
Extending Web Applications
with Client and Server Plug-ins1

Markus Jahn, Reinhard Wolfinger, Hanspeter Mössenböck

Christian Doppler Laboratory for Automated Software Engineering
Johannes Kepler University Linz

Altenbergerstr. 69, 4040 Linz, Austria
{jahn, wolfinger, moessenboeck}@ase.jku.at

Abstract: Plug-in frameworks support the development of component-based soft-
ware that is extensible and customizable to the needs of specific users. However,
most current frameworks are targeting single-user rich client applications but do
not support plug-in-based web applications which can be extended by end users.
We show how an existing plug-in framework (Plux.NET) can be enabled to sup-
port multi-user plug-in-based web applications which are dynamically extensible
by end users through server-side and client-side extensions.

1 Introduction
Although modern software systems tend to become more and more powerful and fea-
ture-rich they are still often felt to be incomplete. It will hardly ever be possible to hit all
user requirements out of the box, regardless of how big and complex an application is.
One solution to this problem are plug-in frameworks that allow developers to build a thin
layer of basic functionality that can be extended by plug-in components and thus tailored
to the specific needs of individual users. Despite the success of plug-in frameworks so
far, current implementations still suffer from several deficiencies:

(a) Weak automation. Host components have to integrate extensions programmatically
instead of relying on automatic composition. Furthermore, plug-in frameworks usu-
ally have no control over whether, how or when a host looks for extensions.

(b) Poor dynamic reconfigurability. Host components integrate extensions only at
startup time whereas dynamic addition and removal of components is either not sup-
ported or requires special actions in the host.

(c) Separate configuration files. Composition is controlled by configuration files which
are separated from the code of the plug-ins. This causes extra overhead and may lead
to inconsistency problems.

(d) Limited Web support. Plug-in frameworks primarily target rich clients or application
servers. Although some frameworks extend the plug-in idea to web clients, they are
still limited in customization and extensibility: They neither support individual plug-
in configurations per user, nor do they integrate plug-ins executed on the client.

1 This work was supported by the Christian Doppler Research Association and by BMD Systemhaus GmbH.

Over the past few years we developed a client-based plug-in framework called Plux.NET
which tries to solve the problems described above. While issues (a) to (c) are covered in
previous papers [WDP06, WRD08, Wo08, RWG09], this paper deals with issue (d) and
describes how Plux.NET can be enabled for multi-user web applications. We show how
such web applications can be extended by user-specific plug-ins both on the server side
and on the client side. Client-side plug-ins can either run in managed .NET mode
[MS08] or in sandbox mode using the Silverlight technology [MS09]. To demonstrate
our approach we present a case study, namely a web-based time recorder composed of
server-side, client-side, and sandbox components.

Our research was done in cooperation with BMD Systemhaus GmbH, a company offer-
ing line-of-business software in the ERP domain. ERP applications consist of many
different features that can either be used together or in isolation, thus being an ideal test
bed for a plug-in approach.

This paper is organized as follows: Section 2 describes the plug-in framework Plux.NET
as the basis of our work. Section 3 uses a case study to explain the architecture of a
component-based web application built with Plux.NET. Section 4 compares our work to
related research. The paper closes with a summary and a prospect of future work.

2 The Plux.NET framework
Plux.NET [WDPM06, Wo10] is a .NET-based plug-in framework that allows composing
applications from plug-in components. It consists of a thin core (140 KBytes) that has
slots into which extensions can be plugged. Plugging does not require any programming.
The user just drops a plug-in (i.e., a DLL file) into a specific directory, where it will be
automatically discovered and plugged into one or several matching slots. Removing a
plug-in from the directory will automatically unplug it from the application. Thus adding
and removing plug-ins is completely dynamic allowing applications to be reconfigured
for different usage scenarios on the fly without restarting the application.

Plug-in components (so-called extensions) can have slots and plugs. A slot is basically
an interface describing some expected functionality and a plug belongs to a class imple-
menting this interface and thus providing the functionality. Slots, plugs and extensions
are specified declaratively using .NET attributes. Thus the information that is necessary
for composition is stored directly in the metadata of interfaces and classes and not in
separate XML files as for example in Eclipse [Ec03].

Let's look at an example. Assume that some host component wants to print log messages
with time stamps. The logging should be implemented as a separate component that
plugs into the host. We first have to define the slot into which the logger can be plugged.

