
Testing the Composability
of Plug-and-Play Components

A Method for Unit Testing of Dynamically Composed Applications

M. Löberbauer, R. Wolfinger, M. Jahn and H. Mössenböck
Christian Doppler Laboratory for Automated Software Engineering

Institute for System Software, Johannes Kepler University, Linz, Austria
{loeberbauer, wolfinger, jahn, moessenboeck}@ase.jku.at

Abstract—Software systems, which are dynamically com-
posed from plug-and-play components, allow users to adapt
an application to the working scenario at hand. While the
testing of individual components is well understood, there
are no systematic techniques that test if components can be
assembled in arbitrary orders. This paper introduces a
method and a tool for testing the dynamic composability of
component-based software systems. It is based on
Plux.NET, a plug-in platform for plug-and-play composition
of .NET applications.

I. INTRODUCTION
Plug-and-play components allow users to assemble cus-

tomized applications without configuration or program-
ming effort. This can be used to adapt feature-rich applica-
tions to the needs of individual users. Dynamically com-
posed plug-and-play components allow users to reconfig-
ure an application on the fly by swapping sets of compo-
nents. Thus users can align the application with the work-
ing scenario at hand.

Plug-and-play composition requires additional testing
in order to check the composability of the components. In
this paper, composability means dynamic composability,
i.e., components can be added and removed at run time.
We call a component a host if it uses other components;
and we call it a contributor if it provides a service to other
components. A contributor is composable if it can be inte-
grated and removed dynamically. A host is composable if
its contributors can be added and removed dynamically
and in any order.

As dynamic composition is a relatively new approach in
component frameworks, it is not covered by current test
methods and tools. We have created Plux.NET, a plug-in
framework that supports dynamic plug-and-play composi-
tion. From our case studies we learned that many compos-
ability deficiencies only show up if contributors are added
in a particular order, or when contributors are removed. In
this paper, we present a method for unit testing which
determines the test cases that are relevant for checking the
composability as well as a tool to automate the testing.

Our research was conducted in cooperation with our in-
dustrial partner BMD Systemhaus GmbH. BMD is a me-
dium-sized company offering a comprehensive suite of
enterprise applications, e.g., customer relationship man-
agement (CRM), accounting, production planning and
control. As most of their customers use only a fraction of

the suite, customized products are an essential part of
BMD's strategy.

This paper is organized as follows: Section II describes
the Plux framework. It explains how components declare
their requirements and provisions with metadata, how the
components are discovered, and how an application is
assembled from components. Section III gives a motivat-
ing example with a composability deficiency, discusses
why existing test methods do not find the problem and
outlines requirements for a solution. Section IV describes
our method for composability testing, a tool for test auto-
mation, and the integration of the tool into Plux. Section V
describes how existing component frameworks handle
testing. Section VI finishes with a conclusion and an out-
look to future work.

II. THE PLUX.NET FRAMEWORK
The Plux.NET framework (Plux) was created to allow

developers to build applications using dynamic plug-and-
play composition [1]. It enables extensible and customiza-
ble applications that can be reconfigured without restart-
ing the application. Together with our industrial partner
we applied Plux to the CRM product of BMD [2]. By al-
lowing dynamic addition and removal of CRM features,
we support a set of new usage scenarios, e.g., on-the-fly
product customization during sales conversations as well
as incremental feature addition for step-by-step user train-
ings [3].

The unique characteristics of Plux are the composer, the
event-based programming model, the composition state,
and the exchangeable component discovery mechanism.
These characteristics distinguish Plux from other plug-in
systems [4], such as OSGi [5], Eclipse [6], and NetBeans
[7], and allow Plux to replace programmatic composition
by automatic composition. Programmatic composition
means that the host queries a service registry and inte-
grates its contributors itself. Automatic composition means
that the components just declare their requirements and
provisions using metadata; the composer uses these meta-
data to match requirements and provisions, and connects
matching components automatically. The hosts can react
to events sent by the composer during composition. Plux
also maintains the current composition state, i.e., it stores
which hosts use which contributors. As hosts can retrieve
the composition state from Plux, they do not need to store
references to their contributors. Discovery is the process
of detecting components and extracting their metadata.
Unlike in other plug-in systems, the discovery mechanism

is not an integral part of Plux, but is a plug-in itself, thus
making the mechanism replaceable.

