
Adding Genericity to a Plug-in Framework

Reinhard Wolfinger1, Markus Löberbauer2, Markus Jahn2, Hanspeter Mössenböck1,2

Christian Doppler Laboratory for Automated Software Engineering2

Institute for System Software1

Johannes Kepler University, Linz, Austria
reinhard.wolfinger | markus.loeberbauer | markus.jahn | hanspeter.moessenboeck@jku.at

Abstract
Plug-in components are a means for making feature-rich
applications customizable. Combined with plug-and-play
composition, end users can assemble customized applica-
tions without programming. If plug-and-play composition
is also dynamic, applications can be reconfigured on the fly
to load only components the user needs for his current
work. We have created Plux.NET, a plug-in framework that
supports dynamic plug-and-play composition. The basis for
plug-and-play in Plux is the composer which replaces pro-
grammatic composition by automatic composition. Compo-
nents just specify their requirements and provisions using
metadata. The composer then assembles the components
based on that metadata by matching requirements and pro-
visions. When the composer needs to reuse general-purpose
components in different parts of an application, the compo-
nent model requires genericity. The composer depends on
metadata that specify which components should be
connected and for general-purpose components those meta-
data need to be different on each reuse. We present an ap-
proach for generic plug-ins with component templates and
an implementation for Plux. The general-purpose compo-
nents become templates and the templates get parameter-
ized when they are composed.

Categories and Subject Descriptors D.2.11 [Software En-
gineering]: Software Architectures - Patterns.

General Terms: Design.

Keywords: Generic plug-ins, Component templates, Plug-
and-play composition, Run-time adaptation; Plug-in archi-
tectures; Composition, Generic programming

1. Introduction
With plug-and-play composition, end users can assemble
applications without programming. This can be used to cus-
tomize a feature-rich application to the needs of individual
users. Combined with dynamic composition, an application
can be reconfigured on the fly to load only components the
user needs for his current work. This keeps an application
small and aligned with the working situation at hand.

Plux is a novel plug-in framework with a composition
model and an infrastructure for plug-and-play composition
[1]. The composition model specifies requirements and pro-
visions among components declaratively using the compo-
nent's metadata. The infrastructure contains a composer

which assembles an application by matching requirements
and provisions.

In many applications, the composer needs to reuse gen-
eral-purpose components in different parts of the applica-
tion. For example, a general-purpose data grid might use
different contributor components for its grid layout or as a
data source on each reuse (cf. Figure 1). In programmati-
cally composed applications, the programmer creates and
connects the objects. In plug-and-play composed applica-
tions, however, the programmer does not have control over
the composition process. Instead, the composer in the com-
position infrastructure assembles the components. Thereby
the composer depends on metadata that specify which com-
ponents need to be connected. If we have general-purpose
components that require different metadata on each reuse,
the composition model requires genericity. The components
become templates and the templates must be parameterized
when they are composed. In this paper, we present an ap-
proach for generic plug-ins with component templates and
an implementation for the Plux plug-in framework.

View

Article-
Grid

Article-
Data

Customer-
Grid

Article-
Layout

Customer-
Data

Customer-
Layout

Figure 1. Data grid reused for articles and customers.

The paper is organized as follows: Section 2 describes
the Plux framework. It highlights the metadata model and
the architecture of the composition infrastructure. Section 3
gives a motivating example, discusses the problems that
arise with this example in existing plug-in systems, and
outlines the requirements for a solution. Section 4 describes
our generic plug-in approach, the integration of generic
plug-ins into Plux, the notation for extension templates, and
the extension generation using metadata from a configura-
tion file. Section 5 describes a case study where we applied
generic plug-ins in an enterprise application of our indus-
trial partner. Section 6 describes general approaches to
genericity and how existing plug-in systems handle gener-
icity. Section 7 finishes with a conclusion and an outlook to
further work.

2. The Plux.NET Framework
The goal of Plux is to create extensible and customizable
applications that can be reconfigured without a restart. To
enable such applications, Plux defines a composition model
and an infrastructure for dynamic composition. Dynamic
composition allows developers to build applications where
users load and integrate only components they need for
their current work. Dynamic composition also means that
an application can be reconfigured on the fly by dynamical-
ly swapping sets of components without programming or
configuration.

When compared with other plug-in systems [2], such as
OSGi [3], Eclipse [4], or NetBeans [5], the unique charac-
teristics of Plux are the composer, the event-based pro-
gramming model, the composition state, and the exchange-
able plug-in discovery mechanism. The composer replaces
programmatic composition where the host component
queries a service registry and creates and integrates its con-
tributors itself. In Plux, the components just declare their
requirements and provisions using metadata. The composer
then uses those metadata to match requirements and provi-
sions and automatically integrates matching components.
During composition, the host components react to notifica-
tion events sent by the composer. The composition infra-
structure stores the composition state, i.e., it stores which
host components use which contributor components. Un-
like in other plug-ins system, the plug-in discovery mecha-
nism is not an integral part of the Plux infrastructure, but is
a plug-in itself, thus making the mechanism replaceable.
The discovery plug-in is responsible for detecting plug-ins
and extracting component metadata. The following subsec-
tions cover those characteristics in more detail.