[SlotDefinition("Logger")]
[Param("TimeFormat", typeof(string))]
public interface ILogger {
 void Print(string msg);
}

The slot definition is a C# interface tagged with a [SlotDefinition] attribute specify-
ing the name of the slot ("Logger"). Slots can have parameters defined by [Param] at-

tributes. In our case we have one parameter TimeFormat of type string, which is to be
filled by the extension and used by the host. Now, we are going to write an extension
that fits into the Logger slot:

[Extension("ConsoleLogger")]
[Plug("Logger")]
[ParamValue("TimeFormat", "hh:mm:ss")]
public class ConsoleLogger: ILogger {
 public void Print(string msg) {
 Console.WriteLine(msg);
 }
}

An extension is a class tagged with an [Extension] attribute. It has to implement the
interface of the corresponding slot (here ILogger). The [Plug] attribute defines a plug
for this extension that fits into the Logger slot. The [ParamValue] attribute assigns the
value "hh:mm:ss" to the parameter TimeFormat.

Finally, we implement the host, which is another extension that plugs into the Startup
slot of the Plux.NET core. The extension has a slot Logger; this is specified with a
[Slot] attribute. This attribute also specifies a method AddLogger that will be called
when an extension for this slot is plugged. AddLogger integrates the logger extension and
retrieves the TimeFormat parameter.

[Extension("MyApp")]
[Plug("Startup")]
[Slot("Logger", OnPlugged="AddLogger")]
public class MyApp: IStartup {
 ILogger logger = null; // the logger extension
 string timeFormat; // parameter of the logger extension

 public void Run() {
 ...
 if (logger != null) {
 logger.Print(DateTime.Now.ToString(timeFormat) + ": " + msg);
 }
 }

 public void AddLogger(object s, PlugEventArgs args) {
 logger = (ILogger) args.Extension;
 timeFormat = (string) args.GetParamValue("TimeFormat");
 }
}

This is all we have to do. If we compile the interface ILogger as well as the classes Con-
soleLogger and MyApp into DLL files and drop them into the plug-in directory every-
thing will fall into place. The Plux.NET runtime will discover the extension MyApp and
plug it into the Startup slot of the core. It will also discover the extension ConsoleLog-
ger and plug it into the Logger slot of MyApp. (see Figure 1)

Figure 1: Composition architecture of the logger example

Plux.NET offers a light-weight way of building plug-in systems. Plug-ins are just classes
tagged with metadata. They are self-contained, i.e., they include all the metadata neces-

sary for discovering them and plugging them together automatically. There is no need
for separate XML configuration files. The example also shows that Plux.NET is event-
based. Plugging, unplugging and other actions of the runtime core raise events to which
the programmer can react. The implementation of Plux.NET follows the plug-in ap-
proach itself. For example, the discovery mechanism that monitors the plug-in directory
is itself a plug-in and can therefore be replaced by some other way of discovery.

Other features of Plux.NET that cannot be discussed here for the lack of space are lazy
loading of extensions (in order to keep application startup times small), management of
composition rights (e.g., which extensions are allowed to open a certain slot, and which
extensions are allowed to fill it), as well as a scripting API that allows experienced de-
velopers to override some of the automatic actions of the runtime core. These features
are described in more detail in [Wo10].

3 Extending Plux.NET for the Web
The Internet has become fast and ubiquitous enough for implementing software as web
applications that can be accessed by multiple clients. Web applications make it easier to
bring software to the market. Additionally, updates can be done centrally without bother-
ing administrators in different companies. However, web applications face similar prob-
lems as rich-client applications: when they get too big and feature-rich, they become
hard to understand and difficult to use. Furthermore, current web applications are hardly
customizable and usually not extensible by users. Finally, it is generally not possible to
connect the clients’ local hardware to web applications. The goal of our research is to
find solutions for these problems.

Our idea is to apply the plug-in approach also to web applications by extending
Plux.NET so that it becomes web-enabled. Originally, Plux.NET was designed for sin-
gle-user rich-client applications. In its extended form it supports multi-user web applica-
tions where specific users have their individual set of components and their individual
composition state. Users will be able to extend web applications with their own plug-ins
or with plug-ins from third party developers.

Plux.NET web components can be classified according to their composition type and
their visibility scope. Depending on their visibility, they can affect just a single user, a
group of users (e.g., a department of a company), or all users of a web application. Cur-
rently, the composition type of a component can be server-side, client-side, and sandbox
integration.

