
Technisch-Naturwissenschaftliche
Fakultät

Metrix - A Measuring Tool for Run-time Figures
in Plug-in based .NET Applications

BACHELORARBEIT
(Projektpraktikum)

zur Erlangung des akademischen Grades

Bachelor of Science

im Bachelorstudium

INFORMATIK

Eingereicht von:
Rainer Pichler, 0555853

Angefertigt am:
Institut für Systemsoftware

Beurteilung:
Mag. Reinhard Wolfinger

Hagenberg im Mühlkreis, Oktober 2009

Metrix
A Measuring Tool for Run-time Figures in Plug-in based .NET Applications

Abstract

Advocates of plug-in based architectures claim that plug-in components
make applications customizable. They argue that customizable applications
are smaller and easier to use. This bachelor thesis presents a system of
metrics to evaluate those claims for the composition framework Plux.NET.
The plug-in component Metrix integrates into the Plux.NET composition
framework and provides those metrics. It measures how many of an
application's components are active and how this number changes when the
application adapts to a new working context. Metrix visualizes metrics at
run-time and can log metrics for off-line analysis.

Table of Contents
1 Overview...1
2 Using Metrix...2

2.1 Installing Metrix..2
2.2 Querying metrics...3
2.3 Logging metrics..5
2.4 Metrix Documentation..8

3 Metrix Design Goals...11
3.1 Structure of Metrix..11
3.2 Behavior of Metrix..13

4 Developing with Metrix..14
4.1 Interfaces...14
4.2 Using Metrix in Applications..16
4.3 Extending Metrix..19
4.4 UI Controls..28

5 Further Work and Discussion..33
5.1 Derived metrics must be compiled..................................33
5.2 Limited analysis of memory usage.................................33

6 References...34

1 Overview
The composition framework Plux.NET is designed for Microsoft .NET and aims at building

lightweight applications. It consists of a minimal core and is extensible through plug-ins.

Whether such architectures allow to build more lightweight applications than traditional ap-

proaches, is an open question.

This bachelor thesis discusses the Plux.NET plug-in Metrix. Metrix collects run-time metrics

about Plux.NET applications. Researchers use these metrics to evaluate the claim of being

lightweight. This work is about how to aquire the data with Metrix but not about the interpre-

tation of those data. Further information about the plug-in platform Plux.NET can be obtained

from http://ase.jku.at/plux.

To achieve the task of collecting metrics, Metrix consists of four parts: Firstly, Metrix in-

cludes a set of so-called figures, which provide more than 40 metrics at different granularity

levels. The Filesize metric for example is collected separately for each assembly as well as for

the Plux.NET application as a whole. Metrix can generate a HTML documentation with an

overview of available metrics. Secondly, Metrix integrates in a command line tool and allows

the user to query metrics in a text-based manner. Thirdly, Metrix includes four user controls to

display metrics in Windows Forms applications. Finally, the plug-in includes an extensible

logger for saving observed metrics.

The remainder of this bachelor thesis consists of the following parts: Firstly, section 2 gives

an overview on how to work with Metrix. Then, section 3 explains the structure and behavior

of Metrix and therefore gives a deeper understanding of the features explained in the second

section. After that, section 4 discusses how developers can extend Metrix further through new

plug-ins. It also shows how they can use metrics in their applications. Finally, section 5 sum-

marizes and outlines further work.

- 1 -

2 Using Metrix
This section shows how non-developers can use Metrix. Section 4.2 (Using Metrix in Appli-

cations) discusses how developers can integrate Metrix in other applications.

Firstly, this section explains how to install Metrix. Secondly, it discusses how users can con-

trol Metrix through a command line interface. Thirdly, it describes how users can log metrics

to a file. Fourthly, it gives an overview over the available metrics.

2.1 Installing Metrix

Plux.NET can be downloaded from http://ase.jku.at/plux/downloads. To use Metrix, a mini-

mal Plux.NET environment must be set up by copying the following files in an arbitrary

folder:

File Description

Metrix.Contracts.dll
Plux.Contracts.dll
Scripting.Contracts.dll

These assemblies contain interface definitions which describe
the capabilities of components.

IsolatedStoragePersistor.dll
Plux.Framework.dll
Preferences.dll

These components allow to persist settings. They are used by
the Plux.NET command line interface and the Metrix logger.

LogWriter.dll
Metrix.dll
MetrixCmdlets.dll

The Metrix core components.

Plux.Client.dll
Plux.dll
Runtime.exe

The core components which make up the Plux.NET
composition framework.

ConsoleNG.dll
Scripting.dll

The Plux.NET command line interface and its script
interpreter back-end.

Table 1: A minimal Plux.NET environment for Metrix.

Launching Runtime.exe starts up the Plux.NET environment. At startup, the software compo-

nent infrastructure scans the working directory for components and interface definitions.

When it encounters a component which implements the IStartup interface, it instantiates the

component and calls the component's Run method. The component ConsoleNG.dll imple-

ments IStartup and displays a command line interface at startup. This component is also re-

ferred to as Plux.NET console.

The Plux.NET console allows the user to control the Plux.NET composition framework by

typing in commands. Since the Plux.NET console is based on Microsoft PowerShell (see also

Windows PowerShell), Microsoft PowerShell must be installed in order to use the Plux.NET

- 2 -

console. The Plux.NET console commands allow to control the composition of components

and to query information about components. Furthermore it can be extended with additional

commands through other components like Metrix. For familiarity, the naming scheme of the

commands follows the verb-noun pattern of Microsoft PowerShell (see also Learning Win-

dows PowerShell Names).

2.2 Querying metrics

Metrix integrates into the Plux.NET console which supports the Microsoft PowerShell object

pipeline. The object pipeline allows commands to pass on information to other commands as

objects instead as in text (see also Piping and the Pipeline in Windows PowerShell). There-

fore, Metrix commands can be combined with existing commands.

The get-measurement command retrieves metrics:

The optional parameters narrow the set of returned metrics: Firstly, a Scope, which filters the

measured elements' type, can be set. Possible values for Scope are: ExtensionInfo, SlotInfo,

PlugInfo, ExtensionTypeInfo, SlotTypeInfo, PlugTypeInfo, ContractInfo, SlotDefinition and

Runtime.

Secondly, FigureName can be used to filter metrics of interest. Please consider subsection 2.4

(Metrix Documentation) for available metrics. Both parameters support wildcards. Thirdly, an

Item for which to print metrics can be given. The Item parameter can be assigned through the

object pipeline.

The following statement gives an overview of the current state of the Plux.NET application:

Above statement will return all metrics for the Plux.NET application, like its uptime or the

number of loaded extensions. The result is passed on to format-measurement, which creates a

table representation. For each metric, one Current value is provided. Many metrics also have

a Total counter which increases whenever Current increases. Total counters never decrease.

For example, the Current value of zero for the metric queueitems indicates that the Plux.NET

task queue is idle at the moment. Additionally, the Total counter shows that Plux.NET has

processed 204 tasks since Metrix has started to monitor. Whenever a task is enqueued,

Current and Total increase. When a task is dequeued, Current decreases but Total stays the

same.

 Item FigureName Current Total
 Runtime bytesinuse 7093036
 Runtime closedslotinfos 0 8
 Runtime contractinfos 5 5
 Runtime extensioninfos 62 62
 Runtime extensiontypeinfos 163 163
 Runtime filesize 819712

- 3 -

get-measurement -Scope Runtime | format-measurement

get-measurement [-Scope] [-FigureName] [-Item]

 Runtime maxqueueitems 110
 Runtime openslotinfos 35 35
 Runtime pluggedextensioninfos 82 82
 Runtime pluggedplugs 62 123
 Runtime pluginfos 64 64
 Runtime plugininfos 19 19
 Runtime plugtypeinfos 172 172
 Runtime queueitems 0 204
 Runtime registeredextensiontypeinfos 147 147
 Runtime shared 59 59
 Runtime slotdefinitions 29 29
 Runtime slotinfos 35 35
 Runtime uptime 00:00:22.0817520

Listing 1: Querying application-wide metrics (shortened output).