2.1 Meta elements
The Plux composition model (CM) uses the metaphor of
extensions with slots and plugs. An extension is a function-
al component which provides services to other extensions
and uses services provided by other extensions. As Figure 2
shows, an extension opens a slot when it wants to use the
service of other extensions, and it provides a plug when it
provides a service to other extensions. Non-trivial exten-
sions can have multiple plugs and slots. An extension
which opens a slot is called a host extension, whereas an
extension filling a slot is called a contributor extension.

Extension

SlotPlug

Host Contributor
uses

provides Extension

SlotPlug

Figure 2. Extensions, slots and plugs.

The host and the contributor communicate via a defined
protocol to accomplish a particular task. Every slot has a
slot definition which specifies an interface that is required
for the collaboration. The host relies on this interface and
the contributor has to provide an implementation for it. A
slot definition can specify additional parameters for which

the contributor has to provide values (cf. Section 2.3). A
slot definition is referenced by its unique name.

The CM uses meta elements to describe extensions and
their relationships. In a Plux application, there is an Exten-
sion meta element for every pluggable .NET object (cf.
Figure 3). The Object property of the extension references
the .NET object in a one-to-one relationship. If a host wants
to use the services of contributor extensions, it requires a
Slot meta element. If a contributor wants to provide a ser-
vice to hosts, it requires a Plug meta element. Both, the slot
and the plug are identified by their name. This name refer-
ences the corresponding slot definition. A plug matches a
slot, if their names match. A matching plug can be plugged
into the slot, if the slot definition is available, and if the
plug qualifies for the slot definition. A plug qualifies, if it
provides an implementation for the required interface as
well as parameter values for the required parameters.

Application

Meta
elements

Object

Contributor Extension

Plug

Host Extension

Slot

Object property1:1

E

SP

Object

E

SP

1:1

plugs

uses

Figure 3. Relationships between meta elements and appli-
cation objects.

2.2 Composition relationships
Composition means the mediating process which matches
required and provided services, or in other words to com-
pose an application by plugging plugs into slots. After a
contributor is plugged into a host, the host is notified that
the contributor is ready to be used (cf. Figure 4a).

The CM activates contributors lazily. When a contribu-
tor is plugged into its host, the contributor's .NET object is
not yet instantiated. Only when the host accesses the Object
property of the contributor, the actual object is created. The
contributor is now activated and the host can call methods
from the contributor's interface (cf. Figure 4b).

A slot can have multiple contributors plugged. If a host
wants to use only a subset of them, or if it wants to switch
between contributors, it can set a selection on one or sever-
al contributors. The slot meta element gives the host access
to the selected contributors (cf. Figure 4c).

Contributors can be shared or unique. A unique contrib-
utor connects to just a single slot, whereas a shared contrib-
utor can be plugged into several slots. For every contributor
class there is just a single shared instance in the whole ap-
plication. Slots can declare whether they want the compos-
er to connect them with this single shared contributor or a
with a new unique contributor.

c) Selected

Verbose Notation Short Notation

a) Plugged (not activated)

b) Plugged (activated)

Figure 4. Relationships in the Plux composition model.

2.3 Custom attributes
The mechanism to declare metadata in Plux is customiz-

able. The default mechanism which is included in the
framework, declares meta elements with custom .NET
attributes. Custom attributes are pieces of meta-information
that can be attached to language constructs, such as classes,
interfaces, methods, or fields in the source code of a .NET
application. At run time, the attributes can be retrieved us-
ing reflection [6]. As custom attributes declare metadata di-
rectly in the source code, they allow us to avoid separate
files, like the XML files used in Eclipse [4].

Let us look at an example. Assume that a host wants to
print log messages with time stamps. The logging should be
implemented as a contributor that plugs into the host. The
contributor should provide the desired format for the time
stamp as a parameter to the host. First, we have to define
the slot into which the logger can plug.

[SlotDefinition("Logger")]
[ParamDefinition("TimeFormat", typeof(string))]
public interface ILogger {
 void Print(string msg);
}

Listing 1. Definition for the Logger slot.

The slot definition in Listing 1 is a C# interface tagged with
a [SlotDefinition] attribute specifying the name of the slot
("Logger"). The [ParamDefinition] attribute specifies a pa-
rameter TimeFormat of type string. The contributor will pro-
vide a time format and the host will use it to include the
formatted time stamp in the log message. Next, we are go-
ing to write a contributor that fits into a Logger slot.

The contributor in Listing 2 is a C# class tagged with an
[Extension] attribute specifying the name of the contribu-
tor. If the name is omitted in the attribute, the contributor
adopts the class name. The class implements the interface

ILogger of the corresponding slot definition. The [Plug]
attribute defines a plug that fits into the Logger slot. The
[Param] attribute sets the value "hh:mm:ss" for the parame-
ter TimeFormat.

[Extension("ConsoleLogger")]
[Plug("Logger")]
[Param("TimeFormat", "hh:mm:ss")]
public class ConsoleLogger : ILogger {
 public void Print(string msg) {
 Console.WriteLine(msg);
 }
}

Listing 2. Console logger contributor for the Logger slot.

Finally, we implement the host. The host is an extension
which plugs into the Application slot of the Plux core. The
host in Listing 3 has a slot Logger. This is declared with a
[Slot] attribute. The slot is configured for multiple and
unique contributors, because multiple and unique are the
default settings for a slot.

In the constructor, MyApp gets a reference to the associat-
ed extension meta object and retrieves the slot named "Log-‐
ger". Then it starts a separate thread, where the actual work
is done.