Server-side components are installed and executed on the server. Their advantage is that
they are smoothly integrated into the server-based web application. They have minimal
communication overhead and maximum availability. However, server-side components
increase the work load on the server and constitute a security risk. Users need to be au-
thorized to install their extensions on the server.

Client-side components are placed on the client and plugged into a web application vir-
tually. Their major advantage is that users can integrate their local resources (e.g. hard-
ware) into web applications. Another benefit is that users without authorization for in-

stalling plug-ins on the server can still extend a web application. The disadvantages of
client-side extensions are the benefits of server-side extensions: Communication be-
tween server-side and client-side components causes a certain overhead. Also, client-side
extensions are only available when the client is connected.

A third way of composition is to install components on the server, but to execute them in
a client-side sandbox such as Adobe Flash or Silverlight (in the case of .NET). This
composition type lends itself for building rich user interfaces in a web browser that go
beyond the features of HTML or JavaScript, especially if these interfaces should be
extensible and customizable without requiring extensions to be installed on the client.
Sandbox extensions are copied to the client on demand and are executed there, so they
help to keep the work load on the server small.

Even though components are executed on different computers and in different environ-
ments, the development and composition process in Plux.NET is the same for server-side
plug-ins, client-side plug-ins, and sandbox plug-ins. The composition model is based on
the metaphor of slots and plugs as in the rich client approach. Developers just specify the
components' metadata in a declarative way. The runtime core is responsible for plug-in
discovery, composition, and communication. Therefore, if there are no dependencies on
hardware-specific resources it is possible to reuse a rich client component also as a
server-side or a client-side component for web applications. For reusing rich client com-
ponents as Silverlight sandbox components, they need to be recompiled in a special way,
because Silverlight assemblies are not binary compatible with other .NET assemblies.

3.1 Case study and scenarios

To demonstrate the idea of our web-enabled plug-in framework this section shows some
scenarios: In a case study we extend a web application by various user-specific plug-ins
which are composed by using the different composition types described above and by
applying the different visibility scopes to them.

Figure 2 shows the component architecture of a web application which is used for re-
cording and evaluating the labour times of employees. The recording and the statistics
are implemented by components, each consisting of a GUI component for rendering the
user interface and a component for the business logic. The business logic components
(Recorder, Statistics) are connected to the Data Provider component while the GUI
components are used by the Layout Manager component for building the user interface.
The Layout Manager is plugged into the root component named Time Recorder. All
components in Figure 2 are server-side components and thus are installed and executed
on the server. To keep the scenario simple, some other required components (e.g.,
Plux.NET runtime components) are hidden in the following pictures.

Figure 2: Component architecture of a time recorder web application

To get an impression of how such a web application could look like, Figure 3 shows a
possible user interface. The Layout Manager arranges the user interfaces of the Recorder
GUI and Statistics GUI components in its window area, depending on some metadata
which describes the arrangement of the GUI components. The Recorder GUI has buttons
for starting, pausing, and stopping time recording while the Statistics GUI displays the
recorded labour time.

Figure 3: Possible user interface of the time recorder.

Figure 2 contains only server-side components. Thus, the user interface in a client's web
browser is restricted to web technologies such as HTML, CSS and JavaScript. However,
in our scenario developers want to use the rich internet technology Silverlight for build-
ing a more sophisticated user interface. Therefore, they implement the components
Layout Manager, Recorder GUI and Statistics GUI as Silverlight components. Since
these components are discovered as Silverlight components, they are automatically sent
to the client and executed in its Silverlight environment while business logic components
stay on the server. Our composition model composes sandbox components in the same
way as server-side components. Sandbox components are virtually plugged into server-
side components and vice versa. The new composition state is outlined in Figure 4.

Figure 4: Silverlight components are virtually plugged into server-side components and vice versa

Next, we assume that a user (Client 1) is not fully satisfied with the provided functional-
ity of our time recorder. For annotating his activities during the day he wants to add a

note to each time stamp. Therefore, Client 1 implements his own components for this
feature. Since he wants to access his components from any computer, he installs the
server-side component Notes (a note editor) and the Silverlight component Notes GUI on
the server. Similar to the other components of our application the server-side component
Note is used for business logic, while the Silverlight component Notes GUI displays the
user interface. As Client 1 has set the visibility of these components to private, he is the
only user who can see and access them. The individual view of the composition state for
Client 1 is shown in Figure 5.