The query above also shows that 62 extensions are loaded. However, it does not tell which

plug-ins they belong to. To answer this question, the following statement changes the Scope to

PluginInfo. Additionally, it just selects the metric extensioninfos by specifying the

FigureName:

Now, the output shows that Metrix alone loaded 47 extensions. Note that the total number of

extensions increased to 63. This happened because Metrix created a new extension which pro-

vides the extensioninfos metric for each plug-in:

 Item FigureName Current Total
 PluginInfo{1:Plux} extensioninfos 1 1
 PluginInfo{2:Plux.Framework.dll} extensioninfos 1 1
 PluginInfo{3:Workbench.dll} extensioninfos 1 1
 PluginInfo{4:Cerberus.dll} extensioninfos 1 1
 PluginInfo{5:Console.dll} extensioninfos 0 0
 PluginInfo{6:ScriptRunner.dll} extensioninfos 1 1
 PluginInfo{7:ConsoleDiscovery.dll} extensioninfos 0 0
 PluginInfo{8:ConsoleNG.dll} extensioninfos 1 1
 PluginInfo{9:ControlsApp.dll} extensioninfos 0 0
 PluginInfo{10:HotViz.dll} extensioninfos 0 0
 PluginInfo{11:IsolatedStoragePersistor.dll} extensioninfos 1 1
 PluginInfo{12:LayoutManager.dll} extensioninfos 0 0
 PluginInfo{13:LogWriter.dll} extensioninfos 0 0
 PluginInfo{14:MenuStrip.dll} extensioninfos 1 1
 PluginInfo{15:Metrix.dll} extensioninfos 47 47
 PluginInfo{16:MetrixCmdlets.dll} extensioninfos 3 3
 PluginInfo{17:Preferences.dll} extensioninfos 1 1
 PluginInfo{18:PropertyDialog.dll} extensioninfos 0 0
 PluginInfo{19:Scripting.dll} extensioninfos 4 4

Listing 2: Querying the number of extensions per plug-in.

Alternatively, the command display-measurement can be used too. It generates a table itself,

therefore the format-measurement command can be omitted. Because it is a convenience

function with fixed parameters, unused parameters must be omitted with the '*' wildcard.

Therefore, the previous statements can be written in a shorter form:

- 4 -

get-measurement -Scope PluginInfo -FigureName extensioninfos | format-
measurement

get-measurement -Scope Runtime | format-measurement
display-measurement Runtime *

get-measurement -Scope PluginInfo -FigureName extensioninfos | format-
measurement
display-measurement PluginInfo extensioninfos

Finally, get-measurement can also display measurements for a specific item. The following

statement prints all metrics for the extension Workbench:

Listing 3: Querying all metrics for a specific extension.

This is accomplished by utilizing the object pipeline. The get-extension command passes on

the according extension which is implicitly assigned to the Item parameter of get-measure-

ment.

As seen before, most loaded extensions belong to Metrix. Metrix keeps alive all figure exten-

sions which have a Total counter unless the user decides to release them. This is necessary be-

cause the total counter would reset with each query otherwise. The command free-figure can

be used to release all figures held back by Metrix.

2.3 Logging metrics

To analyze metrics at a later time, Metrix includes a logger extension called MetrixLogger. It

can log metrics at intervals as well as when an observed metric changes. For flexibility, the

logger is not bound to a specific output format. Instead, it allows extensions which implement

the LogWriter plug to conduct the further processing themselves. Metrix ships with three

LogWriter extensions: Firstly, CSVLogWriter saves the data comma separated into a text file.

The output file can then be further processed with third party software, for example a spread-

sheet application. Secondly, HTMLLogWriter can be used to view the logged metrics in a

browser. Thirdly, DebugLogWriter helps developers to understand when which methods of a

LogWriter are called.

The Plux.NET console command start-metrixlogger starts the logger. It will create and con-

figure the MetrixLogger and a LogWriter extension. It supports the parameters described in ta-

ble 2. Note that at least one of the options OnEvents or Interval must be set because otherwise

no output will be generated.

- 5 -

plux> get-extension Workbench | get-measurement | format-measurement
Item FigureName Current Total
ExtensionInfo{3:Workbench} closedslotinfos 0 0
ExtensionInfo{3:Workbench} openslotinfos 6 6
ExtensionInfo{3:Workbench} pluggedinbound 3 3
ExtensionInfo{3:Workbench} pluggedoutbound 1 1
ExtensionInfo{3:Workbench} pluginfos 1
ExtensionInfo{3:Workbench} registeredinbound 26 26
ExtensionInfo{3:Workbench} slotinfos 6

Parameter name Description

LogWriter The parameter LogWriter is mandatory and represents the name of the
LogWriter extension.

Measurements The parameter Measurements is mandatory and describes the metrics to
log.

File The parameter File is optional and specifies the file the LogWriter
writes into.

OnEvents This switch tells the log writer to log whenever an observed metric
changes.

Interval The parameter Interval is optional and sets the interval (in milliseconds)
at which values will be logged.

Table 2: Parameters for the start-metrixlogger command.

One problem of expressing what to log is, that the measurement providing the wanted metrics

for a specific meta element may not exist yet. Therefore, MetrixLogger uses so-called mea-

surement descriptors which represent a specific metric as string. Their syntax looks like this:

Basically, this representation allows to refer to a meta element via name or id. The indexer

brackets are omitted for runtime scoped measurements. Also, if Current or Total is not given,

Current is assumed. Therefore, a user can describe the number of open slots of the extension

MetrixLogger in several ways (assuming that the id of the extension is 7) :

To distinguish between several meta elements with the same name, the element's id can be

used. The actual ids of all MetrixLogger instances can be found out with the following com-

mand:

Additionally, the option parent can be set after the name of a meta element. This option al-

lows to distinguish same-named elements by specifying their parent element. It is supported

for SlotInfo, PlugInfo, SlotTypeInfo and PlugTypeInfo. The parent element is an ExtensionInfo

for the first two and an ExtensionTypeInfo for the last two types, which can be referred to by

name. Table 3 explains several measurement descriptors.

- 6 -

Scope ["[" (Name|Id)[";parent="string] "]"] "." FigureName ["."
("Current"|"Total")]

ExtensionInfo[MetrixLogger].Openslotinfos.Current
ExtensionInfo[MetrixLogger].Openslotinfos
ExtensionInfo[7].Openslotinfos.Current
ExtensionInfo[7].Openslotinfos

get-extension MetrixLogger

Measurement descriptor Description

Runtime.Extensioninfos
Runtime.Extensioninfos.Current

Current number of extensions in the
extension store.

Runtime.Extensioninfos.Total Total number of extensions in the extension
store since Metrix started monitoring.

ExtensionInfo[Workbench].Pluggedinbound Current number of plugs plugged into the
extension with name Workbench.

SlotInfo[Plux.View;Parent=Workbench].Plug
gedinbound

Current number of plugs plugged into the
Plux.View slot of the extension with name
Workbench.

Table 3: Examples for measurement descriptors which allow to refer to not yet existing
measurements.

The following example logs several characteristics of the Plux.NET composition framework

to a CSV file whenever a metric changes:

The log file looks like this:

Listing 4: An excerpt from the log file.

For this example, the Plux.NET environment was started by launching Runtime.exe. After

that, above console command started the logger. In the first two blocks of output, the number

of extensions steadily increases up to 25 and the memory usage rises. This happens because

the logger creates several figure extensions which measure the logged values. Because not all

figure extensions are instantiated at the beginning, two of the columns contain the value n/a.

Later on, the two missing measurements also return values. The metric

PluginInfo[Metrix.dll].Shared indicates the number of shared extensions which come from

the Metrix plug-in. A value of 7 is reasonable because the logger (one extension) logged mea-

- 7 -

start-metrixlogger -File out.csv -OnEvents -LogWriter CSVLogWriter
-Measurements Runtime.Extensioninfos,Runtime.Bytesinuse,
Runtime.Maxextensioninfos, Runtime.Maxqueueitems, Runtime.Queueitems.Total,
PluginInfo[Metrix.dll].Shared

Time;Runtime.Extensioninfos;Runtime.Bytesinuse;Runtime.Maxextensioninfos;Runtime.Maxqu
eueitems;Runtime.Queueitems.Total;PluginInfo[Metrix.dll].Shared
04.09.2009 14:42:34;24;12943400;n/a;121;42;n/a
04.09.2009 14:42:34;24;12951592;n/a;121;43;n/a
04.09.2009 14:42:34;24;12967976;n/a;121;44;n/a
04.09.2009 14:42:34;24;12984360;n/a;121;45;n/a
[…]
04.09.2009 14:42:34;25;12884156;n/a;217;266;n/a
04.09.2009 14:42:34;25;13056188;n/a;217;267;7
04.09.2009 14:42:34;25;13088956;25;217;268;7
[…]
04.09.2009 14:45:08;20;5565132;25;217;270;7
04.09.2009 14:45:08;20;5565132;25;217;270;7
04.09.2009 14:45:08;20;5589708;25;217;271;7
04.09.2009 14:45:08;19;5606092;25;217;271;7
04.09.2009 14:45:08;19;5614284;25;217;271;7
04.09.2009 14:45:08;18;5643444;25;217;271;7
04.09.2009 14:45:08;18;5643444;25;217;271;7

surements from six different figures. The logger itself belongs to the plug-in Metrix.dll

whereas the CSVLogWriter is a separate plug-in. The third block shows the shutdown of the

Plux.NET application: When the logger itself was released by the composition framework, 18

extensions still were alive.

