer and buffers them in collections. After
the discoverer finished analyzing the assemblies, it fires the discovery event and passes the
Add change type and the collected types as event arguments.

 void StartDiscovery(TypeBuilder builder) {
 var allContracts = new List<ContractInfo>();
 var allPlugins = new List<PluginInfo>();
 foreach(string file in assemblies) {
 allContracts.AddRange(analyzer.GetContracts(file, builder));
 allPlugins.AddRange(analyzer.GetPlugins(file, builder));
 }
 OnDiscoveryEvent(this, new DiscoveryEventArgs() {
 ChangeType = DiscoveryChangeType.Add;
 Contracts = allContracts.ToArray(typeOf(ContractInfo));
 Plugins = allPlugins.ToArray(typeOf(PluginInfo));
 });
 }
}

4.6 Assembly Analyzer

The assembly analyzer extension analyzes contract and plug-in assemblies and extracts type
meta data from Plux.NET attributes. It provides a plug for the Analyzer slot and can be reused
by custom discoverer extensions.

[Extension]
[Plug("Analyzer")]
public class AssemblyAnalyzer : Analyzer { ... }

At startup, the CI creates the bootstrap discoverer, passes the assembly analyzer, and registers
the bootstrap discoverer in the discovery core.

Page 81

void Bootstrap(string[] args) {
 DiscoveryRegistrar registrar = GetDiscoveryRegistrar(); /*not shown*/
 registrar.Register(new BootstrapDiscoverer(args, new AssemblyAnalyzer());
}

Fig. 20 shows the discoverer configuration used for bootstrapping.

An.. AnalyzerDi .. Discovery,

Bootstrap-
DiscovererDi An

Assembly-
AnalyzerAn

Figure 20. Bootstrap discoverer and assembly analyzer

4.7 Instance Store

The instance store maintains instance meta elements (short: instances) and their relationships.
Relationships can be grouped in two categories. Firstly, the Registered relationship connects a
slot in the instance store with a plug type in the type store. Because the registered relationship
references the type store, the instance store is a type store observer and is notified when a type
is removed. Secondly, the Plugged and Selected relationships connect slots and plugs within
the instance store.

ExtensionInfo
Attributes

Object: System.Object
IsShared: bool
AutoRelease: bool

Relationships
Type: ExtensionTypeInfo
Slots: SlotInfo[]
Plugs: PlugInfo[]

Events Handlers
OnCreated
OnReleased

SlotInfo
Attributes

IsOpen: bool
SelectMode: { Single, Multiple }
Unique: bool
AutoOpen: bool
AutoRegister: bool
AutoPlug: bool
LazyLoad: bool
AutoRelease: bool

Relationships
Type: SlotTypeInfo
Extension: ExtensionInfo
RegisteredPlugs: PlugTypeInfo[]
PluggedPlugs: PlugInfo[]
SelectedPlugs: PlugInfo[]

Events Handlers
OnOpened
OnRegistered
OnPlugged
OnSelected
OnDeselected
OnUnplugged
OnDeregistered
OnClosed

PlugInfo
Attributes

AutoPlug: bool
Relationships

Type: PlugTypeInfo
Extension: ExtensionInfo
PluggedInSlots: SlotInfo[]
SelectedInSlots: SlotInfo[]

Events Handlers
OnPlugged
OnSelected
OnDeselected
OnUnplugged

0..n

1..n
0..n

0..n

0..n

0..n

MetaElement
Name: string
Id: int

all elements implement
this interface

PlugTypeInfo
in type store

0..n

Figure 21. Class diagram of meta elements in the instance store

Page 82

Fig. 21 shows a class diagram for instances. The class diagram extends the composition mod-
el class diagram from Chapter 3 (see page 35). In contrast to the class names from the compo-
sition model, the class names classes in the instance store use the postfix Info, adhering to a
convention in the .NET Framework for meta classes. The classes in the instance store take the
attributes from the composition model and explicitly add attributes for bi-directional naviga-
tion between meta elements. For example, the Slots attribute of an extension contains a refer-
ence to all slots, and each slot has a reference back in its Extension attribute.

The classes allow navigation along composition relationships. The RegisteredPlugs attribute
in class SlotInfo, and the RegisteredInSlots attributes in class PlugTypeInfo (see Fig. 19 on
page 75) contain the registered relationships. The PluggedPlugs attribute in class SlotInfo,
and the PluggedInSlots attribute in class PlugInfo contain the plugged relationship. The Se-
lectedPlugs attribute in class SlotInfo, and the SelectedInSlots attribute in class PlugInfo con-
tain the selected relationship.

The class diagram also adds attributes for the event handlers, which extensions use to react to
composer events. Each class implements the MetaElement interface and provides a name and
an identification number. Identification numbers are consecutively numbered per meta ele-
ment type.

4.7.1 Instance Store Reader Interface

The instance store reader interface allows the composition core to read instances from the in-
stance store. The iterator Extensions contains all extensions.

interface InstanceStoreReader {
 IEnumerable<ExtensionInfo> Extensions { get; }
 IEnumerable<SlotInfo> Slots { get; }
 IEnumerable<PlugInfo> Plugs { get; }
 ExtensionInfo GetExtension(object dotNetObj);
 SlotInfo GetSlot(object dotNetObj, string name);
 PlugInfo GetPlug(object dotNetObj, string name);
 bool IsRegistered(SlotInfo slot, PlugTypeInfo plugType);
 bool IsPlugged(SlotInfo slot, PlugInfo plug);
 bool IsSelected(SlotInfo slot, PlugInfo plug);
}

For convenient access, the reader provides properties which allow reading all slots and all
plugs in the instance store with a global iterator. For example, the iterator Slots contains all
slot definitions of all contracts in the type store.

The methods GetExtension, GetSlot, and GetPlug allow an extension to access their meta
objects by providing their this reference. Typically, this is convenient in methods which han-
dle composer events (see usage example on page 102).

The methods IsRegistered, IsPlugged, and IsSelected allow the composition core to
check wether a relationship exists between two objects in the meta model.

Page 83

4.7.2 Instance Store Observable Interface

The instance store observable interface allows other components, such as composition tools or
host extensions in an application, to register event listeners. The instance store notifies regis-
tered observers after an extension was added or removed, or after a slot was opened or closed,
or after a relationship was added or removed.

interface InstanceStoreObservable {
 event ExtensionEventHandler ExtensionAdded;
 event ExtensionEventHandler ExtensionRemoved;
 event SlotEventHandler SlotOpened;
 event SlotEventHandler SlotClosed;
 event RegisterEventHandler Registered;
 event RegisterEventHandler Deregistered;
 event PlugEventHandler Plugged;
 event PlugEventHandler Unplugged;
 event SelectionEventHandler Selected;
 event SelectionEventHandler Deselected;
}

The observers register event handler methods. When the instance store fires an event, it in-
cludes information about what has changed as an argument.

delegate ExtensionEventHandler(object s, ExtensionEventArgs args);
delegate SlotEventHandler(object s, SlotEventArgs args);
delegate RegisterEventHandler(object s, RegisterEventArgs args);
delegate PlugEventHandler(object s, PlugEventArgs args);
delegate SelectEventHandler(object s, SelectEventArgs args);

class ExtensionEventArgs : System.EventArgs {
 ExtensionInfo Extension { get; internal set; };
}
class SlotEventArgs : System.EventArgs {
 SlotInfo Slot { get; internal set; }
}
class RegisterEventArgs : System.EventArgs {
 SlotInfo Slot { get; internal set; }
 PlugTypeInfo PlugType { get; internal set; }
 object GetParam(string name) { /* not shown */ }
}
class PlugEventArgs : System.EventArgs {
 SlotInfo Slot { get; internal set; }
 PlugInfo Plug { get; internal set; }
 object GetParam(string name) { /* not shown */ }
 object Object { get; internal set; }
}
class SelectEventArgs : System.EventArgs {
 SlotInfo Slot { get; internal set; }
 PlugInfo Plug { get; internal set; }
}

4.7.3 Instance Store Modifier Interface

The instance store modifier interface allows the composition core to modify instances in the
instance store. The AddExtension method adds an instance; the RemoveExtension method

Page 84

removes an instance. The OpenSlot method opens a slot; the CloseSlot method closes a
slot. The other methods add and remove registered, plugged or selected relationships.

interface InstanceStoreModifier {
 void AddExtension(ExtensionInfo extension);
 bool RemoveExtension(ExtensionInfo extension);
 void OpenSlot(SlotInfo slot);
 void CloseSlot(SlotInfo slot);
 void Register(SlotInfo slot, PlugTypeInfo plugType);
 bool Deregister(SlotInfo slot, PlugTypeInfo plugType);
 void Plug(SlotInfo slot, PlugInfo plug);
 bool Unplug(SlotInfo slot, PlugInfo plug);
 void Select(SlotInfo slot, PlugInfo plug);
 bool Deselect(SlotInfo slot, PlugInfo plug);
}

All methods which remove an extension or a relationship return a boolean. They return true if
the element to be removed was found, and they return false if the element was not found.

After the instance store processed a method call, it notifies registered observers about the
changes. The following code shows how this pattern is implemented in the instance store. In
this example, the Plug method fires the Plugged event.

class InstanceStore : InstanceStoreModifier, ... {
 public void Plug(SlotInfo slot, PlugInfo plug) {
 ...
 StorePlugged(slot, plug);
 OnPlugged(new PlugEventArgs() { Slot = slot; Plug = plug; });
 ...
 }
 void OnPlugged(PlugEventArgs args) {
 if(Plugged != null) Plugged(this, args);
 }
 void StorePlugged(SlotInfo slot, PlugInfo plug) { /* not shown */ }
}

The same pattern applies to the other modifier methods and events. Table 10 shows the opera-
tions and the associated events:

Instance
Modifier Method

Instance
Observer Event

Event Args

AddExtension ExtensionAdded ExtensionEventArgs

RemoveExtension ExtensionRemoved ExtensionEventArgs

OpenSlot SlotOpened SlotEventArgs

CloseSlot SlotClosed SlotEventArgs

Register Registered RegisterEventArgs

Deregister Deregistered RegisterEventArgs

Plug Plugged PlugEventArgs

Unplug Unplugged PlugEventArgs

Select Selected SelectEventArgs

Deselect Deselected SelectEventArgs

Table 10. Instance store notifications

Page 85

4.8 Composition Core

The composition core creates and releases extensions and creates and removes relationships
between extensions. It reads types from the type store and stores instances and their relation-
ships in the instance store.

4.8.1 Creator Interface

The creator interface allows other components, such as host extensions in an application or
composition tools, to create and release extensions. It contains the operations specified in Sec-
tion 3.7.2 (see page 40).

interface Creator {
 ExtensionInfo CreateSharedExtension(ExtensionTypeInfo type);
 ExtensionInfo GetSharedExtension(ExtensionTypeInfo type);
 ExtensionInfo GetSharedExtension(
 ExtensionTypeInfo type, bool createIfRequired);
 ExtensionInfo CreateUniqueExtension(ExtensionTypeInfo type);
 void Release(ExtensionInfo extension);
}

The CreateSharedExtension method creates a shared instance of an extension type. The
GetSharedExtension method returns the shared instance for an extension type. The Get-
SharedExtension method with the createIfRequired parameter is a convenience method which
uses the following pattern to create the shared extension on demand.

 ExtensionInfo GetSharedExtension(
 ExtensionTypeInfo type, bool createIfRequired) {
 ExtensionInfo shared = GetSharedExtension(type);
 if(shared == null && createIfRequired)
 return CreateSharedExtension(type);
 else
 return shared;
 }

The CreateUniqueExtension method creates a unique instance for an extension type. The Re-
lease method releases an extension.

4.8.2 Composer Interface

The composer interface allows other components, such as composition tools or host exten-
sions, to manually compose applications by opening and closing slots, and by connecting in-
stances. The composer interface provides the composition operations specified in Section
3.7.3 (see page 41).

interface Composer {
 void OpenSlot(SlotInfo slot);

 void Register(SlotInfo slot, PlugTypeInfo plugType);
 void RegisterAll(SlotInfo slot);
 void RegisterPlug(PlugTypeInfo plugType);
 void Register(ExtensionInfo host, ExtensionTypeInfo contributor);
 void RegisterPlugs(ExtensionTypeInfo contributor);
 void RegisterAll(ExtensionInfo host);

Page 86

 void Plug(SlotInfo slot, PlugInfo plug);
 void CreateAndPlug(SlotInfo slot, PlugTypeInfo plugType);
 void PlugWhereRegistered(PlugInfo plug);
 void CreateAndPlugWhereRegistered(PlugTypeInfo plugType);
 void CreateAndPlugAllRegistered(SlotInfo slot);
 void Plug(ExtensionInfo host, ExtensionInfo contributor);
 void CreateAndPlug(ExtensionInfo host, ExtensionTypeInfo contributor);
 void PlugWhereRegistered(ExtensionInfo contributor);
 void CreateAndPlugWhereRegistered(ExtensionTypeInfo contributor);
 void CreateAndPlugAllRegistered(ExtensionInfo host);

 void Select(SlotInfo slot, PlugInfo plug);

 void Deselect(SlotInfo slot, PlugInfo plug);

 void Unplug(SlotInfo slot, PlugInfo plug);
 void UnplugWherePlugged(PlugInfo plug);
 void UnplugAll(SlotInfo slot);
 void Unplug(ExtensionInfo host, ExtensionInfo contributor);
 void UnplugWherePlugged(ExtensionInfo contributor);
 void UnplugAll(ExtensionInfo host);

 void Deregister(SlotInfo slot, PlugTypeInfo plugType);
 void DeregisterPlug(PlugTypeInfo plugType);
 void DeregisterAll(SlotInfo slot);
 void Deregister(ExtensionInfo host, ExtensionTypeInfo contributor);
 void DeregisterPlugs(ExtensionTypeInfo contributor);
 void DeregisterAll(ExtensionInfo host);

 void CloseSlot(SlotInfo slot);
}

4.8.3 Configurator Interface

The configurator interface allows composition tools to configure the composition core. It con-
tains the settings for the composition service specified in Section 3.7.4 (see page 50)

interface Configurator {
 bool AutoOpen { get; set; }
 bool AutoRegister { get; set; }
 bool AutoPlug { get; set; }
 bool AutoSelect { get; set; }
 bool LazyLoad { get; set; }
 bool AutoRelease { get; set; }
}

4.8.4 Observing the Type Store

The composition core observes changes in the type store. After a plug-in has been added to
the type store, the composition core registers the extensions from this plug-in. If a plug-in has
been removed from the type store, the composition core deregisters the extensions in this
plug-in. The composition core registers event handler methods in the type store. The composi-
tion core reacts when a contract is added or removed, or when a plug-in is added or removed.