Figure 5: User-specific server-side and sandbox components for Client 1

Besides adding components for a specific user, it is also possible to remove them. For
example, a company could deny access to the Silverlight component Recorder GUI for
several employees. Instead, a hardware time recorder which is represented by a client-
side component Hardware Recorder could be installed at the company’s entrance. The
Hardware Recorder uses the same server-side Recorder component as the Silverlight
component Recorder GUI did. Figure 6 shows how the Silverlight component Recorder
GUI is replaced by the client-side component Hardware Recorder for clients 2 to 5.
Client-side components can be virtually plugged both into server-side components and
into Silverlight components and vice versa. If client-side components are connected to
Silverlight components the communication between them does not affect the server.

Figure 6: From the view of clients 2 to 5, the Silverlight component Recorder GUI is replaced

by the client-side component Hardware Recorder

3.2 Architecture

We will now look at the architecture and the internals of Plux.NET for web applications.
Some aspects described in this section are still under development but the overall archi-
tectural design is finished and has been validated with prototypes.

The root component of Plux.NET is the Runtime core, which has two slots, one for a
discovery component and one for the application's root component. The default discov-
ery component monitors the plug-in directory. Whenever an extension is dropped into
this directory its metadata are read and the Runtime checks all loaded components for
open slots into which the new extension can be plugged. After an extension has been
plugged, its own slots are opened and the Runtime looks for other extensions (loaded or
unloaded) that can fill these slots. These steps are repeated until all matching slots and
plugs have been connected.

To perform this composition procedure for multi-user web applications the architecture
of Plux.NET had to be extended. We now have different environments in which compo-
nents can live: There is one environment for server-side components, one for client-side
components and one for sandbox components (the latter two exist as separate instances
for every client connected to the server). Every environment needs its own runtime infra-
structure. So we split the Plux.NET runtime core into a Server Runtime, a Client Runtime
and a Silverlight Runtime each running in its own environment. Logically these nodes
form a single entity represented by the Runtime component on the server (see Figure 7).
For discovering extensions on the server and on the client the discovery mechanism also
had to be split into a Server Discovery and a Client Discovery component, each monitor-
ing local extension directories.

Figure 7: Runtime infrastructure and discovery distributed over several environments

As long as components from the same environment are plugged together everything is
like in the rich client case: the local runtime raises a Plugged event to which the host
component reacts by integrating the extension component. The interesting new feature is
virtual plugging, which is necessary when the host and the extension live in different
environments. If an extension E from environment EnvE should be plugged into a host H
from environment EnvH proxies have to be generated on both sides. A proxy HP repre-
senting host H is created in EnvE, and a proxy EP representing extension E is created in
EnvH (Figure 8). These proxies carry the same metadata as the components for which
they stand so they can be plugged into matching slots like any other component. If H
wants to call a method of E it does the call to the local proxy EP, which uses the local
runtime infrastructure to marshal the call and send a message to proxy HP in the other
environment. HP then does the actual call to E. Any results are sent back in the same
way. Thus the communication between components—from the same or from different
environments—is completely transparent to the component developer.

Figure 8: Virtually plugged components and their communication via proxies

Whenever a new extension is discovered on the server or on the client the local discov-
ery component sends a broadcast to the runtime nodes of all other environments. The
local runtime nodes decide whether proxies have to be generated. In the case of Silver-
light extensions that were discovered on the server the Silverlight Runtime on the client
requests a transfer of the extension from the server to the sandbox environment on the
client.

It is also worth noting that all environments have a consistent copy of the web applica-
tion's composition state, i.e. they know, which components the application consists of
and which plugs are connected to which slots. So the runtime node of every environment
can easily find out into which slots a new extension fits and whether the extension has to
be plugged in locally or virtually through proxy components.

Since the runtime core is distributed, the individual runtime nodes have to use a commu-
nication channel for exchanging the components' metadata and their composition state.
Additionally, the runtime core provides the communication infrastructure for the proxies
of virtual plugged components. This infrastructure is based on the Windows Communi-
cation Foundation (WCF) API [Ca07]. As WCF supports several communication stan-
dards for distributed computing, the actually used communication technology can be
configured by administrators. In our case study we used SOAP [GHM07] in combination
with HTTP.

