
Reactive and Iterative Evolution of

Model-based Product Lines

Wolfgang Heider

Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University

Linz, Austria

heider@ase.jku.at

Abstract—Industrial challenges in product line evolution sug-

gest a flexible and iterative approach that integrates domain

and application engineering activities. We present our ongoing

and planned research addressing the evolution of model-based

product lines. In particular, we propose an iterative process

and initial tool support for product line evolution. Our work is

based on an analysis of industrial challenges in product line

evolution. The paper outlines the research method and sum-

marizes the planned contributions.

I. INTRODUCTION

Product lines (PL) are typically highly complex systems
that are maintained and evolved over many years. Model-
based approaches are frequently used to define the reusable
assets and the variability of a PL. Due to continuous evolu-
tion the reusable assets and variability models need to be
adapted to reflect changes to the domain requirements [1].
Pohl [2] states that “managing the evolution of software
product line artifacts over time and ensuring the consistent
integration of the changes in all affected product line appli-
cations are [...] key research challenges.” An underlying
reason for these challenges seems to lie in the inflexibility of
existing product line engineering (PLE) methods. In particu-
lar, existing approaches address domain engineering (the
definition of the PL and its variability) and application engi-
neering (the actual use of the PL to create products) [2].
However, engineers often need to evolve a PL in a more
iterative way by intertwining domain and application engi-
neering activities [3]. This includes rapid feedback from
application engineering projects [4] which currently takes
too long in many environments. As in other areas of software
engineering where sequential processes are increasingly
replaced with iterative or agile approaches we believe that
such changes can also be beneficial for PLE [5]. More spe-
cifically, in the area of model-based product lines there is
still a lack of methods and effective tools that treat evolution
as the normal case and not as the exception. The idea of PLE
is to exploit anticipated variability, which historically has
lead product line methods to overlook support for unantici-
pated evolution.

Authors in PLE have distinguished between proactive
and reactive evolution [6]: Proactive evolution deals with
preparing the PL for future needs by considering market and
technology trends and forecasting general business needs to

derive new domain requirements. Reactive evolution means
evolving a PL by analyzing specific customer wishes regard-
ing their potential as new domain requirements. Our research
focuses on the reactive evolution scenario which is highly
relevant in industry. For instance, in our collaboration with
Siemens VAI [7][8][9] we have learned that new customer
requests from multiple concurrent application engineering
projects need to be systematically analyzed to plan the evolu-
tion. However, despite its importance reactive evolution is
hardly supported by existing methods and tools in PLE.

The left part of Fig. 1 shows the traditional PLE approach
with the clear separation into domain and application engi-
neering. The right part gives a high-level view of our envi-
sioned iterative approach for evolving model-based product
lines. It covers activities for eliciting new customer applica-
tion requirements during product derivation, analyzing and
defining new domain requirements, and continuously evolv-
ing the PL. Our model-based approach relies on understand-
ing changes to the key artifacts and dependencies between
them. In particular, our research questions deal with: (1)
understanding the relationships from new application re-
quirements to affected PL model elements and assets that
need to be customized; (2) analyzing the dependencies
among application requirements in multiple projects to iden-
tify similarities or to negotiate conflicts; (3) investigation of
the relationships from application requirements to emerging
domain requirements to understand which PL features have
been requested for which specific products; and (4) manag-
ing trace links from new or changed domain requirements to
affected model elements for deploying the updated PL assets
to the proper products.

Domain
Requirements

Application
Requirements

Product Line Models

Products

Elicit

A
pplication

Requirem
ents

Analyse Applicatio
n

Require
ments

Scope Requirements

& Plan
Product Line

Deve
lo

p &

Evo
lv

e

Pro
duct

 Li
ne

Derive &
Update Products

A
p

p
lic

at
io

n

En
gi

n
e

e
ri

n
g

D
o

m
ai

n

En
gi

n
e

e
ri

n
g

Customizations

Figure 1. Sequential (left) vs Iterative (right) evolution in model-based

product line engineering.