2.4 Metrix Documentation

Metrix itself is plug-in based and therefore extensible. It includes the extension Metrix-

DocBuilder, which creates HTML documentation pages for all available metrics. This exten-

sion extracts the information from the figure extensions which provide the metrics.

To create a current documentation, it suffices to create the extension MetrixDocBuilder. The

user can achieve this in the Plux.NET console through the following command:

After that, a set of HTML files will be created in a folder named metrixdoc in the Plux.NET

base directory. The file index.html gives an overview of all available metrics and includes ref-

erences to detail pages for each metric. It is organized as a matrix: The columns represent the

different scopes (like Runtime, ExtensionInfo, SlotInfo, …) whereas the rows contain the Fig-

ureNames. Therefore, it is possible to see at which granularity levels a metric is available.

The following table shows important runtime scoped metrics:

FigureName Description

avgslotinfos The average number of slots per extension.

bytesinuse The memory used by the application (in bytes).

closedslotinfos The number of closed slots. A closed slot means that certain types of
features (provided by another extension) can not be added at this time.

extensioninfos The number of instantiated extensions. This metric describes the
number of active components in the application.

filesize The filesize of plug-ins and contracts (in bytes). It does not change
until assemblies are installed into or removed from the type store.

maxextensioninfos The maximum number of extensions instantiated so far.

maxqueueitems The maximum number of tasks enqueued in the Plux.NET task queue
so far.

openslotinfos The number of open slots. Open slots can be used to enrich an
extension with further functionality provided by other extensions.

pluggedplugs The number of plug to slot connections. This metric describes to which
extent the single extensions make use of each other.

queueitems The number of tasks enqueued in the Plux.NET task queue. Tasks for
composing applications through registering and plugging extensions

- 8 -

create-extension MetrixDocBuilder

are enqueued in the task queue and carried out one by one by the
Plux.NET composition framework.

shared The number of extensions that can be used by multiple other
extensions at a time.

unique The number of extensions which are supposed to be used by a single
hosting extension.

uptime The uptime of Plux.NET.

Table 4: Several runtime scoped metrics.

Metrix can observe the following types of Plux.NET meta elements, which are all derived

from the class RepositoryElement:

Type (Scope) Description Important metrics

ExtensionTypeInfo An extension type
contains the meta
data for specific
extensions.

extensioninfos: The number of instantiated
extensions.
plugtypeinfos: The number of plug types this
extension type provides.
registeredoutbound: The number of plug types
registered at slots of other extensions.
shared: The number of shared extension instances.
unique: The number of unique extension instances.

ExtensionInfo An extension is an
instance of an
extension type.
Multiple
extensions of the
same extension
type can exist.

closedslotinfos: The number of closed slots
belonging to this extension.
creationtime: The time when this extension was
created.
openslotinfos: The number of open slots belonging
to this extension. More open slots suggest a higher
extensibility because this extension can use more
contributing extensions.
pluggedinbound: The number of plugs plugged
into this extension's slots. Indicates, to what extent
the extension uses other extensions.
pluggedoutbound: The number of plugged plugs.
Indicates, to what extent other extensions use this
extension.
pluginfos: The number of provided plugs.
Indicates, to what extent this extension can
contribute to other extensions.
registeredinbound: The number of plug types
registered at this extension's slots.
slotinfos: The number of slots. Indicates, to what
extent this extension can be extended by other
extensions.

PluginInfo A plug-in is an extensiontypeinfos: The number of extension types

- 9 -

assembly
containing at least
one extension type.

included in this assembly.
filesize: The size of the assembly file in bytes.
plugincontribution: The number of plug-ins using
this plug-in.
pluginusage: The number of plug-ins this plug-in
uses.

SlotDefinition A slot definition is
an interface
definition that an
extension must
implement to
support a specific
plug.

paramdefinitions: The number of parameter
definitions which this slot definition provides.
slotinfos: The number of slots using this slot
definition.

ContractInfo A contract is an
assembly
containing at least
one slot definition.

filesize: The size of the assembly file in bytes.
paramdefinitions: The number of parameter
definitions included in this assembly.
slotdefinitions: The number of slot definitions
included in this assembly.

PlugTypeInfo A plug type
belongs to an
extension type and
represents a slot
definition which
this extension type
implements. It
holds the meta data
for plugs.

paramvalues: The number of parameter values
used to describe this plug type.
pluggedoutbound: The number of this plug type's
plugs which are plugged into slots. Describes, how
often this plug type's functionality is used.
pluginfos: The number of plugs belonging to this
plug type.
registeredoutbound: The number of slots this plug
type is registered at.

PlugInfo A plug belongs to
an extension. It can
be plugged into a
compatible slot of
another extension.

pluggedoutbound: The number of slots the plug is
plugged into. Indicates, how often this plug's
functionality is used.

SlotTypeInfo A slot type belongs
to an extension
type and holds
meta data for slots.

slotinfos: The number of slots belonging to this
slot type.

SlotInfo A slot belongs to
an extension. Slots
can be opened or
closed. A plug of
another extension
can be plugged into
an open slot.

opentime: The last time this slot was opened.
pluggedinbound: The number of plugged plugs.
registeredinbound: The number of plug types
registered to this slot.

Table 5: Plux.NET meta elements which Metrix can observe.

- 10 -

3 Metrix Design Goals

3.1 Structure of Metrix

Metrix contains a set of metrics which describe various aspects of the Plux.NET composition

framework. As stated earlier, metrics are provided for different meta elements of the

Plux.NET composition framework or for the application as a whole. This is described through

the Scope. When a metric has the scope ExtensionInfo for example, then this metric is calcu-

lated for each single extension. Another categorization is the FigureName which describes the

semantics of a metric. When several metrics share the same FigureName, but have different

scopes, then those metrics express basically the same, but at different granularity levels. The

combination of the properties FigureName and Scope is referred to as Figure. Two distinct

figures with the same FigureName provide the number of loaded extensions for each plug-in

and for the whole application. In contrast, the amount of memory used by the application is

also runtime scoped, but expresses something completely different. Therefore this figure also

has another FigureName:

Figure Description FigureName Scope Number of values

Number of loaded extensions for
each plug-in

extensioninfos PluginInfo 1 current value and 1
total counter for
each plug-in

Number of loaded extensions in the
whole application

extensioninfos Runtime 1 current value and 1
total counter

Memory used by the application bytesinuse Runtime 1 current value

Table 6: Each figure represents an unique combination of FigureName and Scope.

As shown above, a figure may also calculate multiple values: At plug-in level for example, a

figure returns one value for each plug-in. Moreover, there can be also a second value for each

meta element, which represents a total counter.

In Plux.NET, applications are constructed by composing extensions. Extensions can be con-

nected with others through the concept of plugs and slots. An extension is an instance of an

extension type. An assembly containing one or more extension types is called a plug-in.

In the plug-in Metrix.dll, each figure is represented as an extension: This enables the user to

just load those figures actually needed, keeping the memory footprint lean. Once a figure is

unplugged from all other extensions and thus not used currently, there is no need to keep it

alive any longer: Therefore it will be released and later recreated, if necessary. To keep it sim-

ple, Metrix figures use the shared instance mode of Plux.NET: This means that the figure's ex-

tension type will be instantiated at most once. Other extensions just have to ask Plux.NET for

- 11 -

a shared instance of the requested figure: If the figure is already in use, Plux.NET returns its

reference. If not, it creates the shared instance.

However, as figures keep track of all items belonging to their scope, there is a finer unit of or-

ganization: Each figure provides a collection of so-called measurements, which shrinks and

grows as observed items get released or are created. One such measurement belongs to a spe-

cific Plux.NET meta element and represents the actual measured metric for it. A measurement

provides a Current value, and a Total value if feasible. Figures like the number of loaded ex-

tensions, which count something, expose a Total value which increases whenever the Current

value increases. Therefore, the user knows how many extensions were loaded since Metrix

started monitoring and how many are loaded currently. In contrast, figures like the creation

time of an extension instance do not expose a Total value since they do not count anything.

The Current value may be of any arbitrary type, the Total value is a number (of type int32) al-

ways. Section 4.1.1 (page 14) provides more information about figure extensions and their

measurements.