[Extension]
[Plug("Application")]
[Slot("Logger")]
public class MyApp : IApplication {
 Slot loggerSlot;
 public void MyApp(Extension e) {
 loggerSlot = e.Slots["Logger"];
 new Thread(Exec).Start();
 }
 void Exec() {
 ILogger logger;
 string format;
 while(true) {
 string msg;
 DoWork(out msg);
 foreach(Plug p in loggerSlot.PluggedPlugs) {
 logger = (ILogger) p.Extension.Object;
 format = (string) p.Params["TimeFormat"];
 logger.Print(DateTime.Now.ToString(format)
 + ":" + msg);
 }
 Thread.Sleep(2000);
 }
 }
 void DoWork(out string msg) {
 /* not shown */
 }
}

Listing 3. Application host with the Logger slot.

In the Exec method, the host does its work and then uses the
plugged loggers to print a message. The contributors can be
accessed via the PluggedPlugs collection of the logger slot.
For each logger, the host accesses the .NET object through
the property Object and retrieves the logger's time format
from the parameter TimeFormat. Then it formats the time
stamp and prints the log message. The thread repeats that
operation in a two second interval. This host implementa-

tion supports dynamic reconfiguration. If at run time, log-
gers are dynamically added or removed, the host reflects
the configuration change, because the composition model
updates the PluggedPlugs collection.

This completes the example. We compile the slot defini-
tion with the interface ILogger in a separate DLL file (the
so-called contract), because both, the host and the contribu-
tor, compile against the interface ILogger. If we compile the
classes ConsoleLogger and MyApp into plug-in DLL files and
drop them into the plug-in repository of Plux everything
will fall into place. The Plux infrastructure will discover the
extension MyApp and plug it into the Application slot of the
Plux core. It will also discover the extension ConsoleLog-
ger and plug it into the Logger slot of MyApp (cf. Figure 5).

Console-
Logger

MyApp

Ap Lo

Core

Di

Ap Lo

Ap .. Application Di .. Discovery Lo .. Logger

Figure 5. Composed application with host and logger
contributor.

2.4 Composition infrastructure
The composition infrastructure (CI) allows the execution of
applications built from contracts and plug-ins that conform
to the composition model. Figure 6 shows the subsystems
of the CI and the way how composition works. In a
nutshell, the CI discovers extensions in a plug-in repository
and composes an application from them by connecting
matching slots and plugs.

The plug-in repository is typically a folder in the file
system containing contract DLL files (i.e., slot definitions)
and plug-in DLL files (i.e., extensions).

The discovery core ensures that at any time the type
store contains the metadata representation of the plug-in
repository. When the discovery core detects an addition to
the repository, it extracts the metadata from the DLL file
and adds it to the type store. Vice versa, when it detects a
removal from the repository, it removes the corresponding
metadata from the type store.

The type store maintains type metadata for contracts and
extensions that are available for composition. It acts as an
observable object notifying the composition core about
changes. Thus, whenever new types become available, or
when types are no longer available the composition core
can take appropriate measures.

The composition core (short: composer) assembles an
application by matching slots and plugs. For this purpose it
observes the type store for changes. If a contributor be-
comes available in the type store, the composer queries the
instance store for matching slots. If it finds a matching slot
and a plug of the contributor qualifies, the composer plugs
the contributor. To plug a contributor means to instantiate
it, add it to the instance store, and add a plugged relation-
ship between the host and the contributor to the instance
store. After that, the composer opens the slots of the con-

tributor. Thus, the contributor becomes itself a host and the
composer fills its slots. Vice versa, if a contributor is
removed from the type store, the composer queries the in-
stance store for relationships containing the contributor's
plugs. If it finds such relationships, it unplugs the contribu-
tor. To unplug a contributor means to close its slots, to
remove the plugged relationship from the instance store, to
remove the contributor from the instance store, and to re-
lease it. Closing the contributor's slots causes the decompo-
sition to be propagated, i.e., all contributors are then un-
plugged from those slots as well.

In other words, the instance store maintains the current
composition state of an application, i.e., the instance meta-
data for extensions and their relationships.

Plug-in Repository Composed Application

Composition Infrastructure

Contract

Slot Definition Extension Type

Slot Type

Plug Type

Plug-in

Parameter Definition

Parameter

Discovery Core

Type Store Composition Core

Instance Store

Extension

Slot
Plug

adds metadata
assembles extensions

reads
types

notifies
on changes

detects changes
extracts metadata

stores
composition

Figure 6. Subsystems and responsibilities of the Plux com-
position infrastructure.

2.5 Extensible discovery
Discovery comprises that part of the Plux CI which is re-
sponsible for detecting plug-ins and extracting metadata
from them. Unlike in other plug-in systems, the Plux dis-
covery mechanism is not an integral part of the CI, but is a
plug-in itself. The CI's discovery core merely contains the
infrastructure necessary for integrating external discoverer
extensions (short: discoverer) that again have slots for de-
tector and analyzer extensions (short: detector, analyzer).
Discoverers plug into the Discovery slot of the Plux core.

When the discovery core integrates a discoverer, it pro-
vides a type builder, which allows the discoverer to build
meta objects compatible with the type store. After a dis-
coverer has detected a plug-in and has provided meta ob-

jects for it, it adds these meta objects to the type store.
The discovery core is designed for dynamic discovery.