TypeStoreObserver typeStore = GetTypeStore();
typeStore.ContractAdded += ContractAdded;
typeStore.ContractRemoved += ContractRemoved;

Page 87

typeStore.PluginAdded += PluginAdded;
typeStore.PluginRemoved += PluginRemoved;

When a contract has been added to the type store, the composition core revisits all slots and
plugs which are affected by the new slot definitions. It opens slots which can be qualified af-
ter the slot definition has been added. And it registers plugs which qualify after the slot defini-
tion has been added.

public void ContractAdded(object s, ContractEventArgs args) {
 if(AutoOpen)
 InstanceStoreReader instanceStore = GetInstanceStore();
 foreach(SlotInfo slot in instanceStore.Slots)
 if(slot.AutoOpen && !slot.IsOpen())
 foreach(SlotDefinition slotdef in args.Contract.SlotDefinitions)
 if(slotDef == slot.SlotDefinition)
 OpenSlot(slot);
 if(AutoRegister)
 TypeStoreReader typeStore = GetTypeStore();
 foreach(PlugTypeInfo plugType in typeStore.PlugTypes)
 foreach(SlotDefinition slotdef in args.Contract.SlotDefinitions)
 if(plugType.AutoRegister && slotDef == plugType.SlotDefinition)
 composer.RegisterPlug(plugType);
}

When a contract has been removed from the type store, the composition core closes all slots
which use one of the removed slot definitions.

public void ContractRemoved(object s, ContractEventArgs args) {
 InstanceStoreReader instanceStore = GetInstanceStore();
 foreach(SlotDefinition slotdef in args.ContractInfo.SlotDefinitions)
 foreach(SlotInfo slot in instanceStore.Slots)
 if(slotdef == slot.SlotDefinition)
 CloseSlot(slot);
}

When a plug-in has been added to the type store, the composition core registers all extensions
in the plug-in in all matching slots of other extensions.

public void PluginAdded(object s, PluginEventArgs args) {
 if(!AutoRegister) return;
 foreach(ExtensionTypeInfo type in args.Plugin.Extensions) {
 RegisterPlugs(type);
}

When a plug-in has been removed from the type store, the composition core deregisters all
extensions in the plug-in from all slots in which they were registered.

public void PluginRemoved(object s, PluginEventArgs args) {
 foreach(ExtensionTypeInfo type in args.Plugin.Extensions)
 DeregisterPlugs(type);
}

4.8.5 The Core Extension

The CI with the cores described in this chapter is packaged as a core extension, which acts as
a root for Plux.NET applications (see Fig. 22). The core extension does not have any plugs,
but it has two slots where other extensions can contribute. The Discovery slot integrates dis-

Page 88

coverer extensions (see page 79). The Startup slot integrates startup extensions of applica-
tions. Below are the interfaces for the discovery and startup slot:

[SlotDefinition("Discovery"]
interface Discoverer {
 void StartDiscovery(TypeBuilder builder);
 event DiscoveryEventHandler DiscoveryEvent;
}

[SlotDefinition("Startup")]
[ParamDefinition("ExecuteInMainThread", typeof(bool), true)]
interface Startup {
 void Run();
}

The Discovery slot requires the Discoverer interface and does not require any parameters.
The startup slot requires the Startup interface and the parameter ExecuteInMainThread of
type bool with true as default value. After a contributor has been plugged in the startup slot,
the core extension calls the Run method provided by the contributor. The parameter defines
whether the Run method is called in the thread of the CI, or in a separate thread. The slot defi-
nitions are packaged in a contract Plux.dll.

Core
Discovery Core
Composition Core
Type Store
Instance Store

Custom
DiscovererDi An

Assembly-
AnalyzerAnDi

St

An .. AnalyzerDi .. Discovery,St .. Startup,

Application
St

Figure 22. Core extension with discovery and startup slot

At startup, the composition core creates a unique core extension and opens its slots. Therefore
it requires the composer, the creator, a modifier for the instance store, and the core contract.

InstanceStoreModifier instanceStore = GetInstanceStore();
ExtensionInfo core = creator.CreateUniqueExtension(coreType);
instanceStore.AddExtension(core);
foreach(SlotInfo slot in core.Slots) OpenSlot(slot);

The CoreExtension class implements the host behavior for the startup and discovery slot.
After a startup contributor is plugged, the core extension retrieves the ExecuteInMainThread
parameter. Depending on that parameter value, the core extension calls the Run method from
the composition thread, or it creates a new thread for the contributor. In the case where the
core creates a new thread, it also registers a handler for the Released event of the extension,
because when the extension is released the core needs to abort the corresponding thread.

[Extension("Core")]
[Slot("Discovery", Multiple=true, Unique=true,
 OnPlugged="Discovery_Plugged", OnUnplugged="Discovery_Unplugged")]
[Slot("Startup", Multiple=true, Unique=true,
 OnPlugged="Startup_Plugged")]

Page 89

class CoreExtension {
 var threadExtensions = new Dictionary<ExtensionInfo, Thread>();

 public void Startup_Plugged(object s, PlugEventArgs args) {
 bool mainThread = (bool) args.GetParam("ExecuteInMainThread");
 var startup = (Startup) args.Object;
 if(mainThread) startup.Run();
 else {
 Thread t = new Thread(startup.Run);
 args.Plug.Extension.Released += ThreadExtension_Released;
 threadExtensions.Add(args.Plug.Extension, t);
 t.Start();
 }
 }

 void ThreadExtension_Released(object s, ExtensionEventArgs args) {
 /* not shown */
 }
 ...
}

The discovery event handlers connect the discovery slot using the discovery registrar. After a
discoverer has been plugged, the core extension registers it in the discovery core. After a dis-
coverer has been unplugged, the core unregisters the discoverer from the discovery core.

 DiscoveryCoreRegistrar registrar = GetDiscoveryCore(); /* not shown */

 public void Discovery_Plugged(object s, PlugEventArgs args) {
 registrar.Register((Discoverer) args.Object);
 }

 public void Discovery_Unplugged(object s, PlugEventArgs args) {
 registrar.Unregister((Discoverer) args.Object);
 }

Page 90

Chapter 5: Plux.NET Applications

This chapter describes how to design and implement applications with the Plux.NET applica-
tion programming interface (API). The API is universally applicable and can be used for any
kind of .NET application. The Plux.NET API enables rich client applications which are cus-
tomizable and dynamically reconfigurable. A customizable application allows users to load
only components that they need for their current work thus keeping the application small and
simple. An dynamically reconfigurable application can be reconfigured on the fly for different
usage scenarios by dynamically swapping sets of plug-in components.

The Plux.NET framework comprises the runtime core, a framework library for rich client ap-
plications, and tools for composition and visualization. The runtime core implements the
composition infrastructure described in Chapter 4. The runtime core composes an application
from a component repository by plugging plugs of contributors into slots of the core or slots
of other hosts. The framework library contains reusable extensions and a class library which
simplifies building rich client applications that can be reconfigured dynamically. The tools vi-
sualize a composition, compose an application interactively or compose an application from a
script.

This chapter is structured as follows: Section 5.1 describes how to create a Plux.NET exten-
sion. Sections 5.2 and 5.3 describe how to create a host extension using a slot. Sections 5.4 to
5.6 cover user interfaces which can change dynamically. Section 5.4 describes best practices.
Section 5.5 describes how slot-bound widgets simplify the implementation of dynamic user
interfaces. Section 5.6 presents a cross-compiler IDE as a case study.

5.1 Creating Startup Extensions

The "Hello World" example in this section shows how to create a Plux.NET application. A
Plux.NET application needs to provide a startup extension. The startup extension plugs into
the startup slot of the runtime core. Fig. 23a) shows the extension HelloWorld. It has a startup
plug and is packaged in the plug-in HelloWorld.dll. Fig. 23b) shows the composed "Hello
World" application. The HelloWorld extension was created and plugged into the startup slot of
the Core extension.

Page 91

Hello
St Hello

St

Core
Di

St

HelloWorld.dll

Hello
St

St .. Startup
Di .. Discovery

a) HelloWorld plug-in b) HelloWorld application

Figure 23. Startup contributor of "Hello World" application

The following source code shows the C# implementation of the HelloWorld extension. The
extension specifies metadata with attributes: The Extension attribute tags the class Hel-­‐
loWorld as an extension. Since the Name argument is omitted, the assembly analyzer will use
the class name "HelloWorld" as the name for the extension. The Plug attribute adds a plug for
the startup slot. The startup slot requires the contributor to implement the IStartup interface.
In the Run method, the application prints "Hello world" and shuts down the runtime core to
quit the application. If we do not shut down the runtime core, the application will continue to
run, for example, in order to wait for dynamically discovered plug-ins. The Param attribute
specifies that the Run method should be executed in a thread of the runtime core.

using System;
using Plux;

[Extension]
[Plug("Startup")]
[Param("ExecuteInMainThread", true)]

public class HelloWorld : IStartup {
 public void Run() {
 Console.WriteLine("Hello world");
 Runtime.Shutdown();
 }
}

We can now save the source code into a file HelloWorld.cs and use the following statement to
build the Plux.NET plugin HelloWorld.dll with the C#-Compiler.

csc /t:library /out:HelloWorld.dll /reference:Plux.dll HelloWorld.cs

The following command executes the Plux.NET runtime core launcher. Table 11 (on page 94)
lists the components of the Plux.NET composition framework and describes their purpose.
The discover command line argument configures the bootstrap discoverer to discover the
HelloWorld.dll plug-in. The verbosity argument configures the runtime core to log dis-
covery and composition operations with normal verbosity. Table 12 (on page 94) lists the
command line options for the runtime core launcher.

plux.exe /discover:HelloWorld.dll /verbosity:normal

The log below shows the operations in the discovery core while it discovers contracts and
plug-ins of the Plux.dll runtime core assembly. Then the discovery core discovers the Hel-
loWorld.dll plug-in, because we specified the HelloWorld.dll assembly as a command line
argument. Next, the composer creates the HelloWorld extension and plugs it into the startup

Page 92

slot (see Fig. 23b). After the HelloWorld extension was plugged, the core extension executes
the Run method and the text "Hello world" is printed.

>plux.exe /discover:HelloWorld.dll /verbosity:normal
Plux.NET Version 0.3.1295.1

Contract added: 1:"Plux.dll"
Plugin added: 1:"Plux.dll"
Plugin added: 2:"HelloWorld.dll"
Hello world

The logger in the runtime core allows us to observe the composition process in more detail, if
we specify detailed as the verbosity level. The log below shows how the composition pro-
ceeds. In phase 1, the composition core opens the startup slot of the Core extension. The boot-
strap discoverer adds the HelloWorld.dll plug-in to the type store.

>plux.exe /discover:HelloWorld.dll /verbosity:detailed

4

!"#$%&'$()*+'",-%-).(/01234)11/
!"#$%&'$(&))-).(5./01234)11/
0126*#()*+'",-%-).(/01234)11
0126*#(&))-).(5./01234)11/
71"$("8-#*#6.(5./9*+'",-%:/(;!"%-<
71"$("8-#-).(5./9*+'",-%:/(;!"%-<
71"$("8-#*#6.(=./7$&%$28/(;!"%-<
71"$("8-#-).(=./7$&%$28/(;!"%-<
0126*#()*+'",-%-).(/>-11"?"%1)4)11/
0126*#(&))-).(=./>-11"?"%1)4)11/
@3$-#+*"#($:8-(%-6*+$-%*#6.((=./>-11"/(AA(5./!"%-/(;7$&%$28<
@3$-#+*"#($:8-(%-6*+$-%-).((=./>-11"/(AA(5./!"%-/(;7$&%$28<
@3$-#+*"#(81266*#6.((=./>-11"/(AA(5./!"%-/(;7$&%$28<
@3$-#+*"#(81266-).((=./>-11"/(AA(5./!"%-/(;7$&%$28<
>-11"(B"%1)
71"$('1"+*#6.(5./9*+'",-%:/(;!"%-<
71"$('1"+-).(5./9*+'",-%:/(;!"%-<
71"$('1"+*#6.(=./7$&%$28/(;!"%-<
@3$-#+*"#($:8-()-%-6*+$-%*#6.((=./>-11"/(CC(5./!"%-/(;7$&%$28<
@3$-#+*"#(2#81266*#6.((=./>-11"/(CC(5./!"%-/(;7$&%$28<
@3$-#+*"#(2#81266-).((=./>-11"/(CC(5./!"%-/(;7$&%$28<
@3$-#+*"#($:8-()-%-6*+$-%-).((=./>-11"/(CC(5./!"%-/(;7$&%$28<
71"$('1"+-).(=./7$&%$28/(;!"%-<

1

2

3

In phase 2, the composition core searches the type store for startup plugs and finds our Hel-­‐
loWorld extension. It registers the HelloWorld extension in the startup slot and thus makes
the contributor known to the Core host.

In phase 3, the composition core creates a unique instance of the HelloWorld extension,
plugs it into the startup slot, and notifies the Core extension that the contributor can be used.
The Core extension retrieves the value of the parameter ExecuteInMainThread. Because the
HelloWorld extension specified the value true, the Core extension calls the Run method of the
contributor in the main thread. Finally, the HelloWorld extension prints the text "Hello
world". This finishes the application and the runtime core can be shut down.

In phase 4, the runtime core shuts down. The composition core closes the slots of the Core ex-
tension. When the startup slot closes, the composition core unplugs and deregisters all con-
tributors. After the slots were closed, the runtime core terminates. Fig. 24 summarizes phase 1
to 4.

Page 93

3) Hello extension plugged

4) Hello extension deregistered

1) Hello extension discovered

Hello
St

Core
Di

St

2) Hello extension registered

Hello
St

Core
Di

St

Hello
St Hello

St

Core
Di

St

Hello
St

Core
Di

St

St .. Startup
Di .. Discovery

Figure 24. Composition process of "Hello World" application

File (Size) Purpose

Plux.dll (214kB) Composition infrastructure comprising the type store, in-
stance store, discovery core, composition core, bootstrap
discoverer, core contract, and core extension

Plux.Client.dll (22kB) Event logging and diagnostics for rich client applications

Plux.Framework.dll (111kB) Framework library for rich client applications

Plux.exe (24kB) Runtime core launcher for rich client applications

Table 11. Components of the Plux.NET composition framework

Option Purpose

/help Display a usage message.
/nologo Do not display the startup banner and copyright message.
/version Display version information only.
/verbosity:<level> Display this amount of information in the event log. The available

verbosity levels are: quiet, minimal, normal, detailed, and
diagnostic.

/discovery:<path> Files and directories for bootstrap discovery of contracts and plug-
ins. Default are all assemblies in the base directory of the
application.

/base:<paths> Directories which are registered in the ApplicationBase to discover
plugins and contracts from there. Default is the base directory of
the application.

/logfile:<path> The Logger writes the messages in the specified file.

Table 12. Command line options of the Plux.NET runtime core launcher

Page 94

5.2 Creating Host Extensions Using Slots

A Plux.NET slot is the mechanism to make a host customizable and extensible. In the design
of a Plux.NET application, a slot should be considered wherever one host component uses
one or many other contributor components. But not every usage relationship should be de-
signed with a slot. A slot is applicable, if one of the following two requirements holds: Firstly,
a slot is applicable if contributors should be user-configurable, i.e., different users may use
different contributors. Secondly, a slot is applicable if contributors should be dynamically
changed, i.e., at run time, a contributor should be added, removed, or replaced.

Let us assume that we want to write an application that performs some actions and logs them.
The application should use one or many loggers. For every action to be logged, the applica-
tion will pass a log message including a time stamp to the logger.

Depending on customization and extensibility requirements, the composition scenarios as
shown in Table 13 are conceivable. In scenario a, the application comprises one console log-
ger and is deployed for every user in the same configuration. In scenario b, the application
comprises two loggers which are used simultaneously. Again, the application deploys for
every user in the same configuration. In neither scenario, it is intended to customize the log-
gers per user, or to change the logger at run time. Thus a slot is not applicable, hard-wired
component usage is suitable.

In scenarios c to f, the logging should be flexible. We do not want to implement it hard-wired
as part of the application, but rather as an extension. Therefore, we use a logger slot. In
scenario c, each logger is packaged in a separate plug-in. The host application uses either one
contributor if the slot has single cardinality, or all contributors if the slot has multiple car-
dinality. The application can be customized by deploying a different set of logger plug-ins.
And the application can be extended through third party plug-ins.

Composition Usage scenario

a) Use a hard-wired
component...

...if your host component uses a single contributor, you deploy the same
configuration for all users, and the configuration does not change at run
time.
MyApp.dll

MyApp

Logger.dll

Console-
Logger

uses

b) Use multiple hard-
wired components...

...if your host component uses multiple contributors, you deploy the same
configuration for all users, and the configuration does not change at run
time.

MyApp.dll

MyApp

Logger.dll

Console-
Logger

uses
FileLogger

Page 95

c) Use a single/multi-
ple cardinality slot and
package each contribu-
tor in a separate plug-
in...

...if your host uses one/many contributors and contributors should be cus-
tomizable per user (see page 99 for single cardinality sample code, or page
102 for multiple cardinality sample code).

St .. Startup
Lo .. Logger

ConsoleLogger.dll

ConsoleLogger
Lo

MyApp
St Lo

FileLogger.dll

FileLogger
Lo

Lo { Multiple }

ConsoleLogger
Lo

FileLogger
Lo

d) Use a single/multi-
ple cardinality slot
with manual
registration...

...if your host uses one/many contributors which should be reconfigurable at
run time. For example, to change the logger below, you would deregister the
ConsoleLogger extension and register the FileLogger extension (see page
103 for sample code).

ConsoleLogger
Ac

"Screen"
ConsoleLogger

Lo
"Screen"

FileLogger
Lo

"File"

MyApp
St Lo

Lo { Single,
AutoRegister }

e) Use a multiple car-
dinality slot with man-
ual plugging...