The following subsections cover those characteristics in
more detail; Section III shows their implications on testing
using a motivating example.

A. Metadata
Plux uses the metaphor of extensions with slots and

plugs (Fig. 1). An extension is a component that provides
services to other extensions and uses services provided by
other extensions. An extension declares a slot when it
wants to use the service of other extensions. Such an ex-
tension is called a host. To provide a service to other ex-
tensions, it declares a plug. Such an extension is called a
contributor.

Fig. 1 Extensions with slots and plugs.

The slots and plugs are identified by names. A plug
matches a slot if their names match. If so, the plug can be
connected to the slot. The host uses connected contribu-
tors over a defined interface. This interface is specified in
a slot definition. A slot definition has a unique name and
optionally parameters; contributors must set the parame-
ters and hosts can retrieve them. The names of slots and
plugs refer to the expected and provided slot definitions
respectively.

The means to provide metadata is customizable in Plux.
The default mechanism extracts metadata from .NET cus-
tom attributes. Custom attributes are pieces of information
that can be attached to .NET constructs, such as classes,
interfaces, methods, or fields. At run time, the attributes
can be retrieved using reflection [8].

Plux has the following custom attributes: The SlotDefi-
nition attribute to tag an interface as a slot definition, the
ParamDefinition attribute to declare required parameters,
the Extension attribute to tag classes that implement com-
ponents, the Slot attribute to declare requirements in hosts,
the Plug attribute to declare provisions in contributors,
and the Param attribute to declare provided parameter
values.

Let us look at an example now. Assume that a host
wants to print log messages as errors or warnings. The
loggers should be implemented as contributors that plug
into the host. Every logger should use a parameter to de-
clare if it wants to print errors or warnings. First, we have
to define the slot into which the logger can plug (Fig. 2).

public	
 enum	
 LoggerKind	
 {	

	
 	
 Warning,	

	
 	
 Error	

}	

[SlotDefinition("Logger")]	

[ParamDefinition("Kind",	
 typeof(LoggerKind))]	

public	
 interface	
 ILogger	
 {	

	
 	
 void	
 Print(string	
 msg);	

}	

Fig. 2 Definition of the Logger slot.

Next, we are going to write logger contributors. Fig. 3
shows the logger for errors. The logger for warnings is
implemented the same way (not shown).

[Extension]	

[Plug("Logger")]	

[Param("Kind",	
 LoggerKind.Error)]	

public	
 class	
 ErrorLogger	
 :	
 ILogger	
 {	

	
 	
 public	
 void	
 Print(string	
 msg)	
 {	

	
 	
 	
 	
 Console.WriteLine(msg);	

	
 	
 }	

}	

Fig. 3 Error logger as a contributor for the Logger slot.

Finally, we implement the application that uses the log-
gers (Fig. 4). Since it is a host for loggers, it has a Logger
slot. However, it is also a contributor to the Plux core, so
it has an Application plug. At startup, the Plux core creates
contributors for the Application slot. The complete im-
plementation of the application is shown in Subsection D.

[Extension]	

[Plug("Application")]	

[Slot("Logger")]	

public	
 class	
 HostApp	
 :	
 IApplication	
 {	

	
 	
 public	
 HostApp(Extension	
 e)	
 {	
 ...	
 }	

	
 	
 void	
 Work()	
 {	
 ...	
 }	

}	

Fig. 4 Application host with the Logger slot.

B. Discovery
In order to match requirements and provisions, Plux

needs the metadata of the extensions. The discovery is the
part of Plux which extracts the metadata. By default, it
extracts them from the custom attributes stored in the
.NET assembly files. However, since the discovery me-
chanism is an extension itself, it is replaceable and can
retrieve the metadata also from a database or from a con-
figuration file. The collected metadata is stored in the type
store of Plux.

Discoverers listen to changes in a component reposi-
tory, i.e. they detect if extensions are added or removed.
The order in which a discoverer detects changes depends
on its implementation. For example, the order in which an
attribute discoverer reads metadata from assembly files
might differ from the order in which a text-file-based dis-
coverer would read the same metadata from a text file.
The motivating example in Section III shows how this
order affects the composability of components.

C. Composer
The composer assembles applications by matching slots

and plugs. For this purpose, it observes the type store. If a
contributor becomes available in the type store, the com-
poser integrates it into the application. Similarly, if a con-
tributor is removed from the type store the composer re-
moves it from the application.