Thus, while an application is running, the discoverer can
monitor a repository in a separate thread, and when it de-
tects changes, it calls back into the discovery core which in
turn updates the type store.

For bootstrapping, Plux includes a default discoverer
plug-in which includes a startup detector (cf. Figure 7).
When this discoverer is integrated into the discovery core,
its startup detector inspects a set of folders and files for
plug-ins. Those files and folders can be specified as com-
mand-line arguments when Plux is launched.

The default discoverer plug-in contains also an attribute
analyzer which extracts type metadata from custom attrib-
utes (cf. Section 2.3) in plug-in DLL files.

Default Discoverer

Composition Infrastructure

Type
Store

Startup
Detector

Attribute
Analyzer

Discovery
Core

Discovery
Coordinator

Composition
Core

Instance
Store

.. uses .. plugs

Figure 7. Integration of the default discoverer into the dis-
covery core.

Inside the default discoverer, the discovery coordinator co-
ordinates detectors and analyzers. The detectors inspect
repositories and detect plug-ins. The analyzers extract
metadata from plug-ins. The coordinator is also extensible.
Thus, to customize discovery, we can either contribute a
complete discoverer to the discovery core, or we can con-
tribute a detector or an analyzer to the coordinator. Keeping
the detector and the analyzer as separate extensions allows
us to replace them individually. For example, we could re-
place the detector with one that retrieves plug-ins over the
network instead of from a file system folder, or we could
replace the analyzer with one that gets the metadata of ex-
tensions from XML files instead of from .NET attributes.

There can be several detectors and analyzers plugged
into the discovery coordinator at the same time, each of
them responsible for detecting plug-ins from different
sources and for analyzing them according to their structure.
For example, in addition to the startup detector (that re-
trieves plug-ins from the files and folders specified in the

command-line arguments) there is also a repository detec-
tor that continuously monitors a special folder (the plug-in
repository) for plug-ins. The repository detector is specified
in the list of command line arguments and is therefore de-
tected by the startup detector. It is then analyzed and
plugged into the discovery coordinator. From now on both
the startup detector and the repository detector will be ac-
tive, each of them trying to retrieve plug-ins from their par-
ticular sources.

2.6 More features
Other features of the infrastructure that cannot be discussed
here are the management of composition rights (e.g., which
extensions are allowed to open a certain slot, and which ex-
tensions are allowed to fill it), slot behaviors that allow de-
velopers to specify the way how slots behave during com-
position (e.g., one can limit the capacity of a slot to n
contributors, or one can automatically remove a contributor
from a slot when a new contributor is plugged in there), as
well as a scripting API that allows experienced users to
override some of the operations of the composition core.
For a more extensive description of the features see
[1][7][8].

3. Motivating Example
In Plux, the metadata of the slots and plugs define which
extensions can be plugged together by the composition
core. As shown in Section 2.3, the default way to specify
this metadata is to use .NET attributes attached to language
constructs. For general-purpose extensions, which we want
to reuse in different parts of the application, the problem is
that we need different metadata on each reuse.

Customers

Articles

1 ACME Inc.
2 IBM Corp.

(216) 272-0003
(800) 426-9900

40 West Orange Street
1 New Orchard Road

Chogrin Falls
Armonk

NAME PHONE STREET CITY

3 Microsoft C (800) 426-9900 1 Microsoft Way Redmond

search for:
Name & Addres

search in:
Beginning of field

search mode:

1 110-0420
2 230-2210

Conveyor Belt
Cardan Joint

100 x 85
90/280 TQY

B5000x
MB505/A3

CODE DESCRIPTION SPECIFIC. SUPPLIER

3 700-8310 Petrol Pump 200 oz. / 2hp ZT200/2b

search for:
Description

search in:
Anywhere in field

search mode:

Figure 8. User interface for customer and article view.

Let us assume that we want to create an enterprise re-
source planning application with a customer view and an
article view as shown in Figure 8. Since we want to be able

to add arbitrary controls to the views, the view extensions
need a slot for controls. We provide two contributors for
this slot: A grid panel, which displays data records, and a
filter panel, which offers search capabilities. Both need a
slot for the data source that will be plugged into them.

Listing 4 shows the definitions for the Control and the
DataSource slot. The Control slot requires a float parameter
Order. The view host arranges the controls from top to bot-
tom using the floating point value to determine their order.

[SlotDefinition("Control")]
[Param("Order", typeof(float))]
public interface IControl {
 Control Control { get; }
 string Name { get; }
}

[SlotDefinition("DataSource")]
public interface IDataSource {
 string Name { get; }
 object Data { get; }
 event EventHandler Changed;
}

Listing 4. Definition of control and data source slot.

The grid panel and the filter panel are general-purpose ex-
tensions that can be reused at many places of an applica-
tion. Here, they should be instantiated twice, once for each
view. The Grid extension has a Control plug for the view
host (cf. Figure 10), and it has a DataSource slot for the
data provider. If we declare the metadata with custom
attributes as shown in Listing 5, the composer plugs a sepa-
rate grid into each view, as the Control slots in both views
require unique contributors. But then we run into two prob-
lems: (1) When the composer tries to fill the DataSource
slots of the grids, it plugs every data contributors into every
grid, because the data contributors' plugs match the slots of
all grids. But this is not the intended composition (cf. Fig-
ure 9). (2) In a similar way, the composer plugs every con-
trol into every view. Thus, one cannot specify that a partic-
ular control must be plugged into only one of the views,
e.g., that the filter panel should only go into the article
view, but not into the customer view.