...if your host uses one/many contributors and allows the user to choose
contributors while the application runs (see page 105 for sample code).

ConsoleLogger
Ac

"Screen"
ConsoleLogger

Lo
"Screen"

FileLogger
Lo

"File"

MyApp
St Lo

Lo { Multiple,
AutoPlug }

1

2

Logger
Screen
File

1

2
Single logger

2

Logger
Screen
File

1
Multiple loggers

e) Slot with manual plugging

UI example

f) Use a multiple car-
dinality slot with sin-
gle/multiple selection
...

...if your host uses many contributors and allows the user to switch between
multiple active contributors (see page 106 for sample code).

FileLogger
Lo

"File"

ConsoleLogger
Ac

"Screen"
ConsoleLogger

Lo
"Screen"

FileLogger
Lo

"File"

MyApp
St Lo

Lo { Multiple,
SingleSelection }

1

2

Logger
Screen
File

1

2
Single logger

2

Logger
Screen
File

1
Multiple loggers

f) Slot with selection

UI example

Table 13. Slot composition scenarios

In scenario d, the logger slot is configured for manual registration. The configuration can be
changed at run time by deregistering a logger and registering another logger to the slot. Typi-
cally, in this scenario the configuration change is not performed by the application itself, but
rather by an external configuration tool. The configuration tool uses the composer interface of

Page 96

the composition core to add or remove extensions. This scenario supports per-user configura-
tion as scenario c did, but the configuration change is performed differently. In scenario c we
add/remove a plug-in from/to a component repository. In scenario d we deploy all plug-ins to
the component repository, and use a composition tool to manually register the desired
extensions.

In scenarios e and f, the application allows the user to choose which contributor is used. In
scenario e, the logger slot is configured for manual plugging. The application presents a list of
the registered contributors to the user. For example, the application could retrieve a Name pa-
rameter from the contributor and create a menu item. When the user selects the menu item,
the application plugs the contributor. When the user selects the same item again, the applica-
tion unplugs the contributor.

While in scenario e contributors are unplugged and released, in scenario f, all contributors re-
main plugged and active. However, the host application uses only the selected contributor to
log messages. In single selection slots, only one contributor can be selected at a time. In mul-
tiple selection slots, multiple contributors can be selected.

The following sections show how to use a slot according to scenarios c to f.

5.2.1 Specifying a Slot Definition

As a first step to make the host application customizable, we need to specify a slot definition.
As we continue with the logger example, we define a slot for which logger extensions can
contribute. The ILogger interface is tagged with a SlotDefinition attribute specifying
"Logger" as the name of the slot. The logger slot has a parameter Name of type string, and a
parameter TimeFormat of type string, which have to be provided by contributing
extensions.

[SlotDefinition("Logger")]
[ParamDefinition("Name", typeof(string)]
[ParamDefinition("TimeFormat", typeof(string)]

public interface ILogger {
 void Print(string msg);
}

When designing a slot definition, a typical question is whether to use a parameter definition
(as above), or a property in the interface (see below). The parameter definition is applicable, if
the slot host retrieves the parameter when the contributor is registered. For example, when a
host presents a list of registered contributors to the user, lets the user choose, and loads the
chosen contributor lazily. The value of the parameter must be specified by the contributor at
build time, if the Plux.NET attributes are used. Alternatively, with a custom discoverer, the
parameter values could be provided at discovery time, by the discoverer.

The property in the interface is applicable, if the property value should be evaluated at run
time, or if an application creates multiple instances of the same extension type, and the in-
stances should provide different values.

Page 97

[SlotDefinition("Logger")]

public interface ILogger {
 string Name { get; }
 string TimeFormat { get; }
 void Print(string msg);
}

In our example, we use the parameter definitions. We can now save the source code above
into a file ILogger.cs and use the following statement to build the Plux.NET contract
MyApp.Contract.dll with the C#-Compiler.

csc /t:library /out:MyApp.Contract.dll /reference:Plux.dll ILogger.cs

Although the discovery core of Plux.NET supports assemblies which contain extensions as
well as slot definitions, we do not recommend this design. As a host extension uses a slot with
the intention to be extensible, the creator of the host typically publishes the slot definition to
third parties. We recommend to package slot definitions in a separate contract assembly and to
append a Contract suffix to the assembly file name. For example, in our logger application
the host plug-in is called MyApp.dll and the corresponding contract is called MyApp.Con-
tract.dll.

The contract assembly serves as the collaboration interface between host and contributor. The
creator of the host plug-in builds against the published contract assembly. The creator of the
contributor plug-in builds against the contract assembly of his host. A direct build-time depen-
dency between host and contributor plug-ins is not allowed. This design ensures that the run-
time core can load the host plug-in without requiring that a specific contributor plug-in must
be available, or load a contributor plug-in without requiring that a specific host plug-in must
be available. The host and contributor plug-ins are independently loadable from each other, if
the contract assembly is available, thus making host and contributor replaceable (see Fig. 25).
Since the creator of the host wants that third parties contribute extensions for the host, he will
not only publish the contract plug-in, but also the host plug-in, so that third parties can test
against the host.

ConsoleLogger.dll

ConsoleLogger
Lo

"hh:mm:ss"

MyApp.Contract.dll

Lo

Host creator references
published contract

MyApp.dll

MyApp
St Lo

Contributor creator
builds against contract

Build-time dependencies between
host and contributor are not allowed

Figure 25. Build-time dependencies between contract and plug-in

A contract assembly can contain multiple related slot definitions. It should not contain exten-
sions or other classes, for example, library classes. When a designer has to decide whether to
package two slot definitions SD1 and SD2 in the same or in separate contract assemblies, two
implications are relevant: Firstly, the slot definitions for a single host should not be distributed
over multiple contracts. For convenience, the creator of a contributor should have to reference

Page 98

only one contract when contributing to a single host. Secondly, as an exception to the first
rule, if the interface used in the slot definition contains other types than those from the .NET
base class library, the contract introduces an external build dependency. When the discovery
core analyzes a contract assembly, it needs to resolve all external dependencies. If a depen-
dency cannot be resolved, the contract fails to load. Thus, if two slot definitions SD1 and SD2

introduce different sets of external dependencies, they should be packaged separately.

5.2.2 Slot with a Single Contributor

The host application which uses the logger is itself an extension that plugs into the Startup
slot of runtime core. So we need a Plug attribute for the startup slot and the application class
needs to implement the interface IStartup. The Param attribute assigns false to the parame-
ter ExecuteInMainThread, because the Run method should be executed in a separate thread. In
the Run method, the host application performs some actions. As long as no logger extension is
plugged, the host application performs the actions, but does not log the output.

[Extension]
[Plug("Startup")]
[Param("ExecuteInMainThread", false)]
[Slot("Logger", OnPlugged="Logger_Plugged", OnUnplugged="Logger_Unplugged")]

public class MyApp : IStartup {
 ILogger logger = null;
 string timeFormat;
 public void Run() {
 string msg;
 while(true) {
 DoSomeAction(out msg);
 if(logger != null)
 logger.Print(DateTime.Now.ToString(timeFormat) + ": " + msg);
 Thread.Sleep(1500);
 }
 }
 public void Logger_Plugged(object s, PlugEventArgs args) {
 timeFormat = (string) args.GetParam("TimeFormat");
 logger = (ILogger) args.Object;
 }
 public void Logger_Unplugged(object s, PlugEventArgs args) {
 logger = null;
 }
 void DoSomeAction(out string msg) { msg = "Hello"; }
}

The Slot attribute specifies that our application opens a logger slot. We handle the Plugged
event in order to get notified when the composer plugs a logger extension. The event handler
Logger_Plugged stores a reference to the plugged extension in the field logger and it stores
the TimeFormat parameter in the field timeFormat. The Run method will use the plugged
logger after it has been plugged, and it will stop using it, after it has been unplugged.

We can now save the source code above into file MyApp.cs. The following statement uses the
C# compiler to build the host plug-in.

csc /t:library /out:MyApp.dll /reference:Plux.dll,MyApp.Contract.dll MyApp.cs

Page 99

Creating Contributor Extensions

To complete the example, we write an extension that fits into the logger slot. The extension
ConsoleLogger writes log message to the console window. The extension class ConsoleLog-­‐
ger is tagged with the Extension attribute and implements the ILogger interface. The Plug
attribute tags the class as matching the Logger slot. The Param attributes assign values to the
required parameters.

[Extension]
[Plug("Logger")]
[Param("Name", "Screen")]
[ParamValue("TimeFormat", "hh:mm:ss")]

public class ConsoleLogger : ILogger {
 public void Print(string msg) {
 Console.WriteLine(msg);
 }
}

We can now save the source code above into a file ConsoleLogger.cs. The following state-
ment uses the C# compiler to build the contributor plug-in.

csc /t:library /out:ConsoleLogger.dll /reference:Plux.dll,MyApp.Contract.dll
 ConsoleLogger.cs

The following command starts the application.
plux.exe /discovery:Logger.Contract.dll;MyApp.dll;ConsoleLogger.dll

The console logger produces the following output.
11:09:49: Hello
11:09:51: Hello
11:09:52: Hello
...

Fig. 26 shows the composed logger application.

Lo { Single, Shared }

ConsoleLogger
Ac

"hh:mm:ss"
MyApp

Lo
ConsoleLogger

LoSt

Core
Di

St
St .. Startup
Di .. Discovery
Lo .. Logger

Figure 26. "Logger" sample application with single contributor

Customizing the Application

Since the host application uses a slot for the logger, the host can be customized. For example,
by replacing the console logger with a file logger. We tag the FileLogger extension class
with the extension and plug attribute, and we provide the values for the parameters. However,
the file logger needs to open the log file when it is started, and close the log file when it is
stopped. Therefore we provide event handlers for the Created and Released events.

[Extension(OnCreated="Logger_Created", OnReleased="Logger_Released")]
[Plug("Logger")]
[ParamValue("TimeFormat", "hh:mm:ss")]

Page 100

public class FileLogger : ILogger {
 TextWriter stream = null;
 public void Logger_Created(object s, ExtensionEventArgs args) {
 stream = new StreamWriter("Logfile.txt");
 }
 public void Logger_Released(object s, ExtensionEventArgs args) {
 stream.Close();
 }
 public void Print(string msg) {
 stream.WriteLine(msg);
 stream.Flush();
 }
}

When we use composer events to initialize or clean up an extension, there are two candidates:
We can use the Created and Released events of the extension (as above). This is applicable
for contributors which are shared by multiple hosts. When the first host plugs the file logger,
the logger is initialized. When the last host unplugs the file logger, the logger cleans up.

Alternatively, we can use the Plugged and Unplugged events of the plug (see below). Now,
the behavior is different. Every time the logger is plugged, it creates a new log file. This is ap-
plicable for contributors of which hosts create unique instances, or when contributors need to
reinitialize, after they have been replugged from one slot to another. In shared scenarios, this
implementation is not applicable.

[Extension]
[Plug("Logger", OnPlugged="Logger_Plugged", OnUnplugged="Logger_Unplugged")]
[ParamValue("TimeFormat", "hh:mm:ss")]

public class FileLogger : ILogger {
 TextWriter stream = null;
 static int id = 0;
 public void Logger_Plugged(object s, PlugEventArgs args) {
 stream = new StreamWriter(String.Format("Logfile{0}.txt, ++id));
 }
 public void Logger_Unplugged(object s, PlugEventArgs args) {
 stream = null;
 }
 ...
}

For our example, we choose the variant with the Created and Released events. The following
command starts the customized application with the new file logger plug-in.

plux.exe /discovery:Logger.Contract.dll;MyApp.dll;FileLogger.dll

So far, we have used the bootstrap discoverer. We specified on the command line which plug-
ins we wanted to discover. Thus we had to restart the application every time we wanted to
change the logger. The following section shows a custom discoverer which allows us to re-
place the logger without restarting the application. Thereby, the implementation of the host
and the contributors remain unchanged.

Using a Custom Discoverer

The Plux.NET runtime core includes the bootstrap discoverer. If we want to discover plug-ins
which are added to the component repository while the application is running, we need a cus-
tom discoverer. That custom discoverer can dynamically add plug-ins. The discovery core is

Page 101

designed to integrate discoverer extensions (see page 79). Fig. 27 schematically shows how a
custom discoverer, the directory watcher, watches a component repository folder and how the
discoverer updates the type store upon changes: (a) After a file has been added to the folder,
the directory watcher sends an Add notification to the discovery core. (b) After a file has been
removed from the folder, the directory watcher sends a Remove notification to the discovery
core.

The discovery core adds the discovered types to the type store, or removes types from the
type store respectively. The composer observes the changes in the type store and recomposes
the application accordingly.

Repository

An { Multiple, Unique }

Assembly-
AnalyzerAn

Directory-
Watcher AnDi

Core
Di

St

St .. Startup
Di .. Discovery
An .. Analyzer

ConsoleLogger.dll

User adds plug-in
to repository (a)

watches
repository folders

User removes plug-in
from repository (b)

Send Add notification
to discovery core (a)

Send Remove notification
to discovery core (b)

FileLogger.dll

Figure 27. Dynamic custom discoverer extension "Directory Watcher"

Using the directory watcher, we can reconfigure the logger application without restarting it.
The following command starts the application with the directory watcher.

plux.exe /discovery:Logger.Contract.dll;MyApp.dll;FileLogger.dll;
 DirectoryWatcher.dll

Let us assume we started the application as above with the file logger. We can now delete the
FileLogger.dll from the application directory and thus remove it from the composition. If we
subsequently add the ConsoleLogger.dll to the application directory, we successfully reconfig-
ured the application without restarting it.

5.2.3 Slot with Multiple Contributors

Let us modify the logger example from the previous section for multiple simultaneous con-
tributors. For every action to be logged, the application will pass a log message to all plugged
contributors. Fig. 28 shows the modified host application which uses a console logger and a
file logger.

The single contributor example from the previous section handled the Plugged/Unplugged
events to maintain the reference to the contributor. We can modify this implementation and
use a List<ILogger> collection to keep multiple contributor references. But we can also use a
preferable technique, where we retrieve the plugged contributors from the composition model,
instead of managing our own collection of contributors.

Page 102

ConsoleLogger
Ac

"hh:mm:ss"
ConsoleLogger

Lo
St .. Startup
Di .. Discovery
Lo .. LoggerFileLogger

Ac
"hh:mm:ss"

FileLogger
Lo

MyApp
St

Core
Di

St Lo

Lo { Multple, Shared }

Figure 28. "Logger" sample application with multiple contributors

First, we set the multiple property of the slot attribute to true, thus directing the composer to
register and plug multiple contributors. We omit the Plugged and Unplugged event handlers
and access the composition model in the instance store instead. We obtain a reference to the
logger slot and iterate over all plugged plugs. For each plugged contributor we retrieve the
time format from the parameter and call the Print method.

...
[Slot("Logger", Multiple=true)]

public class MyApp : IStartup {
 public void Run() {
 string msg;
 while(true) {
 DoSomeAction(out msg);
 var slot = InstanceStore.GetSlot(this, "Logger");
 foreach(PlugInfo plug in slot.PluggedPlugs) {
 string timeFormat = (string) plug.Type.GetParam("TimeFormat");
 var logger = (ILogger) plug.Object;
 logger.Print(DateTime.Now.ToString(timeFormat) + ": " + msg);
 }
 Thread.Sleep(1500);
 }
 }
 void DoSomeAction(out string msg) { msg = "Hello"; }
}

The technique of reading plugged contributors from the instance store is applicable for single
and for multiple cardinality slots. Thus we could rewrite the single contributor example from
page 99 to use the technique shown here. This is even recommended, because using this im-
plementation technique, changing from single to multiple cardinality is a matter of modifying
the attribute.

The following command starts the application with both logger plug-ins.
plux.exe /discovery:Logger.Contract.dll;MyApp.dll;*Logger.dll

The example in this section showed how to implement a host application which uses a slot to
integrate multiple logger contributors. If each logger extension is packaged in a separate plug-
in, the application can be customized by adding, removing, or replacing logger plug-ins.

5.2.4 Manually Registering Contributors

In this section, we modify the logger example from the previous section to enable run-time re-
configuration using a composition tool. So far, we have used automatic registration, i.e., any

Page 103

logger extension which was discovered, was automatically registered in the logger slot. To
manually choose a logger, we set the slot to manual registration, and use a composition tool to
manually register the loggers we want to start using, and deregister those which we want to
stop using.