Metrix is packaged in six assemblies: One contract assembly contains the interface definitions

for Metrix, whereas five plug-in assemblies contribute the functionality:

Assembly Description

Metrix.Contracts.dll This contract contains the slot definitions for Metrix extensions.
Applications reference this assembly when they use Metrix.

Metrix.dll This plug-in contains the Metrix core extensions with more than
40 figures, a logger and a documentation tool.

LogWriter.dll This plug-in contains three LogWriter extensions which can be
used in conjunction with the Metrix logger.

Controls.dll This plug-in contains four Windows Forms controls for
visualizing metrics.

MetrixCmdlets.dll This plug-in integrates Metrix into the new Microsoft Powershell
based Plux.NET console. If Microsoft Powershell is not installed,
Metrix can still be used without command line access by
removing this plug-in.

MetrixExamples.dll This plug-in contains several example applications using Metrix.

Table 7:The plug-ins Metrix consists of.

- 12 -

Figure 1: Metrix figure extension with measurement collection.

3.2 Behavior of Metrix

This subsection introduces the life-cycle of Metrix figures and measurements.

When Plux.NET creates a new meta element the figure wants to observe, the figure creates a

new measurement. After that, the figure notifies its users that a new measurement is available.

Now, the measurement can be used to query the desired metric values.

However, at some point in time, Plux.NET will free the meta element. This happens for exam-

ple, when an extension gets released. Metrix takes care of this by notifying clients when their

measurement of interest gets invalid. Alternatively, Clients can ask a measurement whether it

is still valid. However, for performance reasons, measurements will not check themselves for

validity when accessing a metric value. Also, measurements never become valid again once

they turn invalid.

Metrix is designed to update metrics only when needed. This works by observing Plux.NET

runtime events. However, sometimes metrics are recalculated although they have not

changed: This is the case, when no fitting events propagating these metrics' changes are avail-

able. Of course, the Total counters must be increased too whenever the Current counters rise.

Summing up, Metrix tries to avoid work which may not be needed. Also, there is no need to

poll for new measurements and values. Instead, Metrix provides a push model: Metrix will

notify its clients when new measurements are available or metric values might have changed.

- 13 -

Figure 2: Measurement life-cycle.

4 Developing with Metrix
This section describes how a developer can extend Metrix with custom figures.

4.1 Interfaces

This subsection discusses three interfaces for extending Metrix: Firstly, the slot definition

Plux.Figure allows to create custom figure extensions. Secondly, IMeasurement encapsulates

the metric values for one specific item. Thirdly, ILogWriter allows to extend the logger.

4.1.1 IFigure and IMeasurement

A Metrix figure is an own extension type that can be instantiated as shared extension. Due to

the nature of Plux.NET, the capabilities of Metrix are defined by a contract. This facilitates

that figures from different authors can be used in a uniform manner. The following slot defini-

tion lists the properties and events every Metrix figure exposes:

Listing 5: Slot definition for Plux.Figure slots (see Metrix.Contracts\IFigure.cs).

The attributes for the interface IFigure describe structured meta data which must be reported

by a specific figure. A user of a figure can then interpret these meta data. The most important

fields are Scope and FigureName: The first one describes to which type of meta element this

figure applies, whereas the second one defines the actual name of the figure. Several figures

supporting different scopes can have the same FigureName as long as they express the same

semantics: This pattern is used frequently when metrics are cumulated for different scopes.

For example, the number of extensions of a specific extension type and the number of exten-

sions for the whole application have a different Scope, but the same FigureName. However,

the scope in conjunction with the figure name is always unique among all figures.

The Type field defines the data type of the actual metric. SupportsTotal states whether the fig-

ure maintains a totals counter (of type int32). Finally, the Description field is used to make

documentation easy and uniform within the code: This free-text field is accessed by various

components to give further information about the figure.

- 14 -

 [SlotDefinition("Plux.Figure")]
 [Param("Scope", typeof(string))]
 [Param("FigureName", typeof(string))]
 [Param("Type", typeof(string))]
 [Param("SupportsTotal", typeof(bool))]
 [Param("Description", typeof (string))]
 public interface IFigure {
 event EventHandler<FigureEventArgs> MeasurementAdded;
 event EventHandler<FigureEventArgs> MeasurementRemoved;
 IEnumerable<IMeasurement> Measurements { get; }
 IMeasurement this[RepositoryElement repositoryElement] { get; }
 }

The actual interface that a figure implements is narrow: Firstly, it allows to retrieve the mea-

surement for a specific meta element or all measurements at once. Secondly, a user can ob-

serve the measurement collection for changes: When the measurement of interest does not ex-

ist yet, the client can subscribe to the MeasurementAdded event. It will notify the client when-

ever a new measurement is created.

Measurements encapsulate the actual metric values. Each measurement implements the inter-

face IMeasurement:

Listing 6: Interface definition for measurements (see Metrix.Contracts\IFigure.cs).

Like IFigure, IMeasurement also exposes several properties. However, measurements are

plain objects and not represented by an extension. Therefore, some static parameters which af-

fect the measurements too (for example Type and SupportsTotal) are attached to the figure ex-

tension type. Because measurements implement INotifyPropertyChanged, a measurement no-

tifies its clients when the metrics change or the measurement becomes invalid.

The Item property never changes since a measurement belongs to one specific meta element.

This property can be null because no meta element exists for the runtime scope. This also ap-

plies to runtime scoped figures: To query the measurement, supply null as index.

Due to the life-cycle described earlier, IsValid can only change from true to false. As values

must not be accessed once the measurement is invalid, clients should discard references to in-

valid measurements to facilitate garbage collection. Likewise, also the Total property must not

be accessed when the figure indicates that it does not support totals.

4.1.2 ILogWriter

The Metrix logger can be extended by LogWriter extensions to support different data sinks

(see page 5). To create a new LogWriter extension, the extension must implement the interface

ILogWriter. The interface definition looks like this:

Listing 7: The slot definition for LogWriter slots (see Metrix.Contracts\IFigure.cs).

- 15 -

 public interface IMeasurement : INotifyPropertyChanged {
 RepositoryElement Item { get; }
 object Current { get; }
 int Total { get; }
 bool IsValid { get; }
 }

 [SlotDefinition("LogWriter")]
 public interface ILogWriter
 {
 void Setup(Dictionary<string, string> configuration);
 void Open();
 void SetCaption(String[] caption);
 void Log(Object[] data);
 void Close();
 }

Basically, the logger is table-oriented. It has a fixed set of measurement values which are all

logged at specific points in time. Therefore, the number of columns in the table never

changes, but the number of rows grows when new values are logged.

For familiarity, the methods of a LogWriter are similar to file operations: Firstly, the Setup

method configures the log writer: For example, a file-based log writer could take a filename

and a text encoding as parameter. For logging to a database, the connection string might be set

this way. Secondly, the Open method prepares the data sink for writing data. A file based log

writer would open the file whereas a database log writer would establish the connection to the

database. Thirdly, the method SetCaption informs the log writer about the names of the met-

rics. Then, the logger calls the method Log whenever values should be written to the data

sink. Finally, the logger calls the method Close to finish pending writing operations. After

that, the log writer will be unplugged from the logger. Therefore, a LogWriter extension

should have set AutoRelease to true in order to get released after logging.

4.2 Using Metrix in Applications

This section uses examples to explain how other extensions can use Metrix figures.

To use Metrix figures, the application's extension needs to have a Plux.Figure slot. Normally,

the Plux.NET composition framework would plug all extensions having a Plux.Figure plug

into that slot automatically. To prevent that and let the application choose which figures

should be plugged, the property AutoPlug must be set to false for this slot. Because the appli-

cation wants to select from multiple figures, the property Multiple must be set to true. By set-

ting the properties OnRegistered and OnPlugged, the application can register event handlers

for these events of the Plux.Figure slot.

Listing 8: Declaration of the SampleApp extension (see MetrixExamples\SampleApp.cs).

To automatically instantiate the application extension at startup, it has a Startup slot and im-

plements IStartup with the Run method. However, in the following sample application, noth-

ing is actually done in this method.

The sample application's goal is to print the number of loaded extensions for the whole appli-

cation and for its own extension type. Therefore, the application needs to access two figures

with the same FigureName (extensioninfos), but a different Scope (Runtime and

ExtensionTypeInfo).