[Extension]
[Plug("Control")]
[Param("Order", 0.5f)]
[Slot("DataSource", Shared=true)]
public class Grid : IControl { ... }

Listing 5. Metadata for data grid extension.

Figure 10 shows the composition as intended: The Cus-
tomerData extension (3) plugs only into controls which
contribute to the customer view (1), and the ArticleData ex-
tension (4) plugs only into controls which contribute to the
article view (2).

3.1 Problems without generics
In order to compose the customer view and the article view
correctly, we need to selectively connect controls with
views as well as data sources with controls. Without gener-
ics there are two solutions for this problem: (a) Disabling

the composer and plugging extensions together program-
matically. (b) Writing different versions of the Grid and
Filter extensions with different metadata that either match
the customer view context or the article view context. Let
use see how these approaches work and why they are
inadequate.

Ap .. Application Di .. Discovery

Ct .. Control Ds .. DataSource

Grid1

Ct Ds Customer-
Data

Ds

Article-
Data

Ds

Filter1

Ct Ds

Grid2

Ct Ds

Filter2

Ct Ds

Shared

Shared

Customer-
View

Ap Ct

Article-
View

Ap Ct

Ds { Shared }

Ct { Unique }

Figure 9. Incorrect composition of data providers.

Ap .. Application Di .. Discovery
Ct .. Control Ds .. DataSource

1

2

3

4

Filter1
Ct Ds Customer-

DataDs

Article-
DataDs

Grid1
Ct Ds

Filter2
Ct Ds

Grid2
Ct Ds

Shared

Shared

Customer-
ViewAp Ct

Article-
ViewAp Ct

Ds { Shared }

Ct { Unique }

Figure 10. Composed application with customer and article
view.

(a) Programmatic composition means to disable the
composer for a particular slot, which can be done by setting
the slot's AutoPlug property to false. As a result, the com-
poser will not automatically plug contributors into this slot.
Instead, we have to do that manually in the source code.
For example, if we want to plug a Grid extension into the
Control slot of ArticleView we have to write an event han-
dler for the Opened event of the Control slot, which is raised
when this slot is opened (cf. Listing 6). In the event han-
dler, we have to look up the Grid extension in the type
store, instantiate it, disable the composer for its DataSource
slot, and plug it into the Control slot using a special script-

ing API. Then we have to look up the ArticleData exten-
sion and plug it into the DataSource slot of Grid.

[Slot("Control", AutoPlug=false,
 OnOpened="Control_Opened")]
public class ArticleView : IApplication {
 Slot controlSlot;
 public ArticleView(Extension e) {
 controlSlot = e.Slots["Control"];
 }
 public void Control_Opened(SlotEventArgs args) {
 TypeStore typeStore = args.Runtime.TypeStore;
 ExtensionType gridType
 = typeStore.ExtensionTypes["Grid"];
 Extension grid = gridType.CreateExtension();
 grid.Slots["DataSource"].AutoPlug = false;
 controlSlot.Plug(grid.Plugs["Control"]);

 ExtensionType dataSourceType
 = typeStore.ExtensionTypes["ArticleData"];
 Extension data
 = datasourceType.GetSharedExtension();
 grid.Slots["DataSource"].Plug(
 data.Plugs["DataSource"]);
 }
}

Listing 6. Programmatic composition in article view host.

Programmatic composition causes three problems: (1) The
composition of controls and data sources must be pro-
grammed manually, which is exactly the effort we wanted
to avoid, when we chose to use the Plux composer in the
first place. (2) Programmatic composition of controls ren-
ders the view inextensible, because the view cannot inte-
grate controls that were not known at compile time. (3) If
all data sources share the same plug name, other hosts also
need to compose manually, if they want to access the data
source.

Parameter values are an additional problem. For exam-
ple, the Control slot in Listing 4 requires the float parame-
ter Order. This floating point value determines the order in
which the view host arranges the controls. If we declare the
order value with an attribute on the grid, each grid has the
same position regardless of the view that it contributes to.
But we want each grid to have a different order value.

(b) The second approach is to subclass a new extension
on each reuse. In Listing 7 we derive subclasses for the arti-
cle view and the customer view.

[Plug("ArticleControl"),
 Param("Order", 0.5f),
 Slot("ArticleData", Shared=true)]
public class ArticleGrid : Grid { ... }

[Plug("CustomerControl"),
 Param("Order", 0.7f),
 Slot("CustomerData", Shared=true)]
public class CustomerGrid : Grid { ... }

Listing 7. Extension reuse through sub-classing.

On each subclass we can declare a unique plug, a different
value for the order parameter, and a unique slot for the data
source. Although that approach does allow automatic com-
position, it causes two problems: (1) Subclassing creates
many unnecessary types, because we create a new class on

each reuse, when all we need is new metadata. (2) We have
to redeclare all metadata on the subclass, although we only
wanted a new slot and plug name, and different parameter
values. For example, the DataSource slot in Listing 5 con-
figures the slot for shared contributors (Shared=true). This
is true for all grids. If we by mistake set a different configu-
ration in a subclass, the extension will work uncorrectly.