The modification in the host application is minimal. We disable automatic registration by set-
ting the AutoRegister property to false. The rest of the host implementation remains un-
changed. In our example, we configure the slot for single cardinality, but the example will
also work with multiple cardinality.

[Slot("Logger", Multiple=false, AutoRegister=false)]

Initially, after we have started the application, the host will not use any logger at all, because
no logger has been registered yet. A real-world application might provide a user-friendly com-
position tool to change the logger. For demonstration, we use the Plux.NET Console, a com-
mand interpreter extension included with the Plux.NET framework. The console allows the
user to interactively compose an application by typing in composer commands.

plux.exe /discovery:Logger.Contract.dll;MyApp.dll;*Logger.dll;Console.dll

In the console window we can enter commands to browse the type store, to browse the in-
stance store, or to control the composition core. For example, the get-plugtype command lists
all plug types for the Logger slot in the type store. The pipe operator (|) uses the plug type
objects as input for the next command. The next command retrieves the extension type for the
plug type by reading the corresponding property. The resulting extension type objects are
printed with their id, state, and name.

plux> get-­‐plugtype | where Name=="Logger" | ExtensionType
 Id State ExtensionType
 10 DISCOVERED ConsoleLogger
 11 DISCOVERED FileLogger
 2 item(s).

The register-­‐extension command uses the Register(ExtensionInfo, ExtensionTypeInfo)
method from the composer interface (see page 86) to register the console logger. The compos-
er then creates the logger and plugs it. The host application starts using the console logger.

plux> register-­‐extension -­‐Name ConsoleLogger

When we want to reconfigure the application, we use the deregister-­‐extension command
to remove the console logger, and the register-­‐extension command to add the file logger.

plux> deregister-­‐extension -­‐Name ConsoleLogger
plux> register-­‐extension -­‐Name FileLogger

Fig. 29 shows the resulting application with the file logger in use. The console logger is not
registered any more.

We have seen how to use a composition tool to reconfigure an application at run time. Regis-
tration makes a contributor known to a host, but a host does not know contributors which are
not registered. A composition tool, such as the Plux.NET Console, can browse the type store
for available contributors. A user chooses which contributor he wants to use with the compo-
sition and selectively registers those contributors. The following section will show how to
choose a contributor using the host application itself.

Page 104

ConsoleLogger
Lo

"hh:mm:ss"

St .. Startup
Di .. Discovery
Lo .. Logger

FileLogger
Ac

"hh:mm:ss"
FileLogger

Lo
MyApp

St

Core
Di

St Lo

Lo { Single, Shared,
AutoRegister }

Figure 29. "Logger" sample application with manually registered
contributor

5.2.5 Manually Plugging Contributors

In the previous scenario, the user used a composition tool to change the logger contributor. To
choose a contributor in this way, means to reconfigure the application for a new working con-
text. For example, a configuration for working context 1 might include the console logger,
while the configuration for working context 2 includes the file logger.

In contrast, the scenario in this section, makes both logger contributors part of the same
working context. The host extension provides UI, for example, a menu, which allows the user
to choose which logger contributor should be used. So the user can switch back and forth be-
tween logger contributors. If the host allows the user to choose a contributor, i.e. displays
which contributors are available and let the user pick the desired one, it configures the slot for
multiple contributors, and disables automatic plugging.

Let us modify the logger example from the previous section in such a way that the host appli-
cation allows the user to choose from available contributors. Fig. 30 shows the modified host
application with multiple loggers registered, and only the file logger plugged.

ConsoleLogger
Lo

"hh:mm:ss" St .. Startup
Di .. Discovery
Lo .. LoggerFileLogger

Ac
"hh:mm:ss"

FileLogger
Lo

MyApp
St

Core
Di

St Lo

Lo { Multiple, Shared,
AutoPlug }

Figure 30. "Logger" sample application with manually plugged contributor

First, we set the AutoPlug property of the slot attribute to false, thus directing the composi-
tion core that we want to manually plug contributors.

[Slot("Logger", Multiple=true, AutoPlug=false)]

Next, we modify the Run method to present a menu. When the user presses any key, the host
presents a menu which allows the user to choose a logger.

public void Run() {
 ...

Page 105

 while(true) {
 if(Console.KeyAvailable) ShowMenu();
 DoSomeAction(out msg);
 ...
 }
 }

The menu displays a list of all registered loggers. For each logger, it displays the logger name
retrieved from the parameter Name and a sequential number. Then the host waits for the user
to enter a logger number, before it plugs the chosen contributor using the composition core.

void ShowMenu() {
 var slot = InstanceStore.GetSlot(this, "Logger");
 foreach(int i=0; i < slot.RegisteredPlugs.Count; i++) {
 PlugTypeInfo type = slot.RegisteredPlugs[i];
 Console.WriteLine("{0}: {1}, i, (string) type.GetParam("Name"));
 }
 int sel = Int32.Parse(Console.ReadLine());
 Composer.CreateAndPlug(slot, slot.RegisteredPlugs[sel]);
}

The example in this section has shown how to implement a host application which uses a slot
to integrate multiple logger contributor extensions. The host application presents a menu with
all available contributors, and lets the user choose a logger. The implementation in this section
allows the user to plug multiple loggers, which are used simultaneously.

5.2.6 Manually Selecting Contributors

In this section, we modify the logger example from the previous section in such a way that the
host application switches between the console and the file logger. In contrast to the previous
section, the host application will send log messages not to all plugged contributors, but to the
selected contributors only.

We enable automatic plugging and configure the slot for single selection, thus directing the
composition core that we want all available loggers plugged, with one of them selected.

[Slot("Logger", Multiple=true, AutoPlug=true, SelectionMode=Single)]

We modify the menu so that it displays a list of all plugged loggers. The currently selected
logger is marked with an asterisk. Then we select the chosen contributor using the composi-
tion core.

void ShowMenu() {
 var slot = InstanceStore.GetSlot(this, "Logger");
 foreach(int i=0; i < slot.PluggedPlugs.Count; i++) {
 PlugInfo plug = slot.PluggedPlugs[i];
 Console.WriteLine("{0}{1}: {2}",
 InstanceStore.IsSelected(slot, plug) ? "*" : " ", i,
 (string) plug.Type.GetParam("Name"));
 }
 int sel = Int32.Parse(Console.ReadLine());
 Composer.Select(slot, slot.PluggedPlugs[sel]);
}

Page 106

To use only the selected contributor instead of all plugged contributors, we have to make one
modification in the Run method. Instead of the PluggedPlugs property, we use the Select-­‐
edPlugs property.

public void Run() {
 string msg;
 while(true) {
 DoSomeAction(out msg);
 var slot = InstanceStore.GetSlot(this, "Logger");
 foreach(PlugInfo plug in slot.SelectedPlugs) {
 string timeFormat = (string) plug.Type.GetParam("TimeFormat");
 var logger = (ILogger) plug.Object;
 logger.Print(DateTime.Now.ToString(timeFormat) + ": " + msg);
 }
 Thread.Sleep(1500);
 }
}

Fig. 30 shows the modified host application with multiple loggers plugged, and the file logger
selected.

ConsoleLogger
Lo

"hh:mm:ss" St .. Startup
Di .. Discovery
Lo .. LoggerFileLogger

Ac
"hh:mm:ss"

FileLogger
Lo

MyApp
St

Core
Di

St Lo

Lo { Multiple, Shared,
AutoPlug, SingleSelection }

ConsoleLogger
Lo

Figure 31. "Logger" sample application with manually selected contributor

If the slot is configured for single selection, we would not really need a for-loop for the select-
ed contributors. However, if we use the loop, the implementation can be easily modified for
multiple selected contributors, by changing the SelectionMode property of the slot to
Multiple.

5.3 Shared, Unique, and Singleton Contributors

Section 5.2 showed how a host extension specifies the cardinality of a slot so that the slot uses
either a single or multiple contributors. In contrast, sharing specifies whether a contributor
should be used exclusively by one host or shared among multiple hosts. Applied to the logger
example, that means multiple hosts can share one logger, or that each host uses a unique log-
ger. The Unique property configures sharing, if set to false, the slot shares contributors. If the
property is omitted, sharing is the default.

Whether a contributor is shared or unique is determined by the slot host. Another concept that
affects sharing, the singleton, is specified on the contributor side. If a logger is marked as sin-
gleton, it can be shared among slots, however it cannot be used by more than one unique
slots.

Page 107

5.3.1 Sharing Contributors

If hosts use the same slot definition, they can share a contributor. Let us extend the logger
example from the previous section so that we have multiple hosts. The slot definition, host ex-
tensions, and logger contributors are the same as in Section 5.2.2 (see page 99). The differ-
ence is that we now have two host extensions, and that both host extensions use a shared log-
ger slot as shown in Fig. 32.

Lo { Single, Shared }

ConsoleLogger
Lo

MyApp2
LoSt

Core
Di

St
St .. Startup
Di .. Discovery
Lo .. Logger

MyApp1
LoSt

Lo { Single, Shared }

Figure 32. "Logger" sample application with shared contributor

To share a contributor, we set the Unique property to false in both hosts. These settings will
direct the composition core to create a shared instance and plug it into both hosts.

[Extension]
[Slot("Logger", Unique=false)]
public class MyApp1 : IStartup { ... }

[Extension]
[Slot("Logger", Unique=false)]
public class MyApp2 : IStartup { ... }

Shared contributors are often combined with lazy loading. If the slots load their contributors
lazily, the contributor is not plugged when it is registered. The instantiation is deferred until
one of the hosts actually starts using the contributor. The implementations of the host applica-
tion throughout Section 5.2 did not load lazily, because the logger was used in the Run
method and thus was required immediately anyway. However, if the logging occurs in re-
sponse to, for example, user interaction, loading the contributor lazily can speed up the appli-
cation start.

We configure the slot for lazy loading by setting the LazyLoad property to true. Let us as-
sume that we want to log a message when the user selects a menu item. In the handler for the
Clicked event, we retrieve the registered contributors from the instance store. Then we use the
Creator interface of the composition core to retrieve the shared instance of the contributor. If
we pass true as second argument to GetSharedExtension, the composition core creates the
shared instance on demand.

[Slot("Logger", Unique=false, LazyLoad=true)]

void MenuItem_Clicked(object s, EventArgs args) {
 var slot = InstanceStore.GetSlot(this, "Logger");
 foreach(PlugTypeInfo p in slot.RegisteredPlugs) {
 ExtensionInfo e = Creator.GetSharedExtension(p.ExtensionType, true);
 string timeFormat = (string) p.GetParam("TimeFormat");
 var logger = (ILogger) e.Object;

Page 108

 logger.Print(DateTime.Now.ToString(timeFormat) + ": " + msg);
 }
 ...
}

When the composition core creates a shared instance, it automatically plugs that contributor
into all slots which are configured for sharing and where the contributor is registered. In the
example above, both hosts use a shared slot, thus the composition core plugs the logger into
both hosts.

5.3.2 Unique Contributors

The alternate concept to contributor sharing are unique contributors. Even though multiple
hosts use the same slot definition, they can require unique contributors instead of sharing a
contributor. Fig. 33 shows two application hosts using unique instances of a contributor.

Lo { Single, Unique }

ConsoleLogger
Lo

MyApp2
LoSt

Core
Di

St
St .. Startup
Di .. Discovery
Lo .. Logger

MyApp1
LoSt

Lo { Single, Unique }

Lo
ConsoleLogger

Figure 33. "Logger" sample application with unique contributors

To direct the composition core to create unique instances for both hosts, we set the Unique
property to true in both hosts.

[Extension]
[Slot("Logger", Unique=true)]
public class MyApp1 : IStartup { ... }

[Extension]
[Slot("Logger", Unique=true)]
public class MyApp2 : IStartup { ... }

Like shared slots, unique slots can be combined with lazy loading. However, the implementa-
tion for loading unique contributors lazily is different than with a shared contributor, because
each slot host has to create its own unique contributor. Applied to the scenario where a user
clicks a menu item, the host calls the CreateAndPlugAllRegistered method from the Com-­‐
poser interface to plug all contributors.

[Slot("Logger", Unique=true, LazyLoad=true)]

void MenuItem_Clicked(object s, EventArgs args) {
 var slot = InstanceStore.GetSlot(this, "Logger");
 Composer.CreateAndPlugAllRegistered(slot);
 foreach(PlugInfo p in slot.PluggedPlugs) {
 string timeFormat = (string) p.Type.GetParam("TimeFormat");
 var logger = (ILogger) p.Object;
 logger.Print(DateTime.Now.ToString(timeFormat) + ": " + msg);
 }
}

Page 109

This technique can also be applied for shared slots as an equivalent alternative to the imple-
mentation shown in Section 5.3.1 (see page 108). The technique can be applied for single as
well as for multiple cardinality slots.

5.3.3 Singleton Contributors

In slots which are configured for unique contributors, the composition core expects contribu-
tors to be capable of providing multiple extension instances. Extensions might be implement-
ed in a way that multiple instances are impeded, for example, if a contributor uses limited sys-
tem resources. For example, our file logger implementation from Section 5.2.2 (see page 99)
uses a single log file. This will cause problems if multiple hosts create unique instances of this
contributor, because all instances would write to the same file.

To direct the composition core that it should not create multiple instances, we set the Single-­‐
ton property to true.

[Extension(Singleton=true, OnCreated="Logger_Created", ...)]
[Plug("Logger")]
[ParamValue("TimeFormat", "hh:mm:ss")]

public class FileLogger : ILogger {
 public void Logger_Created(object s, ExtensionEventArgs args) {
 stream = new StreamWriter("Logfile.txt");
 }
 ...
}

Fig. 34 shows the composition result for the contributor above with the two host application
from Section 5.3.1 (see page 108).

FileLogger
Lo

Lo { Single, Shared }

FileLogger
Lo

MyApp2
LoSt

Core
Di

St
St .. Startup
Di .. Discovery
Lo .. Logger

MyApp1
LoSt

Lo { Single, Shared }

FileLogger { Singleton }

Figure 34. "Logger" sample application with shared singleton contributor

In shared slots, singleton contributors do not cause problems. However, if two hosts in an ap-
plication use two unique slots, or already if one of the two slots is unique, the composition
core cannot fill both slots. The composition core plugs the singleton in the first slot which
opens, and will issue a warning message on all subsequent slots (see Fig. 35).

Page 110

FileLogger
Lo

Lo { Single, Unique }

FileLogger
Lo

MyApp2
LoSt

Core
Di

St
St .. Startup
Di .. Discovery
Lo .. Logger

MyApp1
LoSt

Lo { Single, Unique }

FileLogger { Singleton }

FileLogger
Lo

Figure 35. "Logger" sample application with unqiue singleton contributor

5.4 Best Practices for Dynamic User Interface Design

The benefit of a slot-based design is that applications can be customized. For rich client appli-
cations, this implies that the user interface (UI) must adapt when the configuration changes.
Moreover, if the application can be reconfigured while it is running, the UI must change dy-
namically. In this section we show best practices for user interface design which consider that
the UI will be adaptable at run time.

The examples in this section are based on the Windows Forms library, because Forms has
been the standard UI library in .NET until version 3.0 (Sells and Weinhardt 2006). However,
the underlying concepts discussed in this section can also be transferred to the Windows Pre-
sentation Framework introduced with Microsoft .NET 3.0 or to any other UI library for that
matter.

In the following, we show four best practices: (i) The Action slot shows how to make adapt-
able widgets for commands, such as menus, toolbars, or buttons. (ii) The View slot shows how
to build an adaptable multiple document interface (MDI) application. (iii) The Control slot
shows how to build an adaptable composite user control using dynamic arrangement. (iv) The
DataSource slot shows how to share a common data source among controls, for example, in a
composite user control.

5.4.1 The Action Slot

The intent of the Action slot is to encapsulate a request as a contributor extension, so that a
host can issue the request without knowing anything about the operation being requested or
the contributor receiving the request. For example, user interface widgets like buttons or
menus can use actions to carry out a request in response to user input.