Since web applications can be used by many clients simultaneously, the runtime core has
to deal with several composition states in parallel. In doing so it has to make sure not to
run out of memory. Hence, it applies a well-known solution for this problem: Once the
server has only little memory left, server-side components get released at the end of a
request and are recreated for new requests. This approach ensures that web applications
can scale up to serve many simultaneous requests without running out of server memory.
This concept also enables the usage of server farms. The drawback is that composition
and component states need to be persisted during successive requests. The composition
state is persisted automatically while the component state has to be persisted by the
components themselves using the infrastructure of the runtime core. Components can
either use custom .NET attributes to declare which values should be persisted and re-
stored, or they can react to automatically raised events for persisting and restoring.

The runtime does not only persist the server-side state, but also the states of the client
environments. Thus, no matter from which computer a client connects to the application,
it will always get the same state as it had last time, provided that possibly used client-
side components are available on each computer.

4. Related work
Plug-in frameworks have become quite popular recently. However, most of them are
either targeting rich-client applications, or have no dynamic composition support, or aim
at web applications, but cannot be customized and extended by end users.

Eclipse [Ec03] is probably the most prominent plug-in platform today. It is written in
Java and since version 3.0 it is based on the OSGi framework Equinox [Eq09]. Like
Plux.NET it consists of a thin core and a set of plug-ins that provide further functional-
ity. The major differences between Eclipse and Plux.NET are the following: Eclipse
declares the metadata of plug-ins in XML files while Plux.NET declares them directly in
the code using .NET attributes. Eclipse supports only rich client applications while our
approach targets also multi-client web applications with extensions both on the server
and on the client. Most importantly, the composition of Eclipse plug-ins has to be done
manually, i.e. the host component has to use API calls to discover plug-ins, read their
metadata and integrate them. In Plux.NET, plug-ins are discovered automatically and all
matching slots are immediately notified by the runtime core, thus automating a substan-
tial amount of composition work. Although Eclipse allows plug-ins to be added dynami-
cally, the code for integrating plug-ins at startup time and at run time is different,
whereas Plux.NET uses the same uniform mechanism for both cases.

Many component-based web applications are based on the Java Enterprise Edition (Java
EE) [Su09]. Java EE is a software architecture that allows the development of distrib-
uted, component-based, multi-tier software running on an application server. Java EE
applications are generally considered to be three-tiered where components can be in-
stalled on the Java EE server machine, the database machines, or the client machines.
Web components are usually servlets or dynamic web pages (created with JavaServer
Faces or Java Server Pages) running on the server, but they can also be defined as appli-
cation clients or applets running on the client. Even though Java EE provides a frame-
work for building component-based and distributed web applications it provides no
automatic composition support for components. Composition has to be done program-
matically. Moreover, Java EE does not provide an individual composition state for every
end user, so users cannot customize or extend web applications for their special needs.

A further component system for distributed, component-based applications is SOFA 2
[HP06, BHP06, BHP07]. It implements a hierarchical component model with primitive
and composite components. Primitive components consist of plain code whereas com-
posite components consist of other subcomponents. SOFA 2 has a distributed runtime
environment which automatically generates connectors to support a transparent distribu-
tion of applications to different runtime environments. For communication the connec-
tors use method invocation, message passing, streaming, or distributed shared memory.
SOFA 2 allows dynamic reconfiguration of applications by adding and removing com-
ponents as well as dynamic update of components at run time. In contrast to Plux.NET,
however, SOFA 2 needs an ADL (Architecture Description Language) for describing the
composition of components. Plux.NET does not need such a specification; its runtime
composes an application on the fly using the declarations of slots and plugs provided by
the Plux.NET components. We argue that this concept is more flexible and easier to
maintain than a global ADL specification. Finally, browser-based web applications are
not supported by SOFA 2. It has no multi-user support for individual composition states
and no mechanism for persisting and restoring the composition states at run time.

Currently, the only way how end users can extend a web application is through client-
based plug-in systems such as Mozilla Firefox [Mo09]. However, client plug-ins are not
integrated into web applications. They only add usability features to user interfaces or
enable web browsers to use advanced web technologies such as Flash, Silverlight, or
Java Applets.