3.2 Requirements for generics
From this example and the problems of non-generative ap-
proaches, we derive three requirements: (1) It should be
possible to generate extensions with metadata that are sepa-
rated from the implementation class. (2) We want to gener-
ate multiple extensions with different metadata from a sin-
gle class. (3) We would like to distinguish between
different kinds of metadata. Metadata that configure the
composer such as Shared=true or AutoPlug=false should
not be generic, i.e., they should be exactly the same in all
extensions that are generated from a template. On the other
hand, metadata that describe slot names, plug names and
parameter values should be able to vary in the generated
extensions.

4. Generic Plug-ins
Here, we introduce our approach for generic plug-ins that
meets the requirements from Section 3.2. A generic plug-in
contains one or several extension templates. An extension
template comprises a class, metadata that configure the
composer, and metadata placeholders for slot names, plug
names, and parameter values. In contrast to regular exten-
sions, metadata in templates are incomplete because of the
placeholders. In order to generate extensions from tem-
plates, one has to discover the templates and replace the
placeholders with metadata from an external source (e.g., a
configuration file or a database).

Figure 11 revisits the example from Section 3 using a
template. (a) The template GridTemplate has four place-
holders: <Grid> for the extension name, <Control> for the
plug name, <DataSource> for the slot name, and <Order>
for a parameter value. (b) The external metadata specify
that two extensions should be generated from the template,
the ArticleGrid and CustomerGrid extensions. For the arti-
cle grid, the ArticleControl plug replaces the <Control>
placeholder, the ArticleData slot replaces the <Data-
Source> placeholder, and the float value 0.5 replaces the
<Order> placeholder. For the customer grid, the placehold-
ers are replaced in the same manner.

Since generic plug-ins only affect the variability of
metadata and metadata are provided by the Plux discovery
mechanism, generic plug-ins can be integrated into Plux by
introducing a custom analyzer for templates (cf. Section
2.5). A template analyzer can be plugged into the discovery
coordinator of the default discoverer. It replaces placehold-
ers in the template metadata with external metadata, and as
a result, it generates extensions from templates.

a) Template extension c) Generated extensions

<Grid>

<Control> <Datasource>

<Order>

ArticleGrid
Article
Control

ArticleData

Order=0.5f

CustomerGrid
Customer
Control

CustomerData

Order=0.7f

Grid

Control
Datasource
Order

! ArticleGrid
 = Grid.dll/Grid
! ArticleControl
! ArticleData
! 0.5f

Grid

Control
Datasource
Order

! CustomerGrid
 = Grid.dll/Grid
! ArticleControl
! ArticleData
! 0.7f

b) External metadata

GridTemplate

Figure 11. ArticleGrid and CustomerGrid extensions gen-
erated from template Grid and external metadata.

4.1 The Template attribute
To declare a template, we attach the Template attribute to a
class. Listing 8 shows the grid template example. For the
plug, the parameter, and the slot we use the corresponding
Plux attributes. In order to distinguish placeholders from
real meta names, we enclose the placeholder names in
chevrons. The names in chevrons serve two purposes: first-
ly, they are placeholders that are to be replaced with names
from the external metadata; secondly, they specify the slot
definition on which the named slot or plug is based. For
example, the template slot <DataSource> is based on the
slot definition DataSource (cf. Listing 4).

[Template("Grid")]
[Plug("<Control>")]
[Param("Order", "<Order>")]
[Slot("<DataSource>", Shared=true)]

public class Grid : IControl { ... }

Listing 8. Grid template definition.

<Grid> → ArticleGrid=Grid.dll/Grid
<Control> → ArticleControl
<Datasource> → ArticleData
<Order> → 0.5f

Listing 9. Metadata for article grid.

[Extension("ArticleGrid")]
[Plug("ArticleControl")]
[Param("Order", 0.5f)]
[Slot("ArticleData",
 SlotDefinition="DataSource", Shared=true)]

public class Grid : IControl { ... }

Listing 10. Attributes equivalent to generated article grid.

Listing 10 shows a class and its attributes that are conceptu-
ally equivalent to the grid class that results from the tem-
plate in Listing 8 and the external metadata in Listing 9. In
fact, such a class is not generated explicitly, but the class of
the template (i.e., Grid) is entered directly into the type
store, decorated with the external metadata.

For the article grid, [Template("<Grid">)] was replaced
with [Extension("ArticleGrid")], [Plug("<Control>")]
with [Plug("ArticleControl")], and [Slot("<Data-‐
Source>")] with [Slot("ArticleData")]. Since the latter
slot is actually based on the slot definition DataSource we
need to set the SlotDefinition property of the [Slot]
attribute in order to map ArticleData to DataSource. Final-
ly, the parameter placeholder <Order> is replaced with the
float value 0.5. For the customer grid, the placeholders are
replaced in the same way.

The retrieval of slot meta elements in templates is differ-
ent than in regular extensions, because the name of a tem-
plate slot is not known at compile time. Thus, when we
have to access this slot from the code of the extension, we
use a slot index instead of a slot name. In Listing 11 the slot
<DataSource> was given the index 0, and this index is used
when the slot is accessed in the Grid's constructor.

[Template("Grid")]
[Plug("<Control>")]
[Param("Order", "<Order>")]
[Slot("<DataSource>", Index=0, Shared=true)]

public class Grid : IControl {
 Slot dataSourceSlot;
 public void Grid(Extension e) {
 dataSourceSlot = e.Slots[0];
 }
 ...
}

Listing 11. Retrieval of slot in extension template.