The slot definition for the Action slot declares an interface for executing actions. The inter-
face includes an Execute method, which is called by the host to issue the request. The IsEn-­‐
abled method is called by the host before it displays a widget for a contributor. The response
of the contributor is used to enable or disable the widget. Before a host can call the IsEn-­‐
abled method, the contributor must be plugged. Since this counteracts lazy loading, the
mechanism can be disabled for menu items that want to be always enabled. For action con-
tributors which set the LazyLoad parameter on the action plug to true, the host will not call

Page 111

IsEnabled, and will always enable the menu item instead. The Text parameter serves as a
caption for the widget.

[SlotDefinition("Plux.Action")]
[ParamDefinition("Text", typeof(string))]
[ParamDefinition("LazyLoad", typeof(bool), true)]

public interface IAction {
 void Execute(object sender, ActionEventArgs args);
 bool IsEnabled(object sender, ActionEventArgs args);
}

public class ActionEventArgs {
 public Plug { get; internal set; }
 public Slot { get; internal set; }
}

Applying the Action Slot

For example, the menu is a well suited widget for action extensions. The menu host opens a
slot for multiple action contributors. Each item in the menu corresponds to a registered action
plug (see Fig. 36a). The menu host creates a menu item when a contributor is registered. It
loads the contributor lazily when the user selects a menu item (see Fig. 36b). After the con-
tributor is plugged, the host issues the request by calling the Execute method of the
contributor.

Menu
Ac

Ac { Multiple,
Shared, LazyLoad }

a) The menu host creates a menu item
for each registered contributor.

Menu
Ac

Ac { Multiple,
Shared, LazyLoad }

b) The menu host plugs the contributor
when the menu item is selected.

File
Open...
Save...
Exit

1

2

3

OpenAction
Ac

1

SaveAction
Ac

2

ExitAction
Ac

3

ExitAction
Ac

SaveAction
Ac

OpenAction
Ac

1

2

3

File
Open...
Save...
Exit

1

2

3

Ac .. Action

Figure 36. Best practice for the Action slot

After the contributor has executed the request, the host can unplug and release the contributor,
because it is no longer needed. That keeps the application small. When a contributor is dereg-
istered, the host removes the corresponding menu item.

The Action slot uses shared contributors, because it is intended that other hosts share the same
contributors. For example, in rich client applications it is common, that a tool strip or a short-
cut bar displays a subset of the items from the menu strip. In such an effort, a tool strip could
open the same Action slot and register a subset of the action contributors.

The Action slot makes the menu extensible and customizable. The menu can be extended by
providing a contributor for the Action slot. And the menu can be dynamically changed by reg-

Page 112

istering the action contributors which are wanted, and by deregistering those which are not
wanted.

Adjusting the Action Slot

The Action slot can be adjusted for different application scenarios:

■ Set AutoRelease=false for the slot to avoid releasing of contributors after the request
has been executed. This is applicable if the host wants to keep contributors alive, be-
cause the initialization of contributors takes a significant amount of time.

■ Set AutoRelease=false for a contributor plug to avoid releasing of this contributor af-
ter its request has been executed. The reasoning is the same as above, however in this
scenario, it is the initialization effort in that particular contributor which is non-negli-
gible. Thus that particular contributor should not be released, while any other contrib-
utor should.

■ Set Unique=true for the slot to prevent other hosts from sharing contributor instances
with this slot. This can be useful if the contributors are stateful, and the state of the ac-
tion contributor should not be shared among hosts.

Sample Code for the Host Extension

The Menu class below uses the Action slot. We configure the slot for multiple contributors,
sharing and lazy loading. The menu class handles the Registered/Deregistered events and the
Plugged event.

[Slot("Plux.Action", Unique=false, Multiple=true, LazyLoad=true,
 OnRegistered="Action_Registered", OnDeregistered="Action_Deregistered",
 OnPlugged="Action_Plugged")]

public class Menu : IControl {
 Control menu = new MenuStrip();
 ToolStripMenuItem fileMenu = new ToolStripMenuItem("File");
 public Menu() {
 fileMenu.DropDownOpened += DropDown_Opened;
 menu.Items.Add(fileMenu);
 }
 public void Action_Registered(object s, RegisterEventArgs args) { ... }
 public void Action_Deregistered(object s, RegisterEventArgs args) { ... }
 void DropDown_Opened(object s, EventArgs e) { ... }
 void MenuItem_Clicked(object s, EventArgs args) { ... }
 public void Action_Plugged(object s, PlugEventArgs args) { ... }
}

In Windows Form, all controls allow to store a reference to associated data in the Tag proper-
ty. We use this property to store the plug type, when a contributor is registered, because we
need the plug type when the user selects the menu item. The value of the Text parameter
serves as a caption for the menu item. The Controls collection indexes items by their Name
property. The ToString property returns a unique string representation for the plug type. We
use that string as name for the menu item, because when the contributor will be deregistered,
we use the same string to remove the menu item from the Controls collection. Finally, we
register an event handler for the Click event, before we add the item to the menu.

Page 113

public void Action_Registered(object s, RegisterEventArgs args) {
 var item = new ToolStripMenuItem {
 Tag = args.PlugType,
 Text = (string) args.GetParam("Text"),
 Name = args.PlugType.ToString() }
 item.Click += MenuItem_Clicked;
 menu.Controls.Add(item);
}

public void Action_Deregistered(object s, RegisterEventArgs args) {
 menu.Controls.RemoveByKey(args.PlugType.ToString());
}

When the user opens the file menu, the menu object receives the DropDownOpened notifica-
tion. At this notification, the items in the submenu must be enabled or disabled. The first para-
meter contains the selected sub menu. For each menu item, we check the LazyLoad parame-
ter. True means that menu item should be always enabled. Otherwise, we check if the
contributor is already plugged. If not, we use the Creator to create a shared extension if nec-
essary and call the IsEnabled method of the contributor to determine whether the menu item
should be enabled.

void DropDown_Opened(object s, EventArgs args) {
 var subMenu = (ToolStripMenuItem) sender;
 var slot = InstanceStore.GetSlot(this, "Plux.Action");
 foreach(ToolStripItem i in subMenu.DropDownItems) {
 var plugType = (PlugTypeInfo) i.Tag;
 if((bool) plugType.GetParam("LazyLoad"))
 i.Enabled = true;
 else {
 Extension e = Creator.GetSharedExtension(plugType.Extension, true);
 var action = (IAction) e.Object;
 i.Enabled = action.IsEnabled(this,
 new ActionEventArgs { Slot = slot; Plug = e.Plugs[slot.Name]; });
 }
 }
}

When the user selects a menu item, the menu object receives a Click notification. The first pa-
rameter contains the selected menu item. We retrieve the plug type from the Tag property and
plug the contributor using the composition core.

public void MenuItem_Clicked(object sender, EventArgs args) {
 var item = (ToolStripMenuItem) sender;
 var slot = InstanceStore.GetSlot(this, "Plux.Action");
 Composer.CreateAndPlug(slot, (PlugTypeInfo) item.Tag);
}

When the composition core sends the Plugged notification, the menu object retrieves the
.NET object from the action contributor and calls the Execute method. As an argument, we
pass the Action slot and the contributor plug. Library actions from the Plux.NET framework
must work in any application, and therefore often make use of the meta objects (an example
follows in the next section). Finally the command request is completed and we can unplug the
contributor using the composition core.

public void Action_Plugged(object sender, PlugEventArgs args) {
 var action = (IAction) args.Object;
 action.Execute(this, new ActionEventArgs() {

Page 114

 Slot = args.Slot, Plug = args.Plug });
 Composer.Unplug(args.Slot, args.Plug);
}

Sample Code for the Contributor Extension

The ExitAction class is an extension and provides a plug for the Action slot. The Param
attribute specifies "Exit" as text for the menu item. The Execute method calls a library action
from the Plux.NET framework. This action exits the application by unplugging the startup ex-
tension of an application from the startup slot of the core extension. The exit action from the
framework works in any Plux.NET application, because it uses the meta objects to find the
right startup extension. Thereby it searches a path in the meta objects, from the action contrib-
utor plug up to the startup slot, and unplugs the startup extension into which the action is tran-
sitively plugged. This is the reason why the Action slot includes the ActionEventArgs object
with slot and plug as parameter in the Execute method.

[Extension]
[Plug("Plux.Action")]
[Param("Text", "Exit")]

public class ExitAction : IAction {
 public void Execute(object sender, ActionEventArgs args) {
 Plux.Framework.ExitAction.Execute(sender, args);
 }
}

5.4.2 The View Slot

The intent of the View slot is to build an adaptable multiple document interface (MDI), so that
a host integrates multiple child windows which reside under a single parent window. The host
arranges the windows and manages their life-time, while the child windows are responsible
for the window content. The View slot makes the MDI host customizable and extensible by
turning the child windows into contributors.

The slot definition for the View slot specifies how the view host intends to integrate a view
contributor. The interface includes a Control property, which is called by the host to get a
Windows Forms-compliant control for the contributor. The host creates a child window and
fills the client area of the window with the provided control. The host retrieves the Name prop-
erty and uses it as a window caption. The slot definition also specifies a parameter called
Name. The parameter is used by other host extensions, for example, by a menu if the view
contributor is loaded lazily. The menu host needs to retrieve a caption for the menu item from
the parameter when the contributor is registered. The Name property of the .NET object could
not be accessed yet, because the contributor has not been instantiated.

[SlotDefinition("Plux.View")]
[ParamDefinition("Name", typeof(string))]
public interface IView {
 string Name { get; }
 Control Control { get; }
}

Page 115

Applying the View Slot

Main windows of rich client applications can be implemented with view extensions. The main
window host opens a slot for multiple view contributors. The view host ignores registration
events. Instead, it creates a child window when a contributor is plugged and fills the window
client area with the control supplied by the contributor (see Fig. 37). When a contributor is
unplugged, the view host closes the associated child window. When a contributor is selected,
the view host puts the input focus on the contributor. Other extensions, such as a menu, can
use the selection to move the input focus between child windows.

Window
Vi

Vi { Multiple,
Unique, AutoPlug,
SingleSelection }

EditorView
Vi

1

FindView
Vi

2

NavigationView
Vi

3

Window

NavigationView

Editor View 1

3

View Window
Vi .. View

Unplug
on Click

Figure 37. Best practice for the View slot

The window which hosts the view slot is typically combined with a menu. Menu items open
or close a view, or move the input focus between views. Let us assume that the view host has
a View and a Window menu as shown in Fig. 38. Although the two menus are independent and
serve different purposes, they are coordinated through the view slot: The view menu can open
or close a child window. For this purpose, it creates a menu item for each registered view con-
tributor, and removes the menu item when a contributor is deregistered. To indicate which
view is open, it checks menu items of plugged contributors. When the user selects an
unchecked menu item, the menu creates and plugs the contributor. If a menu item was
checked, i.e. the contributor was already plugged, the menu unplugs the contributor. The view
host reacts to composer events accordingly. It opens a child window when a contributor is
plugged, and closes a child window when a contributor is unplugged.

The window menu can move the input focus between child windows. For this purpose, it cre-
ates a menu item for each plugged contributor, and removes the menu item when a contributor
is unplugged. To indicate which view currently has the focus, it checks the menu item of the
selected contributor. When the user clicked a menu item, the menu selects the contributor. The
view host reacts to the composer events accordingly and moves the input focus to the child
window which corresponds to the contributor.

The View slot makes the main window extensible and customizable. The window can be ex-
tended by providing a contributor for the View slot. The main window and the associated
menus can be customized by registering the view contributors which are wanted, and by
deregistering those which are not wanted.

Page 116

View
Editor
Find

1

2

3Navigation

Window

Navigation 3

Editor 1

Close
Close All

Plugged
in View Slot Registered

in View Slot

Plugged
in View Slot

Selected
in View Slot

Registered
in Action Slot

Figure 38. Dynamic menus for the View slot

Sample Code for the Host Extension

The MainWindow class below uses a View slot. We configure the slot for multiple unique con-
tributors. Contributors for the view slot must be unique, because a view provides a control
which is connected to an operating system widget. In Windows Forms, as in many other UI li-
braries, a widget cannot be part of multiple windows. This impedes sharing of extensions
which provide a UI widget.

The main window creates a view contributor only when the user selects a menu item. For this
reason, the host disables automatic plugging when contributors are registered. The main win-
dow class handles the Plugged, Unplugged, Selected, and Deselected events. The selection
mode is single, because only one child window can have the input focus at a time. For the
menu, the main window also handles the Registered and the Deregistered events.

[Slot("Plux.View",
 Unique=true, Multiple=true, AutoPlug=false, SelectionMode=Single,
 OnRegistered="View_Registered", OnDeregistered="View_Deregistered",
 OnPlugged="View_Plugged", OnUnplugged="View_Unplugged",
 OnSelected="View_Selected", OnDeselected="View_Deselected")]

public class MainWindow : IStartup {
 Form wnd = new Form();
 public void Run() { /* intentionally left blank */ }
 public void View_Registered(object sender, RegisterEventArgs args) { ... }
 public void View_Deregistered(object sender, RegisterEventArgs args) { ... }
 public void View_Plugged(object sender, PlugEventArgs args) { ... }
 public void View_Unplugged(object sender, PlugEventArgs args) { ... }
 public void View_Selected(object sender, SelectEventArgs args) { ... }
 public void View_Deselected(object sender, SelectEventArgs args) { ... }
 ...
}

When a contributor is plugged, we create a child window and store the plug in its Tag proper-
ty, because we need the plug when the user closes the window (in Windows Forms a window
is called Form). We retrieve the Control property from the view contributor and put the con-
trol on the client area of the child window. The Name property serves as a window title. Final-
ly, we register event handlers for the Activated and Closed events of the child window, before
we add the child window to the MDI children collection of the main window.

Page 117

public void View_Plugged(object sender, PlugEventArgs args) {
 var view = (IView) args.Object;
 view.Control.Dock = DockStyle.Fill;
 var child = new Form() {
 Tag = args.PlugInfo,
 Text = (string) view.Name,
 MdiParent = wnd }
 child.Controls.Add(view.Control);
 child.Activated += Form_Activated;
 child.Closed += Form_Closed;
 child.Show();
 Form_Activated(child, null);
}

If the user closes a child window by clicking the widget in the window frame, the main win-
dow must react by unplugging the corresponding contributor: In the Form_Closed method we
retrieve the plug from the Tag property of the closed window, and unplug the contributor us-
ing the composition core. However, the Closed notification also comes, when the child win-
dow is closed, because the slot was closed and the contributor was unplugged. We recognize
this by checking the IsReleased property and do not unplug the contributor again, because
this would cause a warning message from the composition core.

public void Form_Closed(object sender, EventArgs args) {
 var child = (Form) sender;
 var plug = (PlugInfo) child.Tag;
 if(plug.Extension.IsReleased) return;
 var slot = InstanceStore.GetSlot(this, "Plux.View");
 Composer.Unplug(slot, plug);
}

Let us assume that the user uses an action, for example a menu item, to close the window, in-
stead of clicking the icon in the window frame. Then the process is reversed, i.e. the contribu-
tor is unplugged and the main window reacts by closing the form.

public void View_Unplugged(object sender, PlugEventArgs args) {
 foreach(Form child in wnd.MdiChildren)
 if(child.Tag == args.Plug) {
 child.Close();
 return;
 }
}

When child windows are opened and closed, the main window must keep the selected contrib-
utor and the input focus in sync. When the user has selected, for example, a menu item, to
move the input focus to a child window, the menu item selects the corresponding contributor.
The main window reacts to the Selected notification and sets the focus to the corresponding
child window.

public void View_Selected(object sender, SelectEventArgs args) {
 foreach(Form child in wnd.MdiChildren)
 if(child.Tag == args.Plug) {
 child.BringToFront();
 return;
 }
}

Page 118

The other way around, the user can move the input focus by clicking inside a child window.
To handle that, the main window registered an event handler for the Activated event of the
child form. After a child has been activated, the main window retrieves the plug from the Tag
property of the child window, and selects the plug using the composition core.

public void Form_Activated(object sender, EventArgs args) {
 var child = (Form) sender;
 var slot = InstanceStore.GetSlot(this, "Plux.View");
 Composer.Select(slot, (PlugInfo) child.Tag);
}

Sample Code for the Contributor Extension

The EditorView class is an extension and provides a plug for the View slot. The Param
attribute specifies "Editor" as a caption for a menu item, for example, in the view menu. To
keep the example simple, we use a simplified implementation instead of a real editor here.
The Control property returns a label with centered text. The Name property provides a docu-
ment title to be displayed in the child window title.