Our earlier publications focus on low-level mechanisms
and tool support for change tracking and evolution in model-
based environments [4][9]. This paper provides a top-down
and process-oriented perspective of our approach and a dis-
cussion of the research method.

II. STATE OF THE ART

Researchers in the areas of product line evolution, model
evolution, domain requirements engineering, and software
processes have proposed approaches that provide important
insights for our planned research.

A. Product Line Evolution

Several authors have stressed the importance of ap-
proaches for PL evolution and describe scenarios for PL
adoption. Bosch [10] discusses different approaches of
adopting a PL and defines maturity levels for PL artifacts.
Knauber [11] discusses differences between proactive and
reactive evolution of a PL. His paper offers guidelines for
dealing with changing requirements and outlines the chal-
lenges for the management of reactive evolution. Dhungana
et al. [8] present an approach of organizing product lines as a
set of interrelated model fragments. They support to semi-
automatically merge fragments into complete PL models for
co-evolution of models and their respective meta-models.
While these approaches provide partial solutions they how-
ever do not support the full cycle of reactive and iterative
evolution of model-based product lines as required e.g., in
the domain of our industry partner.

B. Model Evolution

Deng et al. [12] describe a model-driven PL approach
that focuses on the problem of domain evolution with regard
to PL architectures. They discuss several challenges for the
evolution of model-driven software PL architectures and
present an approach based on automated domain model
transformations. Sprinkle [13] discusses the model migration
problem for evolving meta-models, i.e., that models become
invalid when meta-models evolve. Their solution is to auto-
matically migrate existing models such that they conform to
the new meta-model while preserving the available infor-
mation as much as possible. Salinesi et al. [14] introduce an
approach for analyzing and modeling the difference of two
situations – before and after a change. Their gap modeling
approach helps to better express evolution requirements with
meta-modeling and operators. While these contributions
provide important technical solutions for implementing sup-
port in model-based development they currently do not sup-
port the complete evolution cycle proposed in our approach.

C. Domain Requirements Engineering

Requirements engineering and management approaches
provide an understanding of the key models and types of
requirements as well as stakeholders and core evolution
activities. Moon et al. [15] describe a process for developing
domain requirements explicitly considering commonality
and variability. They also describe an environment for man-
aging commonality and variability analysis of domain re-
quirements. Thurimella et al. [16] propose a rationale-based

approach to support PL evolution and to handle PL require-
ments. It is based on the Questions, Options and Criteria
model and uses a modified version of EasyWinWin. This
work provides basic foundations for requirements negotia-
tion in the evolution cycle that are also relevant in our ap-
proach. Etien and Salinesi [17] present a framework that
defines challenges for RE caused by concurrently evolving
components of a system. They show an approach addressing
co-evolution in RE based on five defined dimensions of
management issues.

D. Software Processes

Existing process models and frameworks provide useful
definitions of key activities for our reactive approach to PL
evolution. April et al. [18] propose a maturity model cover-
ing important activities of software maintenance and evolu-
tion. Deelstra et al. [6] describe a product derivation process
including discussions of different types of PL adaptations.
According to scoping and evolution of PL assets they identi-
fied several problems that provide important insights for
developing our tool-supported approach. Clements et al. [19]
discribe applications and adaptations of known project man-
agement practices in the context of PLE. Regarding scoping
Noor et al. [20] propose a collaborative approach for PL
planning showing the need to maintain a balance between
agility and more disciplined processes in PLE. Ghanam and
Maurer [21] present a test-driven approach for agile PLE.
They enable organizations with agile practices to manage
variability and its evolution based on established agile con-
cepts and test artifacts.

III. PROPOSED SOLUTION

As the basic idea of PLE is to exploit anticipated variabil-
ity, we are still missing methods with support for cycles of
unanticipated evolution. Based on our existing research in
PLE – i.e., the model-based DOPLER tool suite [7] − the
goal of this research is to develop a tool-supported method
that supports rapid and iterative evolution in model-based
product lines. In particular, we focus on the challenge of
reactive PL evolution in environments with PL models and
multiple concurrent application engineering projects that use
the PL models. This scenario is mission-critical in the do-
main of our industry partner but is hardly supported by cur-
rent PLE methods and tools. In particular, we focus on the
scenario of incrementally evolving a model-based product
line by analyzing application requirements elicited during
product derivation in customer projects.