4.2 Discovering templates in Plux
To generate extensions from templates essentially means to
replace metadata placeholders with real metadata. In the
Plux CI, metadata is retrieved by the discovery core. Thus,
support for templates can be implemented by a special dis-
covery extension called TemplateAnalyzer.

Default Discoverer

Startup-
Detector

Generic
Plug-in

Config
File

Attribute-
Analyzer

Discovery-
Coordinator

Template-
Analyzer

Extension
Template

Generated
Extensions

.. plugs

Figure 12. Integration of the the template analyzer into the
discovery mechanism.

Figure 12 shows the template analyzer and how it inte-
grates with the discovery coordinator. After a detector has
found a plug-in, the discovery coordinator directs the ana-

lyzers to search its metadata. The attribute analyzer ignores
the generic plug-in Grid.dll, after it unsuccessfully checked
for the [Extension] attribute. If the template analyzer in-
spects Grid.dll, it finds the [Template] attribute and there-
fore knows that this is a plug-in from which it can extract
metadata. The template analyzer then searches the configu-
ration file for metadata matching the plug-in file and tem-
plate name (cf. Grid.dll/Grid in Listing 9). It generates an
extension meta element with the name ArticleGrid and
reads the plug, param, and slot attributes from the template.
For this purpose, it uses the attribute analyzer. Finally, it re-
places the placeholders with the metadata from the configu-
ration file and passes the created metadata to the discovery
core.

5. Case Study
To validate Plux and generic plug-ins, we are conducting a
case study with our industrial partner BMD Systemhaus
GmbH. BMD is a medium-sized company offering enter-
prise software products to 18.400 customers and 45.000 ac-
tive users mainly in Austria, Germany, and Hungary. BMD
Software is a comprehensive suite of enterprise applica-
tions for customer relationship management (CRM), ac-
counting, cost accounting, payroll, enterprise resource plan-
ning, as well as for production planning and control.
BMD's target market is fairly diversified, ranging from
small tax counselors to medium-sized auditing firms or
large corporations. Customized products are an essential
part of BMD's marketing strategy to address the needs of
those markets.

To pursue customizable products, BMD initiated a pilot
project where we applied Plux to the CRM product. We
have developed a set of usage scenarios demonstrating the
need for a reconfigurable application with support for dy-
namic addition and removal of features [9]. In BMD's mar-
ket environment, customization enables two major scenar-
ios: (1) Customize the feature-rich enterprise application
for individual users by assembling custom applications
from plug-ins that BMD offers with its core product. (2)
Customers should be able to contribute their custom exten-
sions, because even if the core product covers all the major
business-relevant scenarios, customers typically ask for
more features addressing their special needs.

Building the enterprise application with the Plux infra-
structure enables Scenario 1. We partly ported the CRM ap-
plication to Plux to demonstrate customized applications
[9][10][11]. The further work for Scenario 2 led to generic
plug-ins. The motivating example from Section 3 covers
the most frequent extensibility scenario: A third-party
wants to contribute a custom view. When third-parties con-
tribute functionality, their effort is significantly reduced if
they use templates, because templates allow them to reuse
general-purpose extensions. For example: a standard grid
can be customized as a data grid, a customer grid, or an ar-
ticle grid; a standard filter panel can be customized to filter
customers, articles, or employees; a standard menu bar or
tool bar can be customized for different views. For data

integration, controls provided by the third party integrate
BMD's data source extensions.

6. Related Work
In programming languages, generic data types are a well-
known concept that was pioneered by Ada in the early
eighties and is now part of most modern languages [12].
Generic programming allows developers to define abstract
data types that can be parameterized by other types which
are specified later on. It reduces code duplication and pro-
motes type-safety.

The implementation of generic data types in mainstream
languages such as Java, C#, and C++ differs [13][14][15].
In C++, generic types are described by templates. For each
specific usage of a template the C++ compiler generates a
new type. Thus, at run time, the generated types are like
regular types. In C#, genericity is a concept that is not only
supported by the language but also by the virtual machine
(the Common Language Runtime). At run time, the types
are still generic. However, the just-in-time compiler closes
the types, i.e., the type parameters are replaced with specif-
ic types. In comparison to C#, Java generics are simpler,
because Java supports genericity only at source code level,
but not at the machine level. In other words, it does not
generate types at all. Instead, Java uses Object references at
run time and does all type checking in the java source
compiler.

In plug-in systems, generics have not been an issue so
far. Plug-in frameworks such as OSGi or Eclipse rely on
programmatic composition, where programmers connect
components explicitly. These frameworks can of course
make use of generic classes, but generic metadata are not
necessary because there is no automatic composition where
the same component should be used with different metadata
at various places in the code. In Plux, we have automatic
composition guided by metadata. Since the metadata con-
trol which components get connected, they must be differ-
ent for each reuse. Generics are a means to solve this prob-
lem by customizing the metadata of reusable components
for different contexts.

In OSGi [3], contributors register in a global service reg-
istry and hosts look up services in this registry. If a host
connects to a contributor, it cannot control which services
the contributor will use. If such control is required, the con-
tributor must provide a custom configuration interface.