Integrating a contributor means that the composer in-
stantiates it and connects its plug with the matching slot of
a host. This is repeated for each matching slot in the appli-
cation. When the composer connects a plug with a slot, it
notifies the host and stores the connection. The instances
and their connections make up the composition state. The
part of Plux that stores the composition state is called the
instance store.

Removing a contributor means that the composer dis-
connects the plug from the slot and releases the contribu-

tor. When the composer disconnects a plug from a slot, it
notifies the host and removes the connection from the
instance store.

The described mechanism where the composer reacts to
changes in the type store is called automatic composition.
In addition to that, applications can be assembled with
programmatic composition in which the composer is con-
trolled by extensions. For example, host extensions can
integrate contributors using API calls, a script interpreter
can assemble an application from a script, or a serializa-
tion extension can restore a previously saved composition
state. Thus the sequence in which the composer makes
connections differs depending on whether automatic or
programmatic composition is used.

D. Composition State
The composition state can be retrieved from the in-

stance store. For every instantiated extension, the instance
store holds the extension's meta-objects of its slots and
plugs as well as a reference to the corresponding .NET
object (Fig. 5). For every slot, the instance store holds the
information about which plugs are connected.

Fig. 5 Meta-objects for instantiated extensions in the instance store.

Fig. 6 describes the host of Fig. 4 in more detail showing
how meta-objects can be used by an application. When the
composer creates an extension it passes the extension's
meta-object to the constructor. In Fig. 6, the constructor
retrieves the meta-object of the slot "Logger" and starts a
new thread that does the rest of the work.

In the Run method, the host does its work and then uses
the connected loggers to print a message. It retrieves the
loggers via the PluggedPlugs property of the logger slot.
For each logger, it checks the logger kind using the pa-
rameter Kind. Finally, it retrieves the .NET objects of the
selected loggers and prints the message. As Plux instanti-
ates contributors only on demand, i.e. when the host ac-
cesses the extension's Object property, loggers of other
kinds are not instantiated in this example; only their meta-
objects exist.

Additionally, the host can react to events that the com-
poser sends when it connects or disconnects contributors.
This is appropriate for hosts that want to react on added or
removed contributors immediately. Fig. 7 shows a modi-
fied version of our host from Fig. 6. It uses the Slot attrib-
ute to register event handlers for the Plugged and Un-
plugged events. In this example, the event handlers just
print out which logger was plugged or unplugged.

[Extension]	

[Plug("Application")]	

[Slot("Logger",	
 OnPlugged="LoggerPlugged",	
 	

	
 	
 OnUnplugged="LoggerUnplugged")]	

public	
 class	
 HostApp	
 :	
 IApplication	
 {	

	
 	
 ...	

	
 	
 void	
 LoggerPlugged(CompositionEventArgs	
 args)	
 {	

	
 	
 	
 	
 Extension	
 e	
 =	
 args.Plug.Extension;	

	
 	
 	
 	
 ILogger	
 logger	
 =	
 (ILogger)	
 e.Object;	

	
 	
 	
 	
 logger.Print("Logger	
 plugged:	
 "	
 +	
 e.Name);	

	
 	
 }	

	
 	
 void	
 LoggerUnplugged(CompositionEventArgs	
 args)	
 {	

	
 	
 	
 	
 ...	

	
 	
 	
 	
 logger.Print("Logger	
 unplugged:	
 "	
 +	
 e.Name);	

	
 	
 }	

	
 	
 void	
 Run()	
 {	
 ...	
 }	

	
 	
 void	
 Work(...)	
 {	
 ...	
 }	

}	

Fig. 7 Modified application host reporting connected contributors.

Thus there are two ways for retrieving the connected
contributors: (i) Retrieve the plugs connected to a slot
from the instance store; (ii) React to the Plugged events
sent by the composer. Both mechanisms are affected by
the order in which components are discovered (cf. Subsec-
tion B) as well as by the order in which programmatic
composition connects the components (cf. Subsection C).

Section III shows a motivating example that demon-
strates how the various orders can cause failures in the
parts of the host that retrieve connected contributors.
Therefore these parts should be subject to composability
testing.