A. Iterative Process

Our tool-supported method will address the five activities
in the spiral process shown in Fig. 2.

Derive and Update Products. Sales people and applica-
tion engineers initiate customer projects to derive products
from the PL using the variability models. Product releases
are created after each iteration in the customer project and
after new releases of the PL. An important research chal-
lenge lies in understanding which ongoing customer projects
and deployed products are affected by new releases of the PL
and its models. It is also challenging to document the per-

formed customizations such that they can be reapplied to
updated product releases if necessary.

Pr
od

uc
t

Re
le

as
e

Custom
er

Project

Applic
atio

n R
qts

D
o

m
a

in
 R

q
ts

Product Line
Release

Product Line Models

D
om

ain Rqt

Candidates

PL Release Plan

PL Model

Trace Links

Pro
duct

Rele
ase

 P
la

n

Elicit A
pplication

Requirem
ents

Analy
se

 A
pplic

atio
n

Require
m

ents

Scope Requirements

& Plan Product Line

D
ev

el
op

 &
 E

vo
lv

e

Pr
od

uc
t L

in
e

Derive & Update Products

Figure 2. Iterative evolution in model-based PLE. Activities and key

artifacts.

Elicit Application Requirements. Analysts document
application requirements in concurrent customer projects
and establish trace links to product line assets and variation
points to mark artifacts that need to be updated. After each
project iteration customer wishes are checked with ongoing
customer-specific developments or PL updates. A research
issue lies in providing tool support for maintaining trace
links between application requirements and PL artifacts (i.e.,
the variability models) during the project iterations.

Analyze Application Requirements. Application engi-
neers and domain experts analyze and inspect requirements
to find similar or duplicate requests from different projects.
A research issues is to provide tool support for searching,
filtering and collaboratively discussing application require-
ments when elaborating the domain requirement candidates.

Scope Requirements and Plan Product Line. PL manag-
ers, product managers, project managers, domain experts and
application engineers negotiate the domain requirement
candidates and decide about the evolution path of the PL.
They need to agree on new domain requirements and their
priorities when creating a product line release plan which
has to be consistent with the ongoing customer projects and
the product release plans. A challenge here lies in identify-
ing and resolving conflicts during negotiations about domain
requirements. For the tasks of conflict analysis, scoping,
prioritizing and release planning a negotiation model is
needed that considers the specifics of PL evolution.

Develop and Evolve the Product Line. PL engineers
need to locate changes not only in assets but also in product
line models. They need to adapt the variability models to
ensure a consistent product line release. A research issue lies
in providing support for adapting large model-based product
lines based on fine-grained trace information.

B. EvoKing Tool in the Model-based DOPLER Tool Suite

As part of the ongoing research we have been developing
the extendable EvoKing tool [9] for tracking evolution and
changes in Eclipse-based modeling environments. This
framework extends the PLE tool suite DOPLER [7] and will
support our described iterative approach with fine-grained

change tracking to maintain traceability and gather infor-
mation needed throughout the evolution cycle.

The evolution data and traceability information provided
by EvoKing will be used to support and guide engineers in
the five PL evolution activities. The EvoKing prototype can
track arbitrary PL artifacts and allows collecting application
requirements from multiple concurrent customer projects as
a prerequisite for subsequent requirements scoping [4] (cf.
Fig. 3).

Figure 3. EvoKing tracks requirements in customer projects and provides

an overview for planning subsequent product line evolution.

IV. RESEARCH METHODS AND PROGRESS

The work plan for this research is structured into three it-
erations in which we perform observation, development, and
evaluation activities (cf. Table 1) contributing to our overall
research goal.

TABLE I. RESEARCH ITERATIONS AND PHASES.