In Eclipse [4], extensions live in a global registry and
are discovered based on XML configuration files. The
metadata in the configuration files specify to which exten-
sion points (i.e., slots) the extension contributes. Providing
multiple XML files with different metadata, allows generat-
ing multiple instances of an extension. However, if the gen-
erated extension has extension points itself, Eclipse does
not generate their names from XML metadata. Instead, the
names of extension points are hard-coded in the extension.
In Plux, the names of slots and plugs are part of the meta-
data and can be customized for generic extensions.

7. Conclusions
In this paper we presented an approach for generic plug-ins
and their integration into the Plux plug-in framework.
Generic plug-ins solve the problem of reusing general-pur-
pose components in the context of automatic composition,
where the components declare their requirements and pro-
visions, and a composer inside the infrastructure composes
an application by matching those requirements and provi-
sions. The composer depends on metadata that specify
which components should be connected.

Generic plug-ins contain general-purpose reusable ex-
tensions as templates. The templates use placeholders for
metadata that direct the composer. At run time, when the in-
frastructure discovers the templates, their placeholders are
substituted by concrete metadata from external sources.

Together with our industry partner BMD we have shown
the feasibility and usefulness of generic plug-ins in a case
study. Our approach allows generating custom extensions
from BMD's templates and external composition metadata.

In future work we will develop coordination mecha-
nisms for extensions generated from templates. We learned
in the case study, that if we generate extensions from tem-
plates, and if we want to compose them without program-
ming, we also want to define relationships between them
just by specifying composition metadata. So far, we can
only define simple relationships, e.g., we can use a shared
data contributor to share a current data record or share a
certain filtering mechanism. However, we cannot combine
a current record in one data contributor with the filtering of
another data contributor. This is necessary for example in a
master-detail relationship. A master-detail relationship be-
tween two extensions means that a detail part contains de-
tailed information which is associated to the current selec-
tion in the master part.

With master-detail relationships, we want to automati-
cally compose data contributors guided by metadata in
three ways: (1) A master can control multiple details. For
example, in a user administrator, a list of groups (master)
can show associated users (first detail) and associated
group privileges (second detail) for the selected group. (2)
An extension can be both master and detail. For example, a
list of groups (master) can show the associated users (de-
tail) for the selected group. Vice versa, a list of users (mas-
ter) can show a list of groups (detail) to which the selected
user belongs. (3) Masters and details can be chained. For
example, a list of groups (master) can show the associated
users (here as detail) for the selected group. In a chain, the
list of users (here as master) shows the groups to which the
user belongs (detail).

8. References
[1] Wolfinger, R.: Dynamic Application Composition with Plux.NET:

Composition Model, Composition Infrastructure. Dissertation, Jo-
hannes Kepler University, Linz, Austria, 2010.

[2] Birsan, D.: On Plug-ins and Extensible Architectures. ACM Queue,
3(2):40–46, 2005.

[3] OSGi Service Platform, Release 4. The Open Services Gateway Ini-
tiative, http:/ /www.osgi.org, July 2006.

[4] Eclipse Platform Technical Overview. Object Technology Internatio-
nal, Inc., http:/ /www.eclipse.org, February 2003.

[5] Boudreau, T., Tulach, J., Wielenga, G.: Rich Client Programming,
Plugging into the NetBeans Platform, 2007.

[6] Microsoft: Microsoft C# Language Specifications. Microsoft Press,
Redmond, 2001.

[7] Jahn, M., Löberbauer, M., Wolfinger, R., Mössenböck, H.: Rule-
based Composition Behaviors in Dynamic Plug-in Systems. Submit-
ted to The 17th Asia-Pacific Software Engineering Conference,
APSEC 2010, Sydney, Australia, November 30-December 3, 2010.

[8] Jahn, M., Wolfinger, R., Mössenböck, H.: Extending Web Applica-
tions with Client and Server Plug-ins. Software Engineering 2010,
SE 2010, Paderborn, Germany, February 22-26, 2010.

[9] Wolfinger, R., Reiter, S., Dhungana, D., Grünbacher, P., and
Prähofer, H.: Supporting Runtime System Adaptation through Prod-
uct Line Engineering and Plug-in Techniques. 7th IEEE International
Conference on Composition-Based Software Systems, ICCBSS
2008, Madrid, Spain, February 25-29, 2008.

[10] Rabiser, R., Wolfinger, R., Grünbacher, P.: Three-level Customiza-
tion of Software Products Using a Product Line Approach. 42nd
Hawaii International Conference on System Sciences, HICSS-42,
Big Island, Hawaii, USA, January 5-8, 2009.

[11] Reiter, S., Wolfinger, R.: Erfahrungen bei der Portierung von Delphi
Legacy Code nach .NET. Nachwuchs-Workshop, SE 2007 - the Con-
ference on Software Engineering, Hamburg, Germany, March 27-30,
2007.

[12] Barnes, J.: Programming in Ada 95. Addison-Wesley Longman, Am-
sterdam, 2006.

[13] Sun Microsystems: Java Platform, Standard Edition 6, API Specifica-
tion. http://java.sun.com/javase/6/docs, 2006.

[14] Richter, J.: CLR via C#. Applied Microsoft .NET Framework 2.0
Programming. Second Edition, Microsoft Press, 2006.

[15] Stroustrup, B.: The C++ Programming Language. Addison-Wesley
Longman, Amsterdam, 2000.