III. MOTIVATING EXAMPLE
Assume that we want to create an application that cop-

ies data from a source to a sink. Sources and sinks should
be implemented as contributors that plug into the applica-
tion. Therefore, the copy application has two slots: the
Source slot and the Sink slot (Fig. 8).

Fig. 8 Copy application with source and sink contributor.

[Extension]	

[Plug("Application")]	

[Slot("Logger")]	

public	
 class	
 HostApp	
 :	
 IApplication	
 {	

	
 	
 Slot	
 loggerSlot;	

	
 	
 public	
 HostApp(Extension	
 e)	
 {	

	
 	
 	
 	
 loggerSlot	
 =	
 e.Slots["Logger"];	

	
 	
 	
 	
 new	
 Thread(Run).Start();	

	
 	
 }	

	
 	
 void	
 Run()	
 {	

	
 	
 	
 	
 while(true)	
 {	

	
 	
 	
 	
 	
 	
 string	
 msg;	
 LoggerKind	
 kind;	

	
 	
 	
 	
 	
 	
 Work(out	
 msg,	
 out	
 kind);	

	
 	
 	
 	
 	
 	
 foreach(Plug	
 p	
 in	
 loggerSlot.PluggedPlugs)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 if(kind	
 ==	
 (LoggerKind)	
 p.Params["Kind"])	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Extension	
 e	
 =	
 p.Extension;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ILogger	
 logger	
 =	
 (ILogger)	
 e.Object;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 logger.Print(msg);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 Thread.Sleep(2000);	

	
 	
 	
 	
 }	

	
 	
 }	

	
 	
 void	
 Work(out	
 string	
 msg,	
 out	
 LoggerKind	
 kind)	
 {	

	
 	
 	
 	
 /*	
 not	
 shown	
 */	

	
 	
 }	

}	

Fig. 6 Application host using logger contributors.

The fact that the copy application (host) has two slots
and that there is a dependency between them (i.e., the
source contributor is supposed to be connected before the
sink contributor) makes the host vulnerable for ordering
errors.

Fig. 9 shows an error-prone implementation of the host.
When the composer connects a sink to the host, a Plugged
event is raised, and the event handler CopyData starts
copying data from the source to the sink. CopyData incor-
rectly assumes that there is already a source connected,
and will fail if a sink gets connected before a source, be-
cause the PluggedPlugs collection is empty in this case.

[Extension]	

[Plug("Application")]	

[Slot("Source")]	

[Slot("Sink",	
 OnPlugged	
 =	
 "CopyData")]	

public	
 class	
 CopyApp	
 :	
 IApplication	
 {	

	
 	
 void	
 CopyData(CompositionEventArgs	
 args)	
 {	

	
 	
 	
 	
 Extension	
 self	
 =	
 args.Slot.Extension;	

	
 	
 	
 	
 ISource	
 source	
 =	
 (ISource)	
 self.Slots["Source"]	

	
 	
 	
 	
 	
 	
 	
 	
 .PluggedPlugs[0].Extension.Object;	

	
 	
 	
 	
 ISink	
 sink	
 =	
 (ISink)	
 args.Plug.Extension	

	
 	
 	
 	
 	
 	
 	
 	
 .Object;	

	
 	
 	
 	
 sink.Write(source.Read());	

	
 	
 }	

}	

Fig. 9 Copy application (error-prone implementation).

Assume that the developer of the copy application
works with a specific discoverer and with automatic com-
position. Coincidentally, the order in which the discoverer
adds the extensions corresponds to the order assumed by
the host. Thus the problem does not show up. However,
the host will fail, if it is used in a setup where the discov-
erer adds the extensions in a different order.

For comparison, Fig. 10 shows a robust implementation
of the same host using programmatic composition. To
avoid that a sink gets connected before a source, the host
opens the sink slot manually. In Plux, the composer con-
nects contributors only when a slot is open. By default, the
composer opens slots automatically. In this example,
however the host disables this behavior by setting the Au-
toOpen property of the slot attribute to false. The sink slot
is opened programmatically as soon as a source gets con-
nected. Vice-versa, the host closes the sink slot when a
source gets disconnected; this causes an already connected
sink to be unplugged. In summary, this causes a toggling
behavior where the host opens and closes a sink slot de-
pending on whether a source is connected.