Activity Iteration 1 Iteration 2 Iteration 3

Observation Industrial PL;

find tool re-
quirements

Interviews with

engineers from
industry partner

Track evolu-

tion of indus-
trial PL with

tracking tool

Develop-
ment

Provide initial
process defini-

tion; develop

EvoKing track-
ing tool

Extend EvoKing
tool to guide

engineers through

evolution

Refine process
and tool based

on feedback

from users

Evaluation Validate tool

requirements

using the
DOPLER PL

case study

Perform experi-

ments and struc-

tured interviews
with engineers

from industry

partner

Perform simu-

lation to inves-

tigate impact
on scalability

During the first iteration we have already observed the

model evolution of our industry partner’s PL. We elicited
tool requirements for efficiently evolving the product line
models. We have been developing a prototype of the Evo-
King tracking tool [9] that allows monitoring the evolution
of model-based product lines. The evolution tracking tool
will be evaluated during the observation phases in all re-

search iterations. Additionally, we are working on a case
study in which we monitor modeling activities required dur-
ing the refactoring and evolution of the DOPLER tool-suite
PL [7][22].

In the second iteration we will conduct interviews with
the engineers maintaining the DOPLER product line and
observe the workflow of maintenance. This will help us to
discover further necessary tool support in the product line
evolution cycle. By enhancing the EvoKing tool we plan to
address these gaps. The records from ongoing product line
evolution will be used to create realistic maintenance tasks
for experiments with engineers. Our evolution tracking tool
will help gathering data allowing a quantitative evaluation of
the time and effort required for the tasks. As part of the ex-
periments we will use structured interviews and receive
qualitative feedback from the product line engineers at the
end of this second iteration.

The third research iteration will we based on observing
an evolving product line of our industry partner. In particular
we will investigate the usability of our tools to further im-
prove the process definitions and tools. Additionally, we plan
to evaluate the scalability of our approach using our existing
simulation framework for product lines we developed in
earlier work [23].

V. CONTRIBUTIONS

We aim to provide three contributions. Our first contribu-
tion is the definition of a process for the reactive and iterative
evolution of model-based product lines. The approach in-
cludes definitions of activities, involved artifacts and pre-
sents the entire workflow to manage evolution. A second
contribution is the EvoKing tool for tracking the evolution of
a model-based product line. It is customizable to different
environments for integrated tool support to guide engineers
during product line evolution. Finally, we will present case
studies and experiments regarding the evolution of model-
based product lines in our lab and of our industry partner.

REFERENCES

[1] M. Svahnberg, and J. Bosch, “Evolution in software product lines:
two cases,” J. of Software Maintenance: Research and Practice, vol.
11 (6), pp. 391-422, 1999.

[2] K. Pohl, G. Bockle, and F. Van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques, Springer,
2005.

[3] J. D. McGregor, The evolution of product line assets, Technical
Report CMU/SEI-2003-TR-005 ESC-TR-2003-005, CMU/SEI, 2003.

[4] W. Heider, and R. Rabiser, “Tool Support for Evolution of Product
Lines through Rapid Feedback from Application Engineering,” Proc.
4th Intl. Workshop on Variability Modelling of Software-intensive
Systems (VaMoS 2010), Linz, Austria, 2010, pp. 167-170.

[5] P. Clements, and C. W. Krueger, “Point/Counterpoint,” IEEE
Software, vol. 19(4), pp. 28-31, 2002.

[6] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in
software product families: a case study, “ J. of Systems and Software,
vol. 74, no. 2, pp. 173-194, Jan., 2005.

[7] D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neumayer,
“Integrated Tool Support for Software Product Line Engineering, “
Proc. 22nd IEEE/ACM Intl. Conf. on Automated Software
Engineering (ASE 2007), Atlanta, USA, 2007, pp. 533-534.

[8] D. Dhungana, P. Grünbacher, R. Rabiser, and T. Neumayer,
“Structuring the Modeling Space and Supporting Evolution in
Software Product Line Engineering,” J. of Systems and Software, vol.
83(7), pp. 1108-1122, 2010.