5. Summary and future work
In this paper we presented a dynamic plug-in framework for rich client and web applica-
tions with the focus on multi-user web applications that are extensible by end users.
Each client can install its individual set of components and has its personal composition
state. Components can be instantiated in different environments and on different com-
puters, but are transparently composed into a single web application. Components for
business logic can stay on the server, components that are connected to a client’s local
resources can be executed on the client-side, and user interface components can live in a
client’s rich internet environment such as Silverlight.

Since several aspects mentioned above have been realized only prototypically so far, we
are still improving the distributed runtime core of Plux.NET. Furthermore, we are work-
ing on a security model for plug-ins, a layout manager for extensible component-based
user interfaces, a keyboard shortcut manager and many other helpful tools for compo-
nent-based software development.

References
[BHP06] Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Features in a

Hierarchical Component Model, Proceedings of SERA 2006, Seattle, USA, IEEE
CS, ISBN 0-7695-2656-X, pp.40-48, August, 2006.

[BHP07] Bures, T., Hnetynka, P., Plasil, F., Klesnil, J., Kmoch, O., Kohan, T., Kotrc, P.:
Runtime Support for Advanced Component Concepts, Proceedings of SERA 2007,
Busan, Korea, IEEE CS, ISBN 0-7695-2867-8, pp. 337-345, August, 2007.

[Ca07] Chappell, D. (Microsoft): Introducing Windows Communication Foundation,
http://msdn.microsoft.com/en-us/library/dd943056.aspx, September, 2007.

[Ec03] Eclipse Platform Technical Overview. Object Technology International, Inc.,
http://www.eclipse.org, February 2003.

[Eq09] Equinox Mission Statement., http://www.eclipse.org/equinox/, 2009.
[GHM07] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H., Karmarkar, A.,

Lafon, Y.: SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), W3C
Recommendation, April, 2007.

[HP06] Hnetynka, P., Plasil, F.: Dynamic Reconfiguration and Access to Services in Hierar-
chical Component Models, Proceedings of CBSE 2006, Vasteras near Stockholm,
Sweden, LNCS 4063, ISBN 3-540-35628-2, ISSN 0302-9743, pp. 352 - 359, (C)
Springer-Verlag, June, 2006.

[Mo09] Mozilla Foundation: Firefox Browser, Free ways to customize your Internet,
http://www.mozilla.com/en-US/firefox/personal.html, 2009

[MS08] Microsoft .NET Framework. http://www.microsoft.com/net/overview.aspx, 2008.
[MS09] Microsoft Silverlight, http://silverlight.net/, 2009.
[RWG09] Rabiser, R., Wolfinger, R., Grünbacher, P.: Three-level Customization of Software

Products Using a Product Line Approach. 42nd Hawaii International Conference on
System Sciences, HICSS-42, Big Island, Hawaii, USA, January, 5-8, 2009.

[Su09] Sun Microsystems, Inc.: The Java EE 6 Tutorial, Volume I, Basic Concepts Beta,
http://java.sun.com/javaee/6/docs/tutorial/doc/JavaEETutorial.pdf, August, 2009.

[WDP06] Wolfinger, R., Dhungana, D., Prähofer, H., Mössenböck, H.: A Component Plug-in
Architecture for the .NET Platform. Modular Programming Languages, Lightfoot,
David; Szyperski, Clemens (Eds.), Lecture Notes in Computer Science , Vol. 4228,
Proceedings of 7th Joint Modular Languages Conference, JMLC 2006, Oxford, UK,
September 13-15, 2006.

[WRD08] Wolfinger, R., Reiter, S., Dhungana, D., Grünbacher, P., and Prähofer, H.: Support-
ing Runtime System Adaptation through Product Line Engineering and Plug-in
Techniques. 7th IEEE International Conference on Composition-Based Software
Systems, ICCBSS 2008, Madrid, Spain, February, 25-29, 2008.

[Wo08] Wolfinger, R.: Plug-in Architecture and Design Guidelines for Customizable Enter-
prise Applications, OOPSLA 2008 Doctoral Symposium, OOPSLA 2008, Nashville,
Tennessee, October, 19-23, 2008.

[Wo10] Wolfinger, R.: Dynamic Application Composition with Plux.NET: Composition
Model, Composition Infrastructure. PhD Thesis, Johannes Kepler University, Linz,
Austria, 2009.

	1 Introduction
	2 The Plux.NET framework
	3 Extending Plux.NET for the Web
	3.1 Case study and scenarios
	3.2 Architecture

	4. Related work
	5. Summary and future work
	References