- 16 -

[Extension]
[Plug("Startup")]
[Slot("Plux.Figure", AutoPlug = false, Multiple = true, OnRegistered =
"Figure_Registered", OnPlugged = "Figure_Plugged")]
internal class SampleApp : IStartup
{
 public void Run() { }

The application connects these figure extensions in two steps: Firstly, the application chooses

the figures' extension types. This happens at the registration phase. According to above slot

configuration, the method Figure_Registered will be called for each Plux.Figure plug type.

By inspecting the parameters FigureName and Scope, the application extension can decide

whether to use an registered figure extension type or not. When the application wants to use a

registered figure, it must obtain a reference to an instance of that extension type. This is done

by calling the GetSharedExtension method of the wanted figure extension type. This method

returns the shared instance of the extension. If the shared instance does not exist and the pa-

rameter createOnDemand is set to true, the method creates the shared extension. Then, the

figure extension is plugged into the application's extension.

 public void Figure_Registered(object sender, RegisterEventArgs args)
 {
 // extract parameter values
 string figureName = (string)args.GetParamValue("FigureName");
 string scope = (string)args.GetParamValue("Scope");

 if (figureName == "extensioninfos" && (scope == "Runtime" || scope ==
"ExtensionTypeInfo"))
 {
 ExtensionTypeInfo figureExtensionType = args.PlugTypeInfo.ExtensionTypeInfo;
 // create the figure extension on demand, set this extension as creator
 ExtensionInfo figureExtension = figureExtensionType.GetSharedExtension(true,
myExtension);
 // plug figure extension into this extension
 figureExtension.PlugPlugs(args.SlotInfo.ExtensionInfo);
 }
 }

Listing 9: This method is called whenever a figure is discovered. Based on the figure's
parameters, the application decides whether the figure will be used.

In the second step (see Listing 10), the wanted figure is already plugged into the application's

extension. According to the Plux.Figure slot configuration, the method Figure_Plugged will

be called each time a figure is plugged. To distinguish figures, the application can access the

figure extension's parameters. This time however, it suffices to inspect the Scope. Because

AutoPlug was set to false, only wanted figure extensions will be plugged. Since both of them

have the FigureName extensioninfos, it is not inspected again. The application uses the prop-

erty Extension of the figure extension to obtain the actual figure object which implements the

IFigure interface. Now, the wanted measurement can be accessed via the indexer brackets.

Because runtime scoped figures have just one measurement belonging to no specific meta ele-

ment, the application supplies null as index.

- 17 -

Listing 10: This method is called for each figure the application decided to use.

The sample application uses the default way of composing Plux.NET extensions. For Metrix

however, this yields in tedious code since the application needs to distinguish the figures by

parameter values at two points. Therefore, Metrix ships with the MetrixHelper class, which

generalizes those registration and plugging tasks and allows to access Metrix with more struc-

tured code. Instead of above steps, the extension has IFigure properties which are annotated

with the SetFigure attribute. When a required figure extension is available, the corresponding

property is set by MetrixHelper. Therefore it suffices to describe the wanted figure once in the

SetFigure attribute with no further distinction. Of course, the registration and plugging events

must be forwarded to MetrixHelper. There, another object different from the extension can be

specified: This is useful when developing UI applications, because a form implementing the

IFigure properties can be specified. In this way, the extension itself must neither pass on fig-

ures to the form, nor must the form export controls to which the extension can assign mea-

surement values.

Furthermore, MetrixHelper provides convenient access to measurements. Often, measure-

ments of interest are not available immediately. Therefore, the application needs to observe

the figure's measurement collection until the wanted measurement is available. With

MetrixHelper, the application does not need to care about the fact whether a measurement is

available or not: The MeasurementAvailable and MeasurementAvailableByName methods call

a method implementing the MeasurementActionDelegate as soon as the measurement is avail-

able. The delegate's signature looks like the following:

The following code is an equivalent implementation of above sample application using

MetrixHelper:

[Extension]
[Plug("Startup")]
[Slot("Plux.Figure", AutoPlug = false, Multiple = true, OnRegistered = "Figure_Registered",
OnPlugged = "Figure_Plugged")]
class SimplyfiedSampleApp : IStartup
{
 private MetrixHelper helper = new MetrixHelper();

 public void Run() {}

- 18 -

public delegate void MeasurementActionDelegate(IMeasurement measurement);

public void Figure_Plugged(object sender, PlugEventArgs args)
{
 IFigure figure = (IFigure)args.Extension;

 // extract parameter values
 string scope = (string)args.GetParamValue("Scope");

 if (scope == "Runtime")
 Console.WriteLine("Number of extensions: " + figure[null].Current);
 else if (scope == "ExtensionTypeInfo")
 Console.WriteLine("Number of SampleApp extensions: " +
figure[args.SlotInfo.ExtensionInfo.ExtensionTypeInfo].Current);
}

 private IFigure runtimeExtensions;
 [SetFigure("Runtime","ExtensionInfos")]
 public IFigure RuntimeExtensions
 {
 set
 {
 runtimeExtensions = value;
 if (runtimeExtensions == null)
 return;
 helper.MeasurementAvailable(runtimeExtensions,null,m => Console.WriteLine("Number
of extensions: " + m.Current));
 }
 }

 private IFigure appExtensions;
 [SetFigure("ExtensionTypeInfo", "ExtensionInfos")]
 public IFigure AppExtensions
 {
 set
 {
 appExtensions = value;
 if (appExtensions == null)
 return;
 helper.MeasurementAvailableByName(appExtensions,"SimplyfiedSampleApp",m =>
Console.WriteLine("Number of SimplyfiedSampleApp extensions:" + m.Current));
 }
 }

 public void Figure_Registered(object sender, RegisterEventArgs args)
 {
 MetrixHelper.Register(Runtime.GetExtensionInfo(this), this, args);
 }

 public void Figure_Plugged(object sender, PlugEventArgs args)
 {
 MetrixHelper.Plug(Runtime.GetExtensionInfo(this), this, args);
 }
}

Listing 11: Equivalent implementation of the former SampleApp extension using the class
MetrixHelper (see MetrixExamples/SampleApp.cs).

Note, that the mechanisms behind are still the same as in the previous example application.

4.3 Extending Metrix

Metrix already includes a collection of built-in figures as described in section 2.4 (Metrix

Documentation). However, sometimes a user may want to define custom metrics. To do so,

the user writes an extension which has a Plux.Figure plug and therefore implements IFigure.

For the discovery of figures, Metrix uses the Plux.NET mechanisms. Therefore, only a few

points must be considered to accomplish the expected behavior: Firstly, the extension should

be declared as singleton to prevent the creation of more than one instance: This is done by set-

ting the property Singleton to true in the Extension attribute. Secondly, the extension name

should obey the naming scheme “Metrix.<Scope>.<FigureName>” to meet users' expecta-

tions. The FigureName parameter value is always lowercase, whereas the first character of the

figure name in the extension name must be uppercase. Then, a Description (free text) is

needed, which is used by the Metrix documentation generator for example. The parameter

Type represents the type of the Current value of the measurement. Finally, SupportsTotal indi-

cates whether the figure's measurements have a total value.

- 19 -

As an example, a figure extension recording the time that the Plux.NET task queue was emp-

tied last will be shown. The Scope is set to Runtime. Therefore it has only one permanent

measurement and does not use the MeasurementAdded and MeasurementRemoved event defi-

nitions. The runtime scoped figure object returns its measurement when null is passed as in-

dex. Alternatively, it is also accessible via the Measurements property which returns a collec-

tion of all measurements (containing one measurement in this case). The type is set to Date-

Time and no total value is supported (indicated by setting parameter SupportsTotal to false).