[9] W. Heider, R. Rabiser, D. Dhungana, and P. Grünbacher, “Tracking
Evolution in Model-based Product Lines,” 1st Intl. Workshop on
Model-driven Approaches in Software Product Line Engineering
(MAPLE 2009), Proc. (vol 2) of the 13th Int. Software Product Line
Conf. (SPLC 2009), San Francisco, USA, 2009, pp. 59-63.

[10] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product Line Approach, ACM Press/Addison-Wesley
Publishing Co., New York, USA, 2000.

[11] P. Knauber, “Managing the Evolution of Software Product Lines,”
8th Intl. Conf. on Software Reuse (ICSR-8), Madrid, Spain, Springer
LNCS, 2004.

[12] G. Deng, J. Gray, D. Schmidt, Y. Lin, A. Gokhale, and G. Lenz,
“Evolution in model-driven software product-line architectures,” in
Designing Software-Intensive Systems, P. Tiako, Ed., Idea Group Inc
(IGI), pp. 1280-1312.

[13] J. M. Sprinkle, Metamodel driven model migration, Ph.D. thesis,
Vanderbilt University.

[14] C. Salinesi, A. Etien, and I. Zoukar, “A Systematic Approach to
Express IS Evolution Requirements Using Gap Modelling and
Similarity Modelling Techniques,” Proc. of 16th Intl. Conf. on
Advanced Information Systems Engineering (CAiSE04), Riga, Latvia,
pp. 338-352.

[15] M. Moon, K. Yeom, and H. Seok Chae, “An Approach to Developing
Domain Requirements as a Core Asset Based on Commonality and
Variability Analysis in a Product Line,” IEEE Transactions on
Software Engineering, vol. 31, no. 7, July, 2005, pp. 551-569.

[16] A. K. Thurimella, and B. Bruegge, “Evolution in Product Line
Requirements Engineering: A Rationale Management Approach,”
Proc. of 15th IEEE Intl. Requirements Engineering Conf. (RE 2007),
2007, pp. 254-257.

[17] A. Etien, C. Salinesi, “Managing Requirements in a Co-evolution
Context,” Proc. of 13th IEEE Intl. Requirements Engineering Conf.
(RE'05), 2005, pp. 125-134.

[18] A. April, J. Huffman Hayes, A. Abran, and R. Dumke, “Software
Maintenance Maturity Model (SMmm): the software maintenance
process model,” J. Softw. Maint. Evol., vol. 17, pp. 197–223, 2005.

[19] P. Clements, L. Jones, L. Northrop, “Project Management in a
Software Product Line Organization,” IEEE Software, vol. 22 (5), pp.
54-62, 2005.

[20] M. A. Noor, R. Rabiser, and P. Grünbacher, “Agile Product Line
Planning: A Collaborative Approach and a Case Study,” J. Systems
and Software, vol 81 (6), June 2008, 868-882.

[21] Y. Ghanam, and F. Maurer, “Extreme Product Line Engineering:
Managing Variability and Traceability via Executable
Specifications,” Proc. of Agile Conference, 2009, pp. 41-48.

[22] P. Grünbacher, R. Rabiser, and D. Dhungana, “Product Line Tools
Are Product Lines Too: Lessons Learned from Developing a Tool
Suite,” Proc. 23rd IEEE/ACM Intl. Conf. on Automated Software
Engineering, L'Aquila, Italy, 2008, pp. 351-354.

[23] W. Heider, R. Froschauer, P. Grünbacher, R. Rabiser, and D.
Dhungana, “Simulating Evolution in Model-based Product Line
Engineering,” J. Information and Software Technology, vol. 52 (7),
pp. 758-769, 2010.

	I. Introduction
	II. State of the Art
	A. Product Line Evolution
	B. Model Evolution
	C. Domain Requirements Engineering
	D. Software Processes

	III. Proposed Solution
	A. Iterative Process

	B. EvoKing Tool in the Model-based DOPLER Tool Suite
	IV. Research Methods and Progress
	V. Contributions
	References