[Extension]
[Plug("Plux.View")]
[Param("Name", "Editor")]

public class EditorView : IView {
 private readonly Label label = new Label();
 public EditorView() { label.Text = "Editor",
 label.TextAlign = ContentAlignment.MiddleCenter }
 public string Name { get { return "Document Title"; } }
 public Control Control { get { return label; } }
}

Sample Code for the View Menu

The main window handles the Registered and Deregistered events on the View slot to create
and remove menu items. Thereby it uses the implementation as shown for the Action slot (see
page 114).

ToolStripMenuItem viewMenu = new ToolStripMenuItem("View");
public void View_Registered(object s, RegisterEventArgs args) {
 var item = new ToolStripMenuItem {
 Tag = args.PlugType,
 Text = (string) args.GetParam("Text"),
 Name = args.PlugType.ToString() }
 item.Click += ViewMenuItem_Clicked;
 viewMenu.DropDownItems.Add(item);
}
public void View_Deregistered(object s, RegisterEventArgs args) {
 viewMenu.DropDownItems.RemoveByKey(args.PlugType.ToString());
}

When the user selects a menu item, the menu item sends the Click notification. We use the
composition core to create and plug the registered contributor. As we have seen above, the
main window handles the Plugged event where it displays a child window for the contributor.

Page 119

public void ViewMenuItem_Clicked(object sender, EventArgs args) {
 var item = (ToolStripMenuItem) sender;
 var slot = InstanceStore.GetSlot(this, "Plux.View");
 Composer.CreateAndPlug(slot, (PlugTypeInfo) item.Tag);
}

The view menu should check menu items of plugged contributors. For that reason, we add
code to the Plugged and Unplugged event handler methods from above. When a contributor is
plugged, we check the menu item associated with the contributor. When a contributor is un-
plugged, we uncheck the menu item.

public void View_Plugged(object s, PlugEventArgs args) {
 ...
 viewMenu.DropDownItems[args.Plug.Type.ToString()].Checked = true;
}
public void View_Unplugged(object s, PlugEventArgs args) {
 ...
 viewMenu.DropDownItems[args.Plug.Type.ToString()].Checked = false;
}

Sample Code for the Window Menu

The Window menu is handled differently than the View menu. The purpose of the View menu
is to create and plug contributors, whereas the purpose of the Window menu is to select a
plugged contributor. To implement this behavior, we create a menu item, when the contributor
is plugged, and remove it when the contributor is unplugged. Accordingly, we store a refer-
ence to the plug in the Tag property of the menu item, because we want to select the plug
when the menu item is clicked.

ToolStripMenuItem windowMenu = new ToolStripMenuItem("Window");
public void View_Plugged(object s, RegisterEventArgs args) {
 ...
 var view = (IView) args.Object;
 var item = new ToolStripMenuItem {
 Tag = args.Plug,
 Text = view.Name,
 Name = args.Plug.ToString() }
 item.Click += WindowMenuItem_Clicked;
 windowMenu.DropDownItems.Add(item);
}
public void View_Unplugged(object s, RegisterEventArgs args) {
 ...
 viewMenu.DropDownItems.RemoveByKey(args.Plug.ToString());
}

When the user selects a menu item, we use the composition core to select the plug of the con-
tributor. As we have seen above, the main window handles the Selected notification and
brings the the child window of the selected contributor to the front.

Page 120

public void WindowMenuItem_Clicked(object sender, EventArgs args) {
 var item = (ToolStripMenuItem) sender;
 var slot = InstanceStore.GetSlot(this, "Plux.View");
 Composer.Select(slot, (PlugInfo) item.Tag);
}

The window menu should check the menu item of the selected contributor. For that reason,
we add code to the Selected event handler method from above, and add an event handler
method for the Deselected event. When a contributor is selected, we check the menu item as-
sociated with the contributor. When a contributor is deselected, we uncheck the menu item.

public void View_Selected(object s, SelectEventArgs args) {
 ...
 windowMenu.DropDownItems[args.Plug.ToString()].Checked = true;
}

public void View_Deselected(object s, SelectEventArgs args) {
 windowMenu.DropDownItems[args.Plug.ToString()].Checked = false;
}

Actions in the Window Menu

The Window menu combines the View slot with the Action slot. It shows plugged view con-
tributors, and additionally it handles the Action slot (see page 111). Using action contributors,
the menu supports custom actions, for example, the Close and the Close All menu items
below.

To integrate the action contributors, the main window host opens an Action slot and handles
the Registered and Deregistered event (not shown). When an action contributor is registered,
the main window retrieves the value of the Text parameter. It splits the string value at the ~
(tilde) character. The first part specifies in which sub menu the menu item belongs, the second
part specifies the caption for the menu item.

The Close menu item in the window menu closes the focused child window. For the View
slot, that means to unplug the selected contributor from the view slot. The IsEnabled proper-
ty makes sure that the menu item cannot be clicked if no child window is open.

[Extension]
[Plug("Plux.Action")]
[Param("Text", "Window~Close")]

public class WindowCloseAction : IAction {
 public void Execute(object sender, ActionEventArgs args) {
 var viewHost = args.Plugs.PluggedInSlots["Plux.Action"];
 var viewSlot = viewHost.Slots["Plux.View"];
 Composer.Unplug(slot, slot.SelectedPlugs[0]);
 }
 public bool IsEnabled(object sender, ActionEventArgs args) {
 var viewHost = args.Plugs.PluggedInSlots["Plux.Action"];
 var viewSlot = viewHost.Slots["Plux.View"];
 return slot.SelectedPlugs.Count > 0;
 }
}

The Close All menu item in the window menu closes all open child windows. For the View
slot that means to unplug all plugged contributors using the composition core.

Page 121

[Extension]
[Plug("Plux.Action")]
[Param("Text", "Window~Close all")]

public class WindowCloseAllAction : IAction {
 public void Execute(object sender, ActionEventArgs args) {
 var slot = args.Plug.Extension.Slots["Plux.View"];
 Composer.UnplugAll(slot);
 }
 ...
}

5.4.3 The Control Slot

The intent of the Control slot is to encapsulate controls as contributors, so that a host can dy-
namically build a composite control. The host arranges the controls, while the child controls
are responsible for the content. The Control slot makes the composite control customizable
and extensible by turning the child control into a contributor.

The slot definition for the Control slot specifies how the slot host intends to integrate a con-
trol contributor. The interface includes a Control property, which is called by the host to get
a Windows Forms-compliant control for the contributor. The host will arrange the control
content on its client area. If the host arranges a single contributor, it will simply fill its client
area with the contributor. If the host arranges multiple contributors, it will retrieve the Posi-­‐
tion parameter and arrange the contributors in the specified order. Simple host implementa-
tions could arrange the contributors either stacked or side-by-side. More sophisticated host
implementations could use further parameters to arrange the contributors with more
variations.

[SlotDefinition("Plux.Control")]
[ParamDefinition("Position", typeof(double)]

public interface IControl {
 Control Control { get; }
}

Applying the Control Slot

For example, view windows in rich client applications can be implemented with composite
controls. The view host opens a slot for multiple control contributors. The view host ignores
registration events. Instead, it puts the child controls of plugged contributors on its client area.
The available client area space is divided among the contributors (see Fig. 39). When a con-
tributor is plugged, the view host retrieves its position parameter, puts the child control of the
contributor on the client area, and rearranges the other child controls according to the speci-
fied order. When a contributor is unplugged, the view host removes the child control of the
contributor from the client area, and rearranges the other child controls in the specified order
to fill the free space.

The Control slot makes the view extensible and customizable. The view can be extended by
providing a contributor for the Control slot. Providers specify their desired position with a
floating point number. The host will arrange the contributors accordingly. In the example
from Fig. 39, a contributor could specify Position=0.6 and would be arranged between the

Page 122

structure tree and the find text box. The view can be customized by registering the child con-
trols which are wanted, and by deregistering those which are not wanted.

1

Vi
2

3

ShowCombobox

Co { Multiple, Unique }

StructureTreeCtrl
Co

NavigationView

Co

Co

FindTextbox
Co

Position = 0.5

Position = 0.8

Position = 0.3

NavigationView

WindowCloseAction

void Execute(obje...
bool IsEnabled()

C

M
M

Find:

2

Show: Classes & Me... 1

3

2

1

3

Co .. Control
Vi .. View

Figure 39. Best practice for the Control slot

Sample Code for the Host Extension

The NavigationView class is a contributor for the View slot. It implements interface IView
and returns a flow layout panel from the Control property. In the constructor, we set the ori-
entation for the flow layout panel as top-down. The flow layout panel will stack the controls
from top to bottom in the order we add them.

The navigation view class uses the Control slot. We configure the slot for multiple unique
contributors. The navigation view class handles the Plugged and Unplugged events.

[Extension]
[Plug("Plux.View")]
[Param("Name", "Navigation")]
[Slot("Plux.Control", Unique=true, Multiple=true,
 OnPlugged="Control_Plugged", OnUnplugged="Control_Unplugged")]

public class NavigationView : IView {
 FlowLayoutPanel panel;
 public NavigationView() {
 panel = new FlowLayoutPanel { FlowDirection = FlowDirection.TopDown; }
 }
 public Control Control { get { return panel; } }
 public void Control_Plugged(object s, PlugEventArgs args) { ... }
 public void Control_Unplugged(object s, PlugEventArgs args) { ... }
}

When a contributor is plugged we simply rearrange all controls. First, we add all plugged con-
tributors to a SortedList using the retrieved Position parameter as a key. The list now con-
tains the contributors in the correct display order. Then we iterate over the sorted list and add
the controls to the flow layout panel. Since we use the unique ToString value as the key
when we insert the control, we can remove the control using the same key when the contribu-
tor is unplugged.

public void Control_Plugged(object s, PlugEventArgs args) {
 panel.Controls.Clear();
 var list = new SortedList<double, PlugInfo>();
 foreach(PlugInfo p in args.Slot.PluggedPlugs)
 list.Add((double) p.GetParam("Position"), p);

Page 123

 foreach(KeyValuePair<double, PlugInfo> item in list) {
 var c = (IControl) item.Value.Object;
 c.Control.Name = args.Plug.ToString();
 panel.Controls.Add(c.Control);
}

public void Control_Unplugged(object s, PlugEventArgs args) {
 panel.Controls.RemoveByKey(args.Plug.ToString());
}

Using the Control slot and an implementation like this, the navigation view is extensible and
customizable. If the user registers a new control contributor, the view will dynamically re-
arrange its controls.

Sample Code for the Contributor Extension

The FindTextbox class is an extension and provides a plug for the Control slot. The Param
attribute specifies the value 0.8 as position, because we want to arrange the control below the
structure tree in the navigation view (see Fig. 39 on page 123). The shown implementation is
simplified and leaves out the actual find functionality. We use a left to right-oriented flow lay-
out panel to arrange a label and a text box as shown in Fig. 39.

[Extension]
[Plug("Plux.Control")]
[Param("Position", 0.8f]

public class FindTextbox : IControl {
 FLowLayoutPanel panel = new FlowLayoutPanel();
 public FindTextbox() {
 panel = new FlowLayoutPanel {
 FlowDirection = FlowDirection.LeftToRight; }
 Control.Controls.Add(new Label { Text = "Find:" });
 Control.Controls.Add(new TextBox());
 }
 public Control Control { get { return panel; } }
}

5.4.4 The DataSource Slot

The intent of the DataSource slot is to share a data source among multiple extensions which
are plugged into the same host. The motivation is, that if in a data-driven application an exten-
sible host integrates third-party contributors into its slots, those contributors need access to
the data. The host initializes the common data source as a shared extension. The contributors
open a data source slot and share the data source extension with their host. The data source
slot is a supplement to the View slot and the Control slot. With the data source slot, the exten-
sible view host and its control contributors can share a common data source.

Data source contributors must provide two plugs: A data source initializer plug, which is used
by the main host to set up the data source. And a data source plug, which is used by all hosts
to access the data. The slot definition for the DataSource slot specifies how a host intends to
access the data source. The interface includes a Name property, which is called by the host to
display a title. The Data property returns a reference to the actual data. In a data-driven appli-

Page 124

cation this might be a table-oriented data set, in a text editor application it might be a text
buffer. The Changed event allows extensions to register for change notifications.

[SlotDefinition("Plux.DataSource")]
public interface IDataSource {
 string Name { get; }
 object Data { get; }
 event EventHandler Changed;
}

The slot definition for the DataSourceInit slot specifies how the main host initializes the data
source. The interface includes an Open method, which is called by the host to connect to the
data source. A data table source connects to the database, a file-based source opens the file.
The Load method loads the data into memory. The Save method saves the data back to the
data source. The Close method closes the data source. A data table source disconnects from
the database, a file-based source closes the file.

[SlotDefinition("Plux.DataSourceInit")]
public interface IDataSourceInit {
 void Open(object source);
 void Load();
 void Save();
 void Close();
}

Applying the DataSource Slot

The section about the Control slot shows how View windows in rich client applications can be
implemented with control extensions (see page 122). Typically, controls which belong to the
same view host share data using the data source slot. The view host has a slot for controls and
a slot for the data source. The control slot is opened manually. Initially it is closed, because
the control contributors require an initialized data source to be functional (see Fig. 40a). Thus
the view host waits until the data source is plugged, and then opens the control slot manually
(see Fig. 40b).

After the data source was plugged and the control slot was opened, the control contributors
are plugged and the UI is arranged. Each control contributor opens its shared data source slot
and gets the same data source plugged as the view host is using. View and control contribu-
tors share a data source (see Fig. 40c). For example, the structure tree in the navigation view
(compare Fig. 39 on page 123) parses classes and method signatures from the text buffer data
source. If the content of the data source changes, the data source triggers an event and all con-
trols update their content.

The data source can be exchanged without closing and reopening the view window. When the
old data source is unplugged, the view host closes the control slot and releases all control con-
tributors. When the new data source is plugged, the view host reopens the control slot and the
controls use the new data source.

In the same way that the view host shares the data source with its control contributors, the
window host shares the data source with its view contributors. The window host uses the data
source initializer plug, because it initializes the data source, i.e. it opens the data source and
loads the data into memory. For the text editor example, this means that the window host
loads a file into the text buffer. Fig. 40d shows the window host, which opens the data source

Page 125

initializer slot and configures the view slot for manual opening. When the data source plugs,
the window host initializes the data source, and opens the view slot. This causes the views to
open their control slots. All control contributors from all views share the common data source.
In the example, the editor view allows editing the text in the buffer, the structure view shows
an outline of the file, and the find view allows searching the text.

1

2

3

ShowCombobox

StructureTreeCtrl
Co

StructureView

Co

Co

FindTextbox
Co

Position = 0.5

Position = 0.8

Position = 0.3

Ds

Ds

Ds

Ds

Action.cs

Ds { Single, Shared }

StructureView

Co

Ds

Action.cs

b) View host opens Control slot after
data source has been plugged

Co { Multiple, Unique, AutoOpen }

StructureView

Co

Ds

Ds { Single, Shared }

a) View host keeps Control slot closed,
until data source is plugged

c) View host shares the data source among Control contributors

EditorView
Vi

Window
In

Vi

FindView
Vi Ds

Ds

Vi
1

2

ShowCombobox

StructureTreeCtrl
Co

StructureView

Co

Co

FindTextbox
Co

Position = 0.5

Position = 0.8

Position = 0.3

Ds

Ds

Ds

Ds

Action.cs

d) Window host initializes data source and shares it among View contributors

Vi { Multiple,
Unique, AutoPlug,
SingleSelection,

AutoOpen }

Vi .. View
Co .. Control

Ds .. DataSource
In .. DataSourceInit

TextBuffer

Ds

In
TextBuffer

Ds

In

TextBuffer

Ds

In

TextBuffer

Ds

In

In { Single, Shared }

Figure 40. Best practice for the DataSource slot

Sample Code for the Host Extension

The StructureView class uses a DataSource slot. It handles the Plugged and Unplugged
events. It also has a Control slot, which is configured for manual opening. When a data source
contributor is plugged, the structure view class opens the control slot using the composition
core. When the data source contributor is unplugged, it closes the control slot. This mecha-
nism makes sure that controls are only created when the shared data source is ready.