[Extension]	

[Plug("Application")]	

[Slot("Source",	
 OnPlugged	
 =	
 "OpenSink",	
 	

	
 	
 	
 	
 OnUnplugged	
 =	
 "CloseSink")]	

[Slot("Sink",	
 AutoOpen	
 =	
 false,	
 	

	
 	
 	
 	
 OnPlugged	
 =	
 "CopyData")]	

public	
 class	
 CopyApp	
 :	
 IApplication	
 {	

	
 	
 void	
 OpenSink(CompositionEventArgs	
 args)	
 {	

	
 	
 	
 	
 Extension	
 self	
 =	
 args.Slot.Extension;	

	
 	
 	
 	
 self.Slots["Sink"].Open();	

	
 	
 }	

	
 	
 void	
 CloseSink(CompositionEventArgs	
 args)	
 {	

	
 	
 	
 	
 Extension	
 self	
 =	
 args.Slot.Extension;	

	
 	
 	
 	
 self.Slots["Sink"].Close();	

	
 	
 }	

	
 	
 void	
 CopyData(...)	
 {	
 ...	
 }	

}	

Fig. 10 Copy application (robust implementation).

To avoid the programming effort, one can achieve the
same toggling behavior by applying rule-based behaviors.

Rule-based behaviors are a declarative means to control
the composer. For an extensive description see [9].

With rule-based behaviors we can also solve another
not yet mentioned problem of our example. Namely, the
composer might connect multiple source contributors to
the source slot. In this case, the host will incorrectly ig-
nore all sources but the first one. To correct this, we can
apply a specific behavior to the source slot that limits the
cardinality of the slot to a single contributor.

The above example shows the need for composability
testing, because common integration testing does not con-
sider dynamic composition and does not detect problems
caused by different orders of composition.

IV. PLUX COMPOSABILITY TEST METHOD AND TOOL
The Plux Composability Test Method (PCTM) is a me-

thod for testing the dynamic composability of plug-and-
play components. The goal is to reveal problems caused
by different orders of composition. PCTM is a dynamic
black-box test method: Dynamic, because it runs the
composer repeatedly and varies the order in which the
slots of a host are filled. Black-box, because it looks only
at the declared metadata of components and ignores their
source code. We do this, because we want to detect index
out of bounds errors and null pointer errors in the parts of
the host that access the composition state. In this paper we
focus on the composability of hosts, whereas contributors
are left for future work.

A. Approach
PCTM tests each component (testee) individually using

the following steps: (i) Generate a mock host with slots
for every plug of the testee. (ii) Connect the testee with the
generated host. (iii) Generate a mock contributor for every
slot of the testee. (iv) Determine a set of composition se-
quences by permuting the order in which the slots of the
testee should be filled. (v) Select a sequence from the set
and connect the mock contributors with the testee's slots
(if open) in the specified order; monitor the testee for er-
rors. (vi) Repeat step v for each sequence in the set.

All mock components can be generated automatically.
Since slots and plugs refer to a slot definition, which is
basically an interface, the method signatures of the mock
components can be generated in such a way that they con-
form to those interfaces. Note that we are not interested in
generating mock components that do real work, but only
in detecting null pointer and index out of bounds errors
that result from unexpected composition orders.

Fig. 11a. shows the testee, how it is connected to the
mock host, and how its slots are filled with mock con-
tributors. Fig. 11b. shows the set of sequences to test.

Fig. 11 Test setup and possible composition sequences.

Let us revisit error-prone implementation of the exam-
ple from Section III (Fig. 9) and apply the following steps
in order to test the composability of the copy application
(Fig. 12): (i) Generate a mock host with an Application
slot. (ii) Connect the CopyApp to the mock host. (iii) Gen-
erate a mock data source contributor and a mock data sink
contributor. (iv) Determine the set of composition se-
quences: { Source, Sink } and { Sink, Source }. (v) Con-
nect contributors in the order { Source, Sink }. (vi) Repeat
step v with the order { Sink, Source }. In step vi the test
procedure reveals the out of bounds error. If we for com-
parison apply the same test procedure to the robust im-
plementation of the host (Fig. 10), it does not find any
errors (as expected).

Fig. 12 PCTM test procedure for copy application example.

B. Tool
The Plux Composability Test Tool (PCTT) implements

the Plux Composability Test Method as a Plux extension.
To start the tests, PCTT connects to the Plux core as an
application. To add the generated mock extensions to the
type store, it also connects to the core as a discoverer.
PCTT has a Mock slot to integrate the mock hosts which it
generates (Fig. 13a).