The figure updates its measurement by observing the QueueEmptied event of the Plux.NET

task queue. The measurement itself is defined in the inner class M which implements

IMeasurement. When the measurement's Current value is updated, the measurement informs

its clients via the PropertyChanged event. The Item property is null because the measurement

does not belong to a specific meta element:

[Extension("Metrix.Runtime.Taskqueueemptiedtime", Singleton = true, OnCreated =
"SampleFigure_Created", OnReleased = "SampleFigure_Released")]
[Plug("Plux.Figure")]
[ParamValue("Description", "Timestamp, when the task queue was emptied last.")]
[ParamValue("Scope", "Runtime")]
[ParamValue("Type", "DateTime")]
[ParamValue("FigureName", "taskqueueemptiedtime")]
[ParamValue("SupportsTotal", false)]
class SampleFigure : IFigure
{
 private M measurement;
 class M : IMeasurement
 {
 private DateTime lastAction = DateTime.Now;
 public DateTime LastAction
 {
 set
 {
 lastAction = value;
 if (PropertyChanged != null)
 PropertyChanged(this,new PropertyChangedEventArgs("Current"));
 }
 }

 public object Current { get { return lastAction; } }

 public bool IsValid { get { return true; } }

 public RepositoryElement Item { get { return null; } }

 public int Total { get { return 0; } }

 public event System.ComponentModel.PropertyChangedEventHandler PropertyChanged;
 }

 public void SampleFigure_Created(object sender, ExtensionEventArgs args)
 {
 measurement = new M();
 Runtime.TaskQueue.QueueEmptied += TaskQueue_QueueEmptied;
 }

 public void SampleFigure_Released(object sender, ExtensionEventArgs args)
 {
 Runtime.TaskQueue.QueueEmptied -= TaskQueue_QueueEmptied;
 }

 void TaskQueue_QueueEmptied(object sender, TaskEventArgs args)
 {
 measurement.LastAction = DateTime.Now;

- 20 -

 }

 // unused
 public event EventHandler<FigureEventArgs> MeasurementAdded;
 public event EventHandler<FigureEventArgs> MeasurementRemoved;

 public IEnumerable<IMeasurement> Measurements
 {
 get { return new IMeasurement[] { measurement }; }
 }

 public IMeasurement this[RepositoryElement repositoryElement]
 {
 get
 {
 if (repositoryElement == null)
 return measurement;
 return null;
 }
 }
}

Listing 12: A sample figure extension implementation without using helper classes. An inner
measurement class is used to store the actual values (see MetrixExamples\SampleFigure.cs).

To ease the development of new figures, Metrix offers two base classes a new figure may in-

herit from. Firstly, GroupingFigureBase allows to group the measurements of another figure.

Secondly, FigureBase is more flexible than GroupingFigureBase but also requires more code.

4.3.1 Grouping Figures

The class GroupingFigureBase groups measurements of another figure by applying a function

on their values. Therefore, a grouping figure always depends on another figure called

ChildFigure. A grouping figure has less or equal measurements than its ChildFigure. A typical

task for a grouping figure would be to sum up the number of extensions per extension type to

obtain the number of extensions in the whole application. Therefore, the new grouping figure

would be Runtime scoped and use the ExtensionTypeInfo scoped figure Metrix.Extension-

TypeInfo.Extensioninfos as ChildFigure. Note, that the real figure implementing this metric is

actually not a GroupingFigure for performance reasons: For using a GroupingFigure, its

ChildFigure must be instantiated too. Therefore, for often used and easy computable Runtime

scoped figures like the number of extensions, it pays off to implement them as normal figure

extension (see page 25).

- 21 -

A grouping figure can be configured by overriding the get-accessor of at most three proper-

ties:

Property Description

ChildFigureName The name of the figure extension the new figure is based on. This
property is mandatory.

GroupingRule The method which is used to determine whether a measurement belongs
to a certain group of measurements which make up a new measurement.
The default value is GroupingRules.CheckJoin.

GroupingFunction The method which is used to actually calculate the Current value of the
new measurement. The default value is GroupingFunctions.Summation.

Table 8: Properties, which allow to configure the GroupingFigure base class.

A method which is used as a grouping rule must conform to the GroupingRule delegate:

The grouping rule must state for two meta elements (of type RepositoryElement), whether

they should form a relation. If so, it returns true, otherwise false. All child measurements

which belong to the same parent will be used to calculate the new value of the parent mea-

surement. The following code excerpt from the default grouping rules set (GroupingRules.cs

in Metrix.dll) shows the rule which groups all extension measurements by their extension

type:

private static bool CheckJoin(ExtensionTypeInfo extType, ExtensionInfo ext)
{

return (ext.ExtensionTypeInfo == extType);
}

public static bool CheckJoin(RepositoryElement parent, RepositoryElement child)
{

if (parent == null) // Runtime
 return true; // accumulate all child measurements
 if (parent.GetType() == child.GetType())
 return (parent == child); // generic one-to-one grouping rule

[...]
if (parent is ExtensionTypeInfo)

 {
 ExtensionTypeInfo p = (ExtensionTypeInfo) parent;

[...]
if (child is ExtensionInfo)

 return CheckJoin(p, (ExtensionInfo) child);
 }

[...]
}

Listing 13: This join rule defines a parent-child relation between an extension type and its
extension instances (see Metrix\JoinRules.cs).

- 22 -

public delegate bool GroupingRule(RepositoryElement parent,
RepositoryElement child);

Metrix already ships with two grouping rules in the GroupingRules class:

Grouping Rule Description

CheckJoin This rule applies to all types of meta elements and represents the
relations between them. For example, it defines which extension type
belongs to which plug-in. It defines the following child-parent
relations:
PlugInfo, SlotInfo → ExtensionInfo
PlugInfo → PlugTypeInfo
SlotInfo → SlotTypeInfo
ExtensionInfo, PlugTypeInfo, SlotTypeInfo, PlugInfo, SlotInfo →
ExtensionTypeInfo
ExtensionTypeInfo, ExtensionInfo, PlugTypeInfo, SlotTypeInfo,
PlugInfo, SlotInfo → PluginInfo
PlugTypeInfo, SlotTypeInfo, PlugInfo, SlotInfo → SlotDefinition
SlotDefinition → ContractInfo

CheckJoinNoMetrix This rule is based on CheckJoin. However, it tries to exclude meta
elements from Metrix. It is used for some runtime scoped figures to
prevent them from measuring the effects of Metrix figures. Those
figures' names end with the suffix _nm.

Table 9: The two join rules included in Metrix are defined in Metrix/JoinRules.cs.

A method which is used as GroupingFunction must comply with the GroupingFunction dele-

gate:

public delegate object GroupingFunction(IMeasurement[] childMeasurements,
ref object store, string type);

The method must return a value for the new measurement which is based on a set of child-

Measurements. The store object (initialized with null) allows the GroupingFunction to store

an arbitrary object between two calculations for each measurement. This is used by the His-

toricMaximum function to save the highest ever value for example. Finally, it also gets the

type of the childMeasurements' values.

Metrix defines several grouping functions in the GroupingFunctions class:

Grouping Function Description

CountNonZero This function counts the number of current child measurements
where the Current value is not 0.

Summation This function sums up the Current values of all current child
measurements.

Minimum This function calculates the current minimum of the Current values
of all child measurements.

HistoricMinimum Like Minimum, but considers all measurements so far, not only the
current minimum.

- 23 -

Maximum This function calculates the current maximum of the Current values
of all child measurements.

HistoricMaximum Like Maximum, but considers all measurements so far, not only the
current maximum.

Average This function calculates the average value of all Current values of
the current child measurements.

Table 10: The grouping functions included in Metrix (see Metrix\GroupingFunctions.cs).

Note, that GroupingFigure does not support grouping functions for Total values: It only has a

built-in summation functionality for Total values. Therefore, when using another

GroupingFunction than Summation, the parameter SupportsTotal must be set to false.

As an example, the CountNonZero grouping function listed above is implemented in the fol-

lowing way:

public static object CountNonZero(IMeasurement[] childMeasurements, ref object store, string
type)
{
 int count = 0;
 object cur;
 long val=0;

 foreach (IMeasurement m in childMeasurements)
 {
 cur = m.Current;
 if (cur is int)
 val = (long)(int)cur;
 else if (cur is long)
 val = (long)cur;
 if (val != 0)
 count++;
 }
 return count;
}

Listing 14: This function counts the number of measurements with a Current value other than
zero (see Metrix\GroupingFunctions.cs).

Note, that the above function does not use the store parameter. Evaluating the type parameter

instead of analyzing the individual measurements would also be possible.

When deriving from GroupingFigureBase, an OnReleased event handler called “OnReleased”

must be registered for the extension so that the base class can properly shut down.

Finally, as an example for a GroupingFigure declaration, the code of the figure Metrix.Run-

time.Maxextensioninfos is given. It calculates the maximum number of loaded extensions so

far by observing the figure Metrix.Runtime.Extensioninfos. Therefore it actually does not

group multiple measurements into one but transforms a given one into a new one by utilizing

the HistoricMaximum grouping function:

[Extension("Metrix.Runtime.Maxextensioninfos", Singleton = true,
 OnReleased = FigureBase.ON_RELEASED)]
[Plug("Plux.Figure")]
[Slot("Plux.Figure", AutoPlug = false, LazyLoad = true, Multiple = true, OnRegistered =
"Figure_Registered", OnPlugged = "Figure_Plugged")]

- 24 -

[ParamValue("Description", "max(#ExtensionInfos)")]
[ParamValue("Scope", "Runtime")]
[ParamValue("Type", "int")]
[ParamValue("FigureName", "maxextensioninfos")]
[ParamValue("SupportsTotal", false)]
public class RtMaxextensioninfos : GroupingFigureBase
{
 public override string ChildFigureName
 {
 get { return "Metrix.Runtime.Extensioninfos"; }
 }
 public override GroupingFunction GroupingFunction
 {
 get { return GroupingFunctions.HistoricMaximum; }
 }
}

Listing 15: This figure is implemented in Metrix\Figures\GroupingFigures.cs.