Page 126

[Extension]
[Slot("Plux.Control", AutoOpen=false, ...)]
[Slot("Plux.DataSource",
 OnPlugged="DataSource_Plugged", OnUnplugged="DataSource_Unplugged")]
public class StructureView : IView {
 public void DataSource_Plugged(object s, PlugEventArgs args) {
 var slot = InstanceStore.GetSlot(this, "Plux.Control");
 Composer.OpenSlot(slot);
 }
 public void DataSource_Unplugged(object s, PlugEventArgs args) {
 var slot = InstanceStore.GetSlot(this, "Plux.Control");
 Composer.CloseSlot(slot);
 }
 ...
}

The MainWindow class uses the same technique on the DataSourceInit slot. When the data
source is plugged, the main window initializes the data source. It loads text from a file into
the buffer, before it opens the view slot. Then the composition core plugs the views and plugs
the controls into the views. The result is that all contributors share the same data source.

[Extension]
[Slot("Plux.DataSourceInit", OnPlugged="DataSourceInit_Plugged", ...)]
public class MainWindow : ... {
 public void DataSourceInit_Plugged(object s, PlugEventArgs args) {
 var source = (IDataSourceInit) args.Object;
 source.Open("Action.cs");
 source.Load();
 var slot = InstanceStore.GetSlot(this, "Plux.View");
 Composer.OpenSlot(slot);
 }
 ...
}

The StatisticsLabel class contributes to the Control slot. To keep the example simple, we
use a simplified implementation. The statistics control opens a DataSource slot. When a data
source is plugged, we register the Update method in the Changed event of the data source.
Upon changes in the data source, the control displays the current size of the text buffer.

[Extension]
[Plug("Plux.Control")]
[Param("Position", 0.8f]
[Slot("Plux.DataSource", OnPlugged="DataSource_Plugged")]

class StatisticsLabel : IControl {
 Label label = new Label();
 Buffer buffer = null;
 public Control Control { get { return label; } }
 public void DataSource_Plugged(object s, PlugEventArgs args) {
 var source = (IDataSource) args.Object;
 buffer = (Buffer) source.Data;
 source.Changed += Update;
 Update();
 }
 void Update() {
 label.Text = String.Format("Size: {0}", buffer.Length);
 }
}

Page 127

Sample Code for the Contributor Extension

The TextBuffer class is an extension and provides plugs for the DataSource and the Data-
SourceInit slot. In the Load method, the buffer class reads the text from a file into memory.

[Extension]
[Plug("Plux.DataSource")]
[Plug("Plux.DataSourceInit")]

class TextBuffer : IDataSource, IDataSourceInit {
 Buffer buf = new Buffer(); // class Buffer not shown
 string fileName;
 public object Data { return buf; }
 public void Open(object source) { fileName = source; }
 public void Load() {
 using(TextReader r = new StreamReader(fileName))
 buf = new Buffer(r.readToEnd());
 }
 }
 ...
}

5.5 Binding Widgets to Slots

The best practices in Section 5.4 showed how slots can be used to build a user interface which
is dynamically reconfigurable. In the scenarios where the application allows the user to
choose a contributor, we have used a menu widget to choose. The implementation of a widget
that reacts to the events of the composition core requires some effort. Since much of the im-
plementation is generally applicable, the Plux.NET framework comes with classes that bind
slots to Windows Forms widgets. This section describes bindings for the following widgets: a
menu, a listbox/combobox, a checked listbox, and a tab control. All widgets can be combined
with a plug behavior or with a select behavior.

5.5.1 Widgets with Plug Behavior

Slot-bound widgets with plug behavior are applicable for host extensions which use a multi-
ple cardinality slot and manual plugging. Such a host uses one or many contributors and al-
lows the user to choose the contributor while the application runs (see scenario e in Section
5.2 on page 96).

Page 128

FileLogger
Lo

"File"

MyApp
St Lo

Lo { Multiple,
Shared, AutoPlug }

ConsoleLogger
Ac

"Screen"
ConsoleLogger

Lo
"Screen" 1

RemoteLogger
Lo

"Remote" 3

St .. Startup
Lo .. Logger

2

Figure 41. "Logger" sample application with plug behavior

Fig. 41 shows a host application which allows the user to choose which contributor should be
used. Therefore, the host application can use a slot-bound widget with plug behavior. If a wid-
get is bound to a slot, it registers as an observer in the instance store, and observes all com-
poser events for this slot. For example, the following C# code in the host extension MyApp
creates a combo box and binds it to the logger slot (see Fig. 42b).

[Extension(OnCreated="Extension_Created")]

public class MyApp : ... {
 ComboBox combo;
 public void Extension_Created(object s, ExtensionEventArgs args) {
 combo = new ComboBox();
 combo.Format += FormatItem;
 combo.BindWithSinglePlugBehavior(
 InstanceStore.GetSlot(this, "Logger"));
 }
 public void FormatItem(object s, ListControlConvertEventArgs args) {
 var plugType = (PlugTypeInfo) args.ListItem;
 args.Value = (string) plugType.GetParam("Name");
 }
 ...
}

The binding implementation uses C# extension methods to add the BindWithSinglePlugBe-­‐
havior method to the existing Windows Forms ComboBox class. The single plug behavior
creates a list item when a contributor is registered, and removes it when the contributor is
deregistered. To control which text is used for the list item, we use Windows Forms format
events (Sells and Weinhardt 2006). The Format event is raised, before each visible item in the
combo box is formatted. Handling this event gives us access to the string to be displayed. In
this example, we retrieve the Name parameter for the item. In a similar way the slot could be
bound to a menu strip (Fig. 42a).

When the user changes the selection in the combo box, the binding uses the composition core
to implement the single plug behavior. Single plug behavior means that only one contributor
can be plugged at a time. Thus, the binding first unplugs all contributors, and then creates and
plugs the chosen contributor using the composition core.

Page 129

a) Single plug behavior
with slot-bound menu

Parameter
Name

to change: Composer.UnplugAll(Slot)
Composer.CreateAndPlug(Slot, PlugType)

Registered
in Logger slot

Logger
Screen
File

1

2

3Remote

Plugged
in Logger

slot

b) Single plug behavior
with slot-bound combo box

Parameter
Name

to change: Composer.UnplugAll(Slot)
Composer.CreateAndPlug(Slot, PlugType)

Registered
in Logger Slot

Screen
Screen
File
Remote

1
2
3

Plugged
in Logger

slot

c) Multiple plug behavior
with slot-bound menu

Logger
Screen
File

1

2

3Remote

Registered
in Logger slot

Parameter
Name

to check: Composer.CreateAndPlug(Slot, PlugType)
to uncheck: Composer.Unplug(Slot, Plug)

Plugged
in Logger

slot

d) Multiple plug behavior
with slot-bound check list box

Parameter
Name

to check: Composer.CreateAndPlug(Slot, PlugType)
to uncheck: Composer.Unplug(Slot, Plug)

Screen
File
Remote

1
2
3

Registered
in Logger Slot

Plugged
in Logger

slot

Figure 42. Slot-bound widgets for plug behavior

The extension method BindWithMultiplePlugBehavior binds a slot to a menu strip or a
checked list box with multiple plug behavior (see Fig. 42c+d). The multiple plug behavior
handles registration events in the same way as the single plug behavior. However, it allows
multiple contributors to be plugged at the same time. Therefore, the binding creates and plugs
a contributor if an unchecked item is clicked, and it unplugs a contributor if a checked item is
clicked.

5.5.2 Widgets with Select Behavior

Slot-bound widgets with select behavior are applicable for hosts which use a multiple car-
dinality slot, automatic plugging, and single/multiple selection. Such a host uses one or many
active contributors and allows the user to switch between the contributors while the applica-
tion runs (see scenario e in Section 5.2 on page 96).

Fig. 43 shows a host application which allows the user to switch between contributors. There-
fore, the host application can use a slot-bound widget with select behavior. The extension
method BindWithSingleSelectBehavior binds a slot to a menu strip or a combo box (see Fig.
44a+b). The single select behavior creates a list item when a contributor is plugged, and
removes it when the contributor is unplugged. The behavior checks the selected contributor.
When the user changes the selection, the behavior uses the composition core to select the cor-
responding contributor. The composition core automatically deselects any other contributor, if
the slot is configured for single selection.

The extension method BindWithMultipleSelectBehavior binds a slot to a menu strip or a
checked list box with multiple select behavior (see Fig. 44c+d). The multiple select behavior
handles plugging events in the same way as the single select behavior. However, it allows

Page 130

multiple contributors to be selected at the same time. Therefore, the behavior uses the com-
poser to select a contributor when the user checks an item, and to deselect the contributor
when the user unchecks an item.

"Remote"
Lo

FileLogger
Lo

"File"

MyApp
St Lo

Lo { Multiple, ... }

ConsoleLogger
Lo

"Screen" 1

2

RemoteLogger
Lo

"Remote" 3

St .. Startup
Lo .. Logger

Application using selected logger contributors

Figure 43. "Logger" sample application for select behavior

b) Single select behavior
with slot-bound combo box

Parameter
NameSelected

in Logger
slot

to change: Composer.Select(Slot, Plug)

Plugged
in Logger Slot

Screen
Screen
File
Remote

1
2
3

a) Single select behavior
with slot-bound menu

Parameter
Name

to change: Composer.Select(Slot, Plug)

Plugged
in Logger slot

Logger
Screen
File

1

2

3Remote

Selected
in Logger

slot

c) Multiple select behavior
with slot-bound menu

Logger
Screen
File

1

2

3Remote

Plugged
in Logger slot

Parameter
Name

to check: Composer.Select(Slot, Plug)
to uncheck: Composer.Deselect(Slot, Plug)

Selected
in Logger

slot

d) Multiple select behavior
with slot-bound check list box

Parameter
Name

to check: Composer.Select(Slot, Plug)
to uncheck: Composer.Deselect(Slot, Plug)

Screen
File
Remote

1
2
3

Plugged
in Logger Slot

Selected
in Logger

slot

Figure 44. Slot-bound widgets for select behavior

Another widget that can be bound to a slot with single select behavior is the tab widget. In
particular, a tab widget can be bound to a Control slot. A control contributor provides the con-
tents for a tab. The control contributors can be loaded lazily, because the tab content is not re-
quired, until the tab is actually activated. With lazy loading, the single select behavior, han-
dles registration events on the control slot. When a contributor is registered, the behavior
creates a tab, and when a contributor is deregistered, it removes the tab. When a tab is activat-
ed, the behavior loads the contributor lazily using the composition core, and selects the con-
tributor. Fig. 45 schematically shows how the tab widget is bound to a control slot.

Page 131

Vi

1

2

3

ShowCombobox

Co { Multiple, Unique,
LazyLoad,

SingleSelection }

StructureTreeCtrl
Co

NavigationView

Co

Co

FindTextbox
Co

Position = 0.5

Position = 0.8

Position = 0.3

2

1

3

Co .. Control
Vi .. View

Structure

WindowCloseAction

void Execute(object sender, Act...
bool IsEnabled()

C

M
M

21 3Show Find

when tab activated: Composer.CreateAndPlug(Slot, PlugType), Composer.Select(Slot, Plug)

Registered
in Control Slot Parameter

Name

Selected contributor is active

Classes and Methods:

Figure 45. Slot-bound tab widget for single select behavior

5.6 Case Study: Cross-Compiler and IDE

For evaluation, we have used the Plux.NET composition framework in a case study (Jahn
2009b). In this case study we have built a cross-compiler and an integrated development envi-
ronment (IDE). The cross-compiler should translate Borland Delphi source code into C#
source code in an ongoing project with our industry partner BMD Systemhaus GmbH. With a
Plux.NET-based design, we wanted to achieve the following goals:

■ The cross-compiler should be configurable for arbitrary source and destination lan-
guages. Hence, the name of the application is Any-to-Any-Compiler (ATAC).

■ The IDE should demonstrate the best practices for dynamic user interface design from
Section 5.4 and use the slot-bound widgets from Section 5.5.

5.6.1 Compiler Design

The Atac application is designed around a core Compiler extension. The Compiler extension
uses slots for the frontend, for internal data structures, and for the backend. The Atac applica-
tion can be used as a console application or within the IDE. Both user interfaces integrate the
Compiler extension with its Compiler plug. Fig. 46 shows the cross-compiler setup for Delphi
to C#. The compiler can be extended to a Java to C# compiler with a Java parser plug-in. Or it
can be extended to a Delphi to Java compiler with a Java code generator plug-in.

5.6.2 IDE Design

The main window of the Atac IDE is divided into sections (see Fig. 47): The Control section
on the top contains the user interface to control the compiler. The Source, Data, and Output
sections in the center contain views which visualize the contents of the source buffer, the data
structures, and the output buffer. The Addon section on the bottom contains additional views,
for example, an error list view.

Page 132

Frontend

IDE

St

Core
Di

St

Console
Cl

St

Compiler

Cl

Sb

Pa

Sy

As

Cg

Ob

Source
BufferSb

Delphi
ParserPa

Symbol
TableSy

Abstract
Syntax
Tree

As

C# Code
GeneratorCg

Output
BufferOb

Data structure

Backendcustomizable target
 language

customizable
source language

Pa .. Parser
Sy .. Symbol table
As .. Abstract syntax tree
Cg .. Code generator
Ob .. Output buffer

Ci

St .. Startup
Di .. Discovery
Cl .. Compiler
Ci .. Compiler initializer
Sb .. Source buffer

Ci

Ci

Figure 46. Architecture of extensible ATAC cross-compiler

The design of the Atac IDE uses Plux.NET slots as described in Section 5.1.2. We applied the
best practices from Section 5.4 and applied slot-bound widgets from Section 5.5. The key
slots and extensions of the Atac IDE are (compare Fig. 47, letters a-f reference markings in
the figures):

■ The Compiler slot and the Compiler initializer slot (a) separate the compiler core from
the user interface. This is a variant of the DataSource slot with unique contributor ex-
tensions. The IDE main window initializes the compiler extension. The contributors in
the Control and View slots access the compiler like a data source. The IDE can control
multiple compilers in the Compiler slot. A slot-bound combo box with single select
behavior in the menu strip extension switches between compilers.

■ The Control slot (b) makes the Control section on the top of the main window cus-
tomizable. The IDE layouts plug contributors stacked in the order specified by the Po-
sition parameter.

■ The Action slot (c) makes the menu strip extension customizable. The menu strip ex-
tension uses a slot-bound menu strip with multiple plug behavior to integrate compiler
actions in the Compiler menu, and buffer actions in the File menu. All actions are
loaded lazily.

Page 133

Control

Source OutputData

Addon

View

b

c

a

a

d

ee

f f f

IDE

St

Co

Ci

Vi

To

Source
View SbVi
Section=Source

SymTab
View SyVi
Section=Data

Ast
View AsVi
Section=Data

Output
View ObVi
Section=Output

Error
View LoVi
Section=Addon

Tool
To

Tool
To

Tool
To

Compiler

Cl

Pa

Cg

Sb

Sy

As

Ob
Source
BufferSb

Symbol
TableSy

Logger
Lo

Delphi
ParserPa

C# Code
GeneratorCg

Abstract
Syntax
Tree

As

Output
BufferOb

St .. Startup
Co .. Control
Vi .. View
To .. Tool

a

a

a
Ci

Ci .. Compiler Initializer
Sb .. Source buffer
Pa .. Parser
Sy .. Symbol table
As .. Abstract syntax tree
Cg .. Code generator
Ob .. Output buffer

Cl .. Compiler

Menu
Strip Ac

Cl
Co

Position=0.5

Tool
Strip ClCo
Position=0.6

b

c

d

e

e

f

f

f

f

Figure 47. ATAC Integrated Development Environment

Page 134

■ The View slot (d) makes the Source, Data, Output, and Addon section in the main win-
dow customizable. This view slot is an extended variant of the best practice View slot.
The IDE layouts plug contributors into four sections as specified by the Section para-
meter. Each section can have multiple view contributors. The IDE uses a variant of the
slot-bound tab widget to display multiple views. The slot-bound menu strip in the
menu extension binds the View menu to the View slot using a multiple plug behavior.
And it binds the Window menu to the View slot using a multiple select behavior.

■ The ToolStrip extension uses two slot-bound combo boxes (e) with a single select be-
havior to switch parsers and code generators.