When PCTT runs the tests it disables automatic compo-
sition and uses programmatic composition to connect the
testee with the generated mock components. If applied to
the copy application from Section III, PCTT performs the
following steps: (i) Generate a component MockHost with
a Mock plug and a slot for integrating CopyApp via its
Application plug; add MockHost to the type store. (ii)
Generate the contributors MockSource and MockSink
(Fig. 13b). (iii) Connect MockHost to PCTT. (iv) Connect
CopyApp to MockHost. (v) Determine the valid composi-
tion sequences: { MockSource, MockSink } and
{ MockSink, MockSource }. (vi) Apply the first test se-
quence { MockSource, MockSink } and monitor CopyApp
for exceptions (Fig. 13c). (vii) Disconnect MockSource,
MockSink, and CopyApp. As the state of CopyApp might
change during composition, we use a new instance for
each test run. (viii) Repeat steps iv to vii with the next test
sequence until all sequences have been tested.

Like unit test frameworks, PCTT runs all tests, no mat-
ter whether exceptions occur or not. Using the terminol-
ogy of JUnit [10], a single test sequence corresponds to a

test method, all test sequences for a testee correspond to a
test case, and all test cases for a component repository
correspond to a test suite.

When PCTT runs a test suite it logs all exceptions. Us-
ing the graphical user interface of PCTT the user can re-
view the results. Test cases and test methods that revealed
errors are highlighted. For each test method the user can
retrieve the detected exceptions.

For the test suite of the copy application the tool high-
lights the second test method with the sequence { Mock-
Sink, MockSource } and reveals the detected index out
bounds exception.

Fig. 13 PCTT integration in Plux, composition of test sequence.

V. RELATED WORK
In component-based software development, the prevail-

ing composition method is programmatic composition,
where the host creates and integrates its contributors itself.
Dynamic plug-and-play composition like in Plux is rather
the exception. Common test methods are limited to func-
tional unit tests of components and on system tests of the
composed application, whereas composability is generally
ignored.

A. Systems with Dynamic Reconfiguration
Component systems such as OSGi [5], Eclipse [6], and

NetBeans [7] support dynamic reconfiguration. We looked
at what they recommend for testing their components:

Although the Eclipse platform supports dynamic com-
position, this feature is rarely used. The Eclipse IDE itself
does not make use of it, and so do most third-party plug-
ins. Because dynamic composition is uncommon, compo-
sition testing is not considered by the suggested Eclipse
test methods. Eclipse recommends JUnit [10] for func-
tional testing and SWTBot [11] for user interface testing.
In addition to that, the Eclipse Test & Performance Tools
Platform Project [12] allows recording API calls for re-
gression testing.

The OSGi Service Platform specification and the OSGi
documentation [5] do not address testing at all. The DA-
Testing project [13] recognizes the need for dynamic
composition testing. It provides a framework which listens
to the events of the OSGi service registry and runs unit
tests when those events occur. The assertion API for func-
tional testing is kept intentionally similar to JUnit.

In NetBeans [7], dynamic reconfiguration is considered
in the API, but ignored by the majority of plug-ins. Thus
applications built with NetBeans usually need to be re-
started to add or remove plug-ins. The NetBeans project
recommends testing the components with JUnit and pro-
vides a helper class to run unit tests inside the NetBeans
environment. Composability testing is not considered.

In summary, the most modern component systems do
not consider composability testing. This confirms the need
for our work.

B. Systems without Dynamic Reconfiguration
For component systems without support for dynamic

reconfiguration we looked at the inversion of control con-
tainers Spring [14] and PicoContainer [15]:

The Spring framework supports unit testing of applica-
tions. As Spring components are simple Java objects, unit
tests can be conducted with test frameworks like JUnit
[10] or TestNG [16]. To test classes that depend on exter-
nal libraries or databases, Spring provides mock and util-
ity classes. For enterprise applications, which require an
application server, Spring supports integration testing. It
allows executing the application in a spring environment
and checking if the components are wired correctly, with-
out the need to deploy the application to a server.

The PicoContainer project recommends the use of unit
test frameworks like JUnit to test the components of an
application, which are simple Java objects. To resolve
dependencies between objects, PicoContainer recom-
mends the use of mock libraries like JMock [17] and Ea-
syMock [18].