In contrast, the figure counting all unique extensions in the whole application actually aggre-

gates all ExtensionTypeInfo scoped measurements into one value. Because the property

GroupingFunction is not overridden, it is assumed as Summation:

[Extension("Metrix.Runtime.Unique", Singleton = true,
 OnReleased = FigureBase.ON_RELEASED)]
[Plug("Plux.Figure")]
[Slot("Plux.Figure", AutoPlug = false, LazyLoad = true, Multiple = true, OnRegistered =
"Figure_Registered", OnPlugged = "Figure_Plugged")]
[ParamValue("Description", "#unique ExtensionInfos")]
[ParamValue("Scope", "Runtime")]
[ParamValue("Type", "int")]
[ParamValue("FigureName", "unique")]
[ParamValue("SupportsTotal", true)]
public class RtUnique : GroupingFigureBase
{
 public override string ChildFigureName
 {
 get { return "Metrix.ExtensionTypeInfo.Unique"; }
 }
}

Listing 16: This figure is implemented in Metrix\Figures\GroupingFigures.cs.

4.3.2 FigureBase

For more flexibility, developers can derive their figure extension from FigureBase. This base

class also requires the registration of an OnReleased event handler called “OnReleased”.

The class FigureBase collects measurements and notifies clients about new or removed mea-

surements. To add or remove a measurement, the methods AddMeasurement and Remove-

Measurement should be used. For creating runtime scoped figures, the figure extension should

derive from RuntimeFigureBase, which in turn inherits from FigureBase. Then, the field

runtimeM should be used to store the runtime wide measurement.

Additionally, a (nested) measurement class must be declared which should inherit from

MeasurementBase. When the figure does not support Total counters, the measurement class

should derive from CurrentOnlyMeasurementBase. The get-accessors of the remaining prop-

erties Current and Item must also be implemented. The MeasurementBase class contains mul-

tiple methods: Firstly, FireCurrentChanged notifies clients about a new Current value of the

- 25 -

measurement. Secondly, IncreaseTotal increases the Total counter of the measurement by a

given value or by one, if no parameter is set. Note that the parameter of IncreaseTotal must be

greater or equal than one, otherwise an exception will be thrown. Finally, the method

Invalidate marks the measurement as invalid.

To conveniently create or remove measurements, a nested class can be derived from

RepositoryElementRegistrar. Then, the developer can overwrite the Register<Scope>(...) and

Unregister<Scope>(...) methods. This way, the developer must not distinguish between moni-

tored meta elements which already exist at the time of figure creation and those which appear

later on. The Register<Scope>(...) method will be called for every meta element. The class

actually calling these methods is EventMonitor. Therefore, the constructor of the registrar

class creates an EventMonitor instance and assigns it to the monitor field. After that, the con-

structor sets several Enable* properties to configure which hook methods of the registrar class

should be called. Finally, the constructor calls the Start method of the monitor instance. Since

the registrar class is derived from RepositoryElementRegistrar, the base class will shutdown

the monitor instance properly.

The following example measures the number of open slots per extension and illustrates the

usage of those base classes:

[Extension("Metrix.ExtensionInfo.Openslotinfos", Singleton = true,
 OnReleased = FigureBase.ON_RELEASED)]
[Plug("Plux.Figure")]
[ParamValue("Description", "#Slotinfos | isopen=true")]
[ParamValue("Scope", "ExtensionInfo")]
[ParamValue("Type", "int")]
[ParamValue("FigureName", "openslotinfos")]
[ParamValue("SupportsTotal", true)]
internal class EInfOpenslotinfos : FigureBase
{
 public EInfOpenslotinfos()
 {
 registrar = new Registrar(this);
 }

 private class M : MeasurementBase
 {
 private ExtensionInfo ext;

 public M(ExtensionInfo ext)
 {
 this.ext = ext;
 }

 public override RepositoryElement Item
 {
 get { return ext; }
 }

 public override object Current
 {
 get
 {
 int sum = 0;

 if (IsValid)
 {
 foreach (SlotInfo slot in ext.SlotInfos)

- 26 -

 sum += slot.IsOpen ? 1 : 0;
 }
 return sum;
 }
 }
 }

 private class Registrar : RepositoryElementRegistrar
 {
 private EInfOpenslotinfos figure;

 public Registrar(EInfOpenslotinfos figure)
 {
 this.figure = figure;
 monitor = new EventMonitor(this);
 monitor.EnableExtensionInfo = true;
 monitor.EnableSlotInfo = true;
 monitor.Start();
 }

 public override void RegisterExtensionInfo(ExtensionInfo ext)
 {
 figure.AddMeasurement(ext, new M(ext));
 MeasurementBase m = figure.MeasurementOf(ext);
 m.Total = (int) m.Current;
 }

 public override void UnregisterExtensionInfo(ExtensionInfo ext)
 {
 figure.RemoveMeasurement(ext);
 }

 public override void RegisterSlotInfo(SlotInfo slot)
 {
 slot.Opened += sInf_Opened;
 slot.Closed += sInf_Closed;
 }

 public override void UnregisterSlotInfo(SlotInfo slot)
 {
 slot.Opened -= sInf_Opened;
 slot.Closed -= sInf_Closed;
 }

 private void sInf_Opened(object sender, SlotEventArgs args)
 {
 MeasurementBase m = figure.MeasurementOf(args.SlotInfo.ExtensionInfo);
 m.OnCurrentChanged();
 m.IncreaseTotal();
 }

 private void sInf_Closed(object sender, SlotEventArgs args)
 {
 MeasurementBase m = figure.MeasurementOf(args.SlotInfo.ExtensionInfo);
 m.OnCurrentChanged();
 }
 }
}

Listing 17: The implementation of Metrix.ExtensionInfo.Openslotinfos which uses the
FigureBase, MeasurementBase and RepositoryElementRegistrar base classes (see
Metrix\Figures\EInfOpenslotinfos.cs).

The figure class derives from FigureBase. It uses an inner measurement class that derives

from MeasurementBase since the figure supports Total counters. Also, an inner registrar class

based on RepositoryElementRegistrar takes care of attaching a measurement to every exten-

sion. Therefore, it sets the EnableExtensionInfo property of its monitor instance to true, so

that the RegisterExtensionInfo and UnregisterExtensionInfo methods will be called. Note that

- 27 -

the term register in this context has nothing in common with register in terms of Plux.NET.

Additionally, EnableSlotInfo is also set to true because the figure extension wants to bind

event handlers to each slot.

Therefore, this pattern keeps the code clean of non-measurement related event handlers and

ensures a clean removal of them: The Unregister methods will also be called for each slot or

extension when the figure extension is released. For each measurement, the Total counter is

initially set to the Current value. From then on, the Total counter is increased each time a slot

is opened via event observation. When a slot is opened or closed, the figure extension does

not recalculate the Current value of the according measurement. Instead, it just notifies its

clients about the change of this property: The figure calculates the new value, when the

Current property of the measurement is actually queried.

4.4 UI Controls

Metrix ships with four Windows Forms controls for visualizing metrics. The seven segment

digit display and the bar control are single value controls. The other two, the plotter and the

pie chart control, can visualize multiple values. The following subsections give a brief over-

view on how to use these UserControl based controls in conjunction with Metrix.

4.4.1 Single Value Controls

The digit display and the bar control can take advantage of Windows Forms data binding to

display metrics. The following code snippet from the UI panel of the example application

MetrixSidebar demonstrates this:

 // Variable declarations by Windows Forms designer
 private Bar runtimeExtensioninfosBar;
 private DigitDisplay taskQueueDigit;

 private IFigure runtimeExtensioninfos = null;

 [SetFigure("Runtime","Extensioninfos")]
 public IFigure RuntimeExtensioninfos
 {
 set
 {
 runtimeExtensioninfos = value;
 if (runtimeExtensioninfos != null)
 {
 helper.MeasurementAvailable(runtimeExtensioninfos,null, m =>
runtimeExtensioninfosBar.DataBindings.Add("Value", m, "Current");
);
 }
 }
 }

 private IFigure runtimeMaxExt;
 [SetFigure("Runtime", "Maxextensioninfos")]
 public IFigure RuntimeMaxExt
 {
 set
 {
 runtimeMaxExt = value;
 if (runtimeMaxExt != null)
 {
 helper.MeasurementAvailable(runtimeMaxExt,null,m =>

- 28 -

runtimeExtensioninfosBar.DataBindings.Add("MaxRange", m, "Current"));
 }
 }
 }

 private IFigure queueItems = null;
 [SetFigure("Runtime", "Queueitems")]
 public IFigure QueueItems
 {
 set
 {
 queueItems = value;
 if (queueItems != null)
 {
 helper.MeasurementAvailable(queueItems, null, m =>
taskQueueDigit.DataBindings.Add("Value", m, "Total"));
 }
 }
 }

Listing 18: Measurement values are bound to a bar control and to a seven segment digit
display (see MetrixExamples\SidebarUC.cs).