■ The SourceView, SymTabView, AstView, and OutputView use slot-bound combo boxes
(f) with a single select behavior to switch between SourceBuffers, SymbolTables, Ab-
stractSyntaxTrees, and OutputBuffers respectively.

■ The Tool slot is a variant of the View slot and integrates contributors that come in their
own window outside of the IDE. Examples for such tools are the Plux.NET Visualizer
and the Plux.NET Console.

More information on the design and implementation can be found in the master thesis of
Markus Jahn (Jahn 2009b).

Page 135

Page 136

Chapter 6: Summary

This chapter summarizes the main contributions of this thesis and recapitulates how those
contributions address the problem statement from Chapter 1. Finally, the thesis is concluded
with an outlook on future work.

6.1 Contributions

In this thesis, we presented Plux.NET - a novel composition model and prototypical composi-
tion infrastructure. The benefits of Plux.NET are dynamic addition and removal of compo-
nents without programming or configuration. The key characteristics of Plux.NET which en-
able dynamic change are:

1. A component model in which requirements and provisions between components are
specified declaratively using the component's metadata.

2. A discovery core which supports automatic discovery of components using exchange-
able discovery mechanisms.

3. A composition core which uses the metadata to compose an application by matching
requirements and provisions, and which stores connections between components in the
composition model.

4. An event-based programming model, which gives host components a uniform mecha-
nism to integrate contributor components at startup as well as at run time when an ap-
plication dynamically changes.

5. Best practice guidelines for the design of user interfaces that support dynamic change
by reacting to notifications from the composition core and by using component
connections stored in the composition model.

6. Slot-bound widgets which automatically update their content and state when the appli-
cation is reconfigured, because they are bound to slots in the composition model.

Page 137

6.2 Conclusions

The research context in Section 1.1 discussed why support for dynamic reconfiguration is im-
portant. The problem statement in Section 1.2 stated four problems in existing plug-in sys-
tems which make it hard to build reconfigurable applications. The contributions of this thesis
address these problems:

■ Problem 1: Lack of granularity.

The problem has been solved, because the Plux.NET composition core supports fine-
grained composition operations. The composition model specifies how to construct
extensions with multiple plugs, and how to construct plug-ins containing multiple ex-
tensions. The composition core provides operations for each granularity level: it can
add or remove a plug, an extension, or a plug-in with a single operation. Additionally,
the composition core allows users to control the affected scope of an operation: it can
add or remove a contributor to a specific slot, to all slots of a host extension or to all
compatible slots in an application.

■ Problem 2: Plug-in integration requires programmatic effort.

The problem has been solved, because the Plux.NET composition model replaces pro-
grammatic integration in the host component through declarative specification of re-
quirements and provisions. The composition algorithms have been implemented in the
Plux.NET composition core, whereas the plug-ins use an event-based programming
model. When a host plug-in uses a Plux.NET slot to integrate contributor plug-ins, it
must react to composer events, instead of programmatically looking for contributors.

■ Problem 3: Dynamic change support is optional.
Problem 4: Non-uniform programming model for startup and dynamic change.

Both problems have been solved, because the event-based programming model of
Plux.NET makes dynamic integration the prevailing mechanism, and at the same time
it gives host components a uniform mechanism to integrate other components at start-
up as well as at run time when an application changes. When a host plug-in uses a
Plux.NET slot to integrate contributor plug-ins, the composer notifies the host when a
contributor is added or removed. The composer notifications are treated uniformly, be
it at startup, or when the application is reconfigured at run time. A host component
does not consider the difference.

6.3 Future Research

Applications designed for the Plux.NET composition infrastructure are extensible and cus-
tomizable. As we have argued in Chapter 1, that opens interesting usage scenarios. However,
the openness and flexibility also means new challenges, which should be addressed by future
research:

1. The flexibility of Plux.NET applications makes testing more difficult. Unit tests of
single components become less significant, because the functionality of a component
can only be observed when composed with other components. Thus integration tests

Page 138

become more important, but also more challenging, because Plux.NET applications
change dynamically. The dynamic properties of a host extension, i.e. how it behaves
when contributors are plugged or unplugged, must also be tested. Another testing
problem arises from the countless different configurations which must be tested, if
each user configures an application differently. A procedure which finds the relevant
subset of test cases, is an open research issue.

2. In an open plug-in system, where third-parties contribute their extensions, versioning
is an important issue. New versions of a core application should be compatible with
plug-ins written for an older version of the core application. Vice-versa, plug-ins writ-
ten for a new version of the core application, should be compatible with older versions
of the core application. How to make a Plux.NET slot versionable, for example by us-
ing versioned contracts and adapters, is an open research problem.

3. An open plug-in system allows third parties to contribute functionality. The creator of
a host application might want to restrict what a plug-in can do and what it cannot do.
Existing plug-in systems cannot restrict composition aspects, as would be required, for
example, to control which contributor can contribute to which parts of the system. We
have designed a prototype security extension for the Plux.NET framework which al-
lows developers to restrict who is allowed to contribute to a slot, or to restrict the per-
missions of plug-ins, which connect to a specific slot. We plan to continue this work.

4. In the enterprise domain, customers expect high availability of systems. Integrating
plug-ins that have been contributed by unknown third parties can represent an unpre-
dictable risk for the stability of the system. Existing plug-in systems do not offer a so-
lution for this problem. We have designed a prototype isolation extension for the
Plux.NET framework which allows developers to protect a host against crashes of
buggy or malicious contributors by taking specific precautions for isolating the con-
tributor from the rest of the application.

6.4 Current State

The Plux.NET composition framework prototype for rich client applications is publicly avail-
able (http://ase.jku.at/plux). Several ongoing and completed student projects have used
Plux.NET. In a pilot project with our industry partner BMD Systemhaus GmbH, we currently
develop a prototype for a customizable next generation of BMD business software.

Page 139

Page 140

Bibliography

(Basili 1993) Basili, V.R.: The Experimental Paradigm in Software Engineering. Springer-Verlag,
#706. Lecture Notes in Computer Science, 1993.

(Beck and Gamma 2003) Beck, K., and Gamma, E.: Contributing to Eclipse. Addison-Wesley, 2003.

(Boudreau et al. 2007) Boudreau, T., Tulach, J., Wielenga, G.: Rich Client Programming, Plugging
into the NetBeans Platform, 2007.

(Chatley et al. 2004) Chatley, R., Eisenbach, S., and Magee, J.: Magic Beans: a Platform for Deploy-
ing Plugin Components. 2nd International Working Conference on Component Deployment (CD
2004), Edinburgh, Scotland, UK, May 20-21, 2004.

(Councill and Heineman 2001) Heinemann, G. and Councill, W.: Definition of a Software Component
and Its Elements. In: Component-Based Software Engineering. Addison-Wesley, Boston 2001.

(Dhungana 2006) Dhungana, D.: CAP.NET - Client Application Platform in .NET. Master Thesis, Jo-
hannes Kepler University, Linz, Austria, 2006.

(Eclipse 2003) Eclipse Platform Technical Overview. Object Technology International, Inc., http:/
/www.eclipse.org, February 2003.

(ECMA 2006) ECMA International Standard ECMA-335. Common Language Infrastructure (CLI),
4th Edition, June 2006.

(Eder 2008) Eder, M.: Content-Watcher, ein Werkzeug zur Überwachung von Web-Inhalten. Master
Thesis, Johannes Kepler University, Linz, Austria, 2008.

(Floch et al. 2006) Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., and Gjørven, E.: Using
Architecture Models fpp. 62-70, 2006.

(Fowler 2004) Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern,
http://martinfowler.com/articles/injection.html, 2004.

(Hall and Cervantes 2004) Hall, R. S, and Cervantes H: An OSGi Implementation and Experience Re-
port. Consumer Communications and Networking Conference (CCNC), Las Vegas, USA, January 5-8,
2004.

(Hallenstein et al. 2006) Hallsteinsen, S., Stav, E., Solberg, A., and Floch, J.: Using Product Line
Techniques to Build Adaptive Systems. Proceedings of the 10th iference, Washington, DC, August
21-24, 2006, pp. 141-150.

(Jahn 2009a) Jahn, M.: Entwurf und Implementierung eines Cross-Compilers von Delphi nach C#.
Master Thesis, Johannes Kepler University, Linz, Austria, 2009.

(Jahn 2009b) Jahn, M., Wolfinger, R., and Mössenböck, H.: Extending Web Applications with Client
and Server Plug-ins. Software Engineering 2010 - the Conference on Software Engineering, SE 2010,
Paderborn, Germany, February 22-26, 2010 (to be published).

Page 141

(Meyer and Mingins 1999) Meyer, B. and Mingins, C. (eds.): Special Issue on Component-Based De-
velopment. IEEE Computer, 82 (7), July 1999.

(Noyes 2006) Noyes, Brian: Data Binding with Windows Forms 2.0: Programming Smart Client Data
Applications with .NET 2.0. Addison-Wesley, 2006.

(OSGi 2006) OSGi Service Platform, Release 4. The Open Services Gateway Initiative, http:/
/www.osgi.org, July 2006.

(Parnas 1972) Parnas, D.L.: On the Design and Development of Program Families. IEEE Transactions
on Software Engineering, March 1976, pp 1-9.

(Pichler 2009) Pichler, R.: Metrix - A Measuring Tool for Run-time Figures in Plug-in-based .NET Ap-
plications. Bachelor Thesis, Johannes Kepler University, Linz, Austria, 2009.

(Pico 2009) PicoContainer Committers: PicoContainer 2.8.1 Documentation. http://www.picocontain-
er.org., 2009.

(Rabiser 2009) Rabiser, R., Wolfinger, R., Grünbacher, P.: Three-level Customization of Software
Products Using a Product Line Approach. 42nd Hawaii International Conference on System Sciences,
HICSS-42, Big Island, Hawaii, USA, January, 5-8, 2009.

(Reiter 2007) Reiter, S., Wolfinger, R.: Erfahrungen bei der Portierung von Delphi Legacy Code nach
.NET. Nachwuchs-Workshop, SE 2007 - the Conference on Software Engineering, Hamburg, Ger-
many, March 27-30, 2007.

(Sells and Weinhardt 2006) Sells, C., Weinhardt, M.: Windows Forms 2.0 Programming. Addison-
Wesley, 2006.

(Sun 1996) Sun Microsystems: JavaBeans, Version 1.0. http://java.sun.com/beans. December, 1996.

(Sun 2006) Sun Microsystems: Java Platform, Standard Edition 6, API Specification. http:/
/java.sun.com/javase/6/docs, 2006.

(Szyperski 2002) Szyperski, C.: Component Software, Beyond Object-Oriented Programming, 2nd
edition, Addison-Wesley, 2002.

(Weinreich and Sametinger 2001) Weinreich, R., Sametinger, J.: Component Models and Component
Services: Concepts and Principles. In: Component-based Software Engineering, 2001.

(Wolfinger 2006) Wolfinger, R., Dhungana, D., Prähofer, H., Mössenböck, H.: A Component Plug-in
Architecture for the .NET Platform. Modular Programming Languages, Lightfoot, David; Szyperski,
Clemens (Eds.), Lecture Notes in Computer Science , Vol. 4228, Proceedings of 7th Joint Modular
Languages Conference, JMLC 2006, Oxford, UK, September 13-15, 2006.

(Wolfinger 2007) Wolfinger, R., Prähofer, H.: Integration Models in a .NET Plug-in Framework. SE
2007 - the Conference on Software Engineering, Hamburg, Germany, March 27-30, 2007.

(Wolfinger 2008a) Wolfinger, R., Reiter, S., Dhungana, D., Grünbacher, P., and Prähofer, H.: Support-
ing Runtime System Adaptation through Product Line Engineering and Plug-in Techniques. 7th IEEE
International Conference on Composition-Based Software Systems, ICCBSS 2008, Madrid, Spain, Fe-
bruary, 25-29, 2008.

(Wolfinger 2008b) Wolfinger, R.: Plug-in Architecture and Design Guidelines for Customizable Enter-
prise Applications, OOPSLA 2008 Doctoral Symposium, OOPSLA 2008, Nashville, Tennessee, Octo-
ber, 19-23, 2008.

Page 142

List of Figures

1. Class diagram of movie application example 19...

2. Slot and plug in host and contributor extension 33..

3. Slot definition in host and contributor extension 33......................................

4. Plux.NET composition model meta elements 34...

5. Relationships between meta elements and application objects 35.................

6. Class diagram of Plux.NET composition model 35.......................................

7. Relationships between meta elements in host and contributor 38.................

8. Slots with single or multiple cardinality 39...

9. Slots with shared or unqiue contributors 41...

10. Composition operations for registration 45..

11. Composition operations for creation and plugging 48...................................

12. Settings for composition configuration 51...

13. State diagram of type meta element life-cycle 53..

14. State diagram of instance meta element life-cycle 54....................................

15. Composition notifications for host and contributor 56..................................

16. Contract and plug-in of core extension 58...

17. Task queue of the composition service 67...

18. Architecture of the Plux.NET composition infrastructure 73........................

19. Class diagram of meta elements in the type store 75.....................................

20. Bootstrap discoverer and assembly analyzer 82..

21. Class diagram of meta elements in the instance store 82...............................

22. Core extension with discovery and startup slot 89...

23. Startup contributor of "Hello World" application 92.....................................

24. Composition process of "Hello World" application 94..................................

Page 143

25. Build-time dependencies between contract and plug-in 98...........................

26. "Logger" sample application with single contributor 100.............................

27. Dynamic custom discoverer extension "Directory Watcher" 102..................

28. "Logger" sample application with multiple contributors 103........................

29. "Logger" sample application with manually registered contributor 105.......

30. "Logger" sample application with manually plugged contributor 105..........

31. "Logger" sample application with manually selected contributor 107..........

32. "Logger" sample application with shared contributor 108.............................

33. "Logger" sample application with unique contributors 109...........................

34. "Logger" sample application with shared singleton contributor 110.............

35. "Logger" sample application with unqiue singleton contributor 111.............

36. Best practice for the Action slot 112..

37. Best practice for the View slot 116...

38. Dynamic menus for the View slot 117...

39. Best practice for the Control slot 123...

40. Best practice for the DataSource slot 126..

41. "Logger" sample application with plug behavior 129....................................

42. Slot-bound widgets for plug behavior 130...

43. "Logger" sample application for select behavior 131....................................

44. Slot-bound widgets for select behavior 131...

45. Slot-bound tab widget for single select behavior 132....................................

46. Architecture of extensible ATAC cross-compiler 133....................................

47. ATAC Integrated Development Environment 134...

Page 144

List of Tables

1. Components and granularity of existing component systems 18...................

2. Programmatic provider integration in existing component systems 24.........

3. Optional dynamic change support in existing component systems 28...........

4. Non-uniform programming models in existing component systems 30........

5. Qualification rules for type meta elements 37...

6. Plux.NET attributes for slot definitions 70..

7. Plux.NET attributes for contributor extensions 71...

8. Plux.NET attribute for host extensions 72...

9. Type store notifications 79...

10. Instance store notifications 85..

11. Components of the Plux.NET composition framework 94............................

12. Command line options of the Plux.NET runtime core launcher 94...............

13. Slot composition scenarios 96..

Page 145

Page 146

Curriculum Vitae

Name: Reinhard Wolfinger

Date of birth: January 22, 1972

Place of birth: Linz, Austria

Nationality: Austria

Marital status: Married, 2 children

Contact: reinhard.wolfinger@jku.at | reinhard.wolfinger@gmail.com

Education

2006-2010 Doctorate Program in Social Sciences, Economics and Business, Johannes
Kepler University, Linz

2003-2005
1991-1992

Diploma Study Business Informatics, Johannes Kepler University, Linz
Graduated with distinction
Graduation degree: Magister rer.soc.oec.
Master thesis: Spyder.NET - Automated recording of use cases for testing
of .NET components

1986-1991 Higher technical school for Communications Engineering, Leonding
Graduated with distinction

1982-1986 Grammar school, Traun

1978-1982 Primary school, Haid

Professional Career

2006- Research Assistant, Christian Doppler Laboratory for Automated
Software Engineering, Johannes Kepler University, Linz

2005 Software Developer, BMD Systemhaus GmbH, Steyr

2004-2005 Self-employed Software Developer

2001-2003 Software Development Lead, AgrarData GesmbH, Linz

1991-2001 Self-employed Software Developer

Page 147