We adopted the idea of mock objects for our work.
Whereas Spring and PicoContainer use mock object for
functional testing, we use mock components for compos-
ability testing.

VI. CONCLUSIONS
In this paper we presented the Plux Composability Test

Method (PCTM) for unit testing of dynamically composed
applications. The method determines and generates the
test cases required to check the composability of plug-
and-play components. In order to allow the independent
testing of components, our approach generates a mock
host, to host the component under test as well as mock
contributors to test it. It enumerates all combinations of
different contributors of a single host. In doing so, it gen-
erates a practically reasonable number of test cases.

We described the Plux Composability Test Tool
(PCTT) and showed how it integrates into the Plux com-
position infrastructure. It generates test cases according to
the PCTM and executes them.

By applying the method and the tool to our motivating
example, we showed that the generated test cases effec-
tively revealed composability defects. The tool allows
time-efficient composability testing without programming,
because it generates and executes the set of test cases
automatically.

In future work, we will extend PCTM to test additional
composability aspects: (i) We want to test hosts with mul-

tiple contributors of the same kind; both for their correct
integration and for their correct use. (ii) We want to test if
hosts behave correctly after contributors were removed.
(iii) For contributors with multiple plugs, we want to test
if their plugs can be connected individually and in arbi-
trary order. (iv) We want to test the composability of par-
tially connected components. Such a component decides
which contributors it uses depending on which of its pro-
vided plugs are connected.

ACKNOWLEDGMENT
This work has been conducted in cooperation with

BMD Systemhaus GmbH, Austria, and has been sup-
ported by the Christian Doppler Forschungsgesellschaft,
Austria.

REFERENCES
[1] R. Wolfinger, "Dynamic Application Composition with

Plux.NET: Composition Model, Composition Infrastructure.",
Dissertation, Johannes Kepler University, Linz, Austria, 2010.

[2] C. Mittermair, "Zerlegung eines monolithischen Softwaresystems
in ein Plug-In-basiertes Komponentensystem.", Master thesis,
Johannes Kepler University, Linz, Austria, March 2010.

[3] R. Wolfinger, S. Reiter, D. Dhungana., P. Grünbacher, and H.
Prähofer, "Supporting runtime system adaptation through product
line engineering and plug-in techniques.", 7th IEEE International
Conference on Composition-Based Software Systems, ICCBSS
2008, Madrid, Spain, February 25-29, 2008.

[4] D. Birsan, "On Plug-ins and Extensible Architectures.", ACM
Queue, 3(2):40–46, 2005.

[5] "OSGi Service Platform, Release 4. The Open Services Gateway
Initiative", http://www.osgi.org, July 2006.

[6] "Eclipse Platform Technical Overview. Object Technology Inter-
national, Inc.", http://www.eclipse.org, February 2003.

[7] T. Boudreau, J. Tulach, G. Wielenga, "Rich Client Programming,
Plugging into the NetBeans Platform", Prentice Hall International,
2007.

[8] "ECMA International Standard ECMA-335, Common Language
Infrastructure (CLI)", 4th Edition, June 2006.

[9] M. Jahn, M. Löberbauer, R. Wolfinger, H. Mössenböck, "Rule-
based Composition Behaviors in Dynamic Plug-in Systems.",
Submitted to The 17th Asia-Pacific Software Engineering Confer-
ence, APSEC 2010, Sydney, Australia, November 30-December 3,
2010.

[10] K. Beck, E. Gamma, "JUnit Documentation",
http://www.junit.org, retrieved June 2010.

[11] "The SWTBot Project", http://www.eclipse.org/swtbot, retrieved
June 2010.

[12] "Eclipse Test & Performance Tools Platform Project",
http://www.eclipse.org/tptp, June 2010.

[13] DynamicJava.org, "DA-Testing Project", April 2009.
[14] "Spring Java Application Framework, Release 3.0. Reference

Documentation", http://www.springsource.org, June 2010.
[15] "PicoContainer", http://www.picocontainer.org, February 2010.
[16] C. Beust, H. Suleiman, "Next Generation Java Testing: TestNG

and Advanced Concepts", Addison-Wesley Professional, October
2007.

[17] "JMock Project", http://www.jmock.org, retrieved June 2010.
[18] "EasyMock Project", http://easymock.org, retrieved June 2010.