The corresponding figures are assigned by the MetrixHelper class which is explained in sec-

tion 4.2 (Using Metrix in Applications). When the measurement for the application-wide

number of extensions is available, the measurement's Current value is bound to the Value

property of the bar control. Likewise, the measurement describing the maximum number of

application-wide extensions is bound to the MaxRange property. Finally, the total number of

enqueued tasks is bound to the Value property of the digit display. Whenever the value of a

measurement changes, the control updates itself through data binding because measurements

implement the INotifyPropertyChanged mechanism. The only exception is the figure exten-

sion Metrix.Runtime.Bytesinuse since it does not observe events and therefore lacks change

notification. To display this metric, a Windows Forms timer which assigns the current value to

a control at a specific interval can be used.

Figure 3: The bar
control.

Figure 4: The seven
segment digit display.

The bar control exposes the following properties:

Property Type Description

AutoScale bool If set, the MaxRange value will increase to
the maximum value of the Value property.

- 29 -

DarkColor Color The dark color used to paint the bar's stripes.

Description string The description displayed near the bar.

HorizontalAlignment bool If set, the bar is drawn horizontally instead of
vertically.

LegendColor Color The color of the area containing the
Description and the numeric Value.

LightColor Color The light color used to paint the bar's stripes.

MaxRange long The maximum value the bar visualizes. Must
be greater or equal the Value property. The
bar displays the fraction Value/MaxRange.

Value long The displayed value. Must be less or equal
the MaxRange property unless AutoScale is
not set.

Table 11:Properties of the bar control (see Controls\Bar.cs).

The seven segment digit display exposes the following properties:

Property Type Description

Description string The description displayed above the seven
segment digit display.

DisplayColor Color The color the digits are painted in.

EnableKPostfix bool If set, the symbol K is appended to the value.
This is used for displaying memory usage.

LegendColor Color The color of the area containing the
Description.

NumberOfDigits byte The number of digits the maximum
displayed Value will have. Used to ensure
consistent layout when values with less digits
are displayed first. However, if necessary, the
number of digits will automatically increase.

Value long The value which will be displayed in digits.

Table 12:Properties of the seven segment digit display (see Controls\DigitDisplay.cs).

4.4.2 Multi-Value Controls

The plotter and the pie chart control can display several values at once. They use an array of

IDataItem objects as data source. The definition of the interface IDataItem looks like this:

- 30 -

Listing 19: Objects which should be displayed in the multiple value controls must implement
this interface (see Metrix.Contracts\IDataItem.cs).

An IDataItem provides a value and a description, which are both displayed by the multi-value

controls. Furthermore it has an IsValid property: When this property returns false, the control

knows that the value is not valid from now on and does not query it again. This is useful for

example when a measurement turns invalid and should not be accessed. An IDataItem must

report the change of its properties via INotifyPropertyChanged. Metrix already ships with

MetrixDataItem, an IDataItem implementation which wraps IMeasurement. Its constructor

takes an IMeasurement, a description and a boolean indicating whether it should return the

measurement's Current or Total value as Value:

The following snippet (adapted from the ControlsView example application) demonstrates the

assignment of data to the pie chart control:

List<MetrixDataItem> list = new List<MetrixDataItem>();
int count = 0;
foreach (IMeasurement m in figure.Measurements) {
 if(++count > 5) break;
 MetrixDataItem item = new MetrixDataItem(m, m.Item.Name, false);
 list.Add(item);
}
PieChart1.DataItems = list.ToArray();

Listing 20: Configuration of a PieChart control (see MetrixExamples\ControlsView.cs).

In the above example, the first five measurements' Current values are assigned to a pie chart

control named PieChart1. In order to display the Current value, the application sets the third

parameter in the constructor of MetrixDataItem to false. The pie chart also displays the name

of the measured items because it was set as description. Assigning measurements to the plotter

control works in the same way.

Figure 5: The pie chart control. Figure 6: The plotter control.

- 31 -

public MetrixDataItem(IMeasurement m, string description, bool total);

public interface IDataItem : INotifyPropertyChanged
{
 string Description { get; }
 bool IsValid { get; }
 object Value { get; }
}

The pie chart control exposes the following properties:

Property Type Description

DataItems IDataItem[] The data source of the displayed values.

LegendColor Color The color of the area containing the
Description and the numeric Value of the
DataItems.

PieColors Color[] Array of colors used to visualize the
DataItems.

Table 13:Properties of the pie chart control (see Controls\PieChart.cs).

The plotter control exposes the following controls:

Property Type Description

AutoScale bool If set, the MaxValue will be automatically
increased to the highest Value of the
DataItems.

DataItems IDataItem[] The data source of the displayed values.

GraphColors Color[] The colors used to visualize the values.

Interval int The interval in milliseconds at which the
control will visualize new values.

LegendColor Color The color of the area containing the
Description and the numeric Value of the
DataItems.

MaxValue float The maximum value which can be displayed.
Adjusts itself to the highest peak encountered
so far when AutoScale is set. Other values scale
in relation to the MaxValue.

QueryOnUpdate bool Normally, the plotter updates its values when
the DataItems report a change. If set, the
plotter queries all DataItems for new values at
the set Interval. Useful, when measurements
which do not report changes (for example
memory usage) should be displayed.

Table 14: Properties of the plotter control (see Controls\Plotter.cs).

- 32 -

5 Further Work and Discussion
As shown in this paper, Metrix allows to work already with more than 40 metrics. However,

there is desirable functionality which is not implemented yet. This section explains the barri-

ers encountered when developing these features and makes suggestions on how to overcome

them.

5.1 Derived metrics must be compiled

Deriving new metrics based on existing ones without compiling code would be a useful fea-

ture: For example, declaring the metric Metrix.Runtime.Averageslotinfos as a division of

Metrix.Runtime.SlotInfos by Metrix.Runtime.Extensioninfos on the command line would al-

low users to calculate relevant metrics quickly. One approach would be to define a special fig-

ure extension type whose extension instances can be configured by the user. However, with-

out breaking the concepts of Metrix, this is difficult to achieve: Metrix expects that each sin-

gle figure is represented by a single extension type with at most one extension instance.

Therefore, extensions using Metrix can rely on finding the desired figure by just inspecting

the extension types' parameters. When a configurable extension type as described above

would be developed, this would not work anymore: Firstly, there would be as many extension

instances as declared metrics, thus violating the rule of having one shared instance per figure

extension type. Secondly, extensions using Metrix would also have to inspect the properties of

those instances to find the metric of interest. To overcome this problem in a clean way,

Plux.NET needs to provide a way of declaring extension types without code. Because this is

not possible yet, Metrix introduced the concept of GroupingFigures: It allows to define some

simple operations like summation or average calculation in compact code.

5.2 Limited analysis of memory usage

The second problem encountered when developing Metrix is the measurement of memory us-

age. Originally, Metrix wanted to measure the memory usage for each extension. However,

the .NET framework just allows obtaining the memory usage per application domain. Since

the size of base types and code blocks can be obtained, this information could be used to cal-

culate an approximation of the memory usage by examining all referenced objects recursively.

Plux.NET meta elements could act as a border for this summation of object sizes. How to deal

with data that is shared by multiple extensions (like Metrix measurements used in other exten-

sions or strings), is an open question. However, this method would allow a qualitative analysis

of two extensions' memory usage.

- 33 -

6 References
All web references were retrieved on October 5, 2009.

Learning Windows PowerShell Names. Microsoft TechNet. http://technet.microsoft.com/en-
us/library/dd315315.aspx

Piping and the Pipeline in Windows PowerShell. Microsoft TechNet.
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/manual/pipe.mspx

Windows PowerShell. Microsoft Windows PowerShell Website.
http://www.microsoft.com/windowsserver2003/technologies/management/powershell/default.
mspx

- 34 -

