
Comput Sci Res Dev
DOI 10.1007/s00450-011-0182-0

S P E C I A L I S S U E PA P E R

Composing user-specific web applications from distributed
plug-ins

Markus Jahn · Reinhard Wolfinger ·
Markus Löberbauer · Hanspeter Mössenböck

© Springer-Verlag 2011

Abstract Plug-in frameworks support the development of
component-based software that is extensible and can be cus-
tomized to the needs of specific users. However, most plug-
in frameworks target desktop applications and do not sup-
port web applications that can be extended by end users. In
contrast to that, our plug-in framework Plux supports cus-
tomizable and extensible web applications. Plux tailors a
web application to the needs of every user, by assembling it
from a user-specific component set. Furthermore, Plux sup-
ports end-user extensions, by integrating components pro-
vided by the end user into the web application. And finally,
Plux supports distributed web applications, by integrating
components on the client machines into the web application.

Keywords Component-based software · Plug-in
architecture · Web programming · Run-time adaption

1 Introduction

Although modern software systems tend to become more
and more powerful and feature-rich they are still often felt to
be incomplete. It will hardly ever be possible to hit all user

M. Jahn · R. Wolfinger (�) · M. Löberbauer · H. Mössenböck
Christian Doppler Laboratory for Automated Software
Engineering, Johannes Kepler University, 4040 Linz, Austria
e-mail: wolfinger@ase.jku.at

M. Jahn
e-mail: jahn@ase.jku.at

M. Löberbauer
e-mail: loeberbauer@ase.jku.at

H. Mössenböck
e-mail: moessenboeck@ase.jku.at

requirements out of the box, regardless of how big and com-
plex an application is. One solution to this problem are plug-
in frameworks that allow developers to build a thin layer of
basic functionality that can be extended by plug-in compo-
nents and thus tailored to the needs of specific users.

Most plug-in frameworks target desktop applications, but
are typically unsuitable for building extensible web applica-
tions. For us, a web application is a program that is con-
currently used by multiple persons, over a network using a
web browser. In domains where customer requirements vary
greatly (e.g., in business software) a web application should
be extensible by end users to meet their specific needs.

Making a web application extensible must go beyond
componentization. Every user should be able to extend the
application in his own way, i.e. he should be able to add cus-
tom extensions without changing the application for other
users. We are aware that extensions provided by end users
raise security concerns. Therefore Plux implements a secu-
rity mechanism based on signed assemblies and .NET code
access security. Depending on the identity of the manufac-
turer, Plux decides if a component can be loaded and in
which parts of the application it can be used. Components
can also be partially trusted, in that case they can be exe-
cuted in a sandbox with limited rights. However, security of
plug-in-based applications is beyond the scope of this paper.

Distribution of components across several computers is
another issue, because installing components only on the
server does not cover all extensibility scenarios. For exam-
ple, if a component needs to access client-side hardware,
such as a barcode scanner, the component must run on the
client and not on the server. Such client-side components
should be capable of being integrated into the web applica-
tion as well.

Over the past few years we have developed the plug-in
framework Plux. Originally, Plux focused on dynamically

mailto:wolfinger@ase.jku.at
mailto:jahn@ase.jku.at
mailto:loeberbauer@ase.jku.at
mailto:moessenboeck@ase.jku.at

M. Jahn et al.

reconfigurable desktop applications. In this paper, however,
we present an extended version of Plux for web applications,
which addresses the problems of extensibility and distribu-
tion. A Plux web application can be extended by custom
plug-ins both on the server-side and on the client-side. Plug-
ins which are distributed across multiple computers can still
be integrated into a single seamless application.

Our research was conducted in cooperation with BMD
Systemhaus GmbH. BMD is a medium-sized company of-
fering a comprehensive suite of enterprise applications, such
as customer relationship management, accounting, produc-
tion planning and control. Because BMD’s target market is
fairly diversified, ranging from small tax counsellors to large
corporations, customization and extensibility are essential
parts of BMD’s business strategy. As BMD offers both a
desktop and a web version of their software, they want to
use Plux for both versions and reuse components where pos-
sible.

This paper is organized as follows: Sect. 2 describes the
basic concepts of the Plux framework. It focuses on the con-
cepts that are common to the desktop and to the web ver-
sion of Plux. Section 3 describes the architecture of the Plux
composition infrastructure and the automatic composition
process. Section 4 presents Plux for web applications and
shows usage scenarios for client and server plug-ins using
a motivating example. Section 5 is a follow-up to Sect. 3
and describes the additional Plux concepts required for web
applications. Section 6 shows how to host a Plux web appli-
cation on an ASP.NET server. Section 7 discusses related
work. It describes to what extent current desktop plug-in
frameworks can be used to build extensible web applications
and how non-plug-in-based web development platforms ad-
dress extensibility. Section 8 finishes with a summary and
an outlook to future work.

2 Concepts of Plux

The Plux framework supports the dynamic composition of
applications using a plug-and-play approach [22]. It facil-
itates extensible and customizable applications that can be
reconfigured without restarting them. Reconfiguring appli-
cations can be done in a plug-and-play manner and does not
require any programming. If a user wants to add a feature,
he just drops a plug-in (i.e., a DLL file) into a directory. Plux
discovers the plug-in on-the-fly and integrates it into the ap-
plication without requiring a restart. Similarly, if the user
wants to remove a feature, he removes the corresponding
plug-in from the directory.

Together with our industrial partner BMD, we applied
Plux to their customer relationship management (CRM)
product [15]. By allowing dynamic addition and removal of
CRM features, we support a set of new usage scenarios, such

Fig. 1 Extensions with slots and plugs

as on-the-fly product customization during sales conversa-
tions or incremental feature addition for step-by-step user
trainings [23].

The main characteristics of Plux are: the composer, the
composition events, the composition state, and the replace-
able component discovery mechanism. These characteris-
tics distinguish Plux from other plug-in systems [2], such
as OSGi [16], Eclipse [7], and NetBeans [3], and allow
Plux to replace programmatic composition by automatic
composition. Programmatic composition means that com-
ponents query a service registry and integrate other compo-
nents programmatically. Automatic composition means that
the components declare their requirements and provisions
using metadata; the composer in Plux uses these metadata to
match requirements and provisions and to connect matching
components automatically. During composition, Plux sends
composition events to which the affected components can
react. Plux also maintains the current composition state, i.e.
it stores which components use which other components. As
components can retrieve the global composition state, they
do not need to store references to the components they use.
Discovery is the process of detecting new components and
extracting their metadata. Unlike in other plug-in systems,
the discovery mechanism is not an integral part of Plux,
but is a plug-in itself. This makes the mechanism replace-
able. The following subsections cover those characteristics
in more detail.

2.1 Metadata

Plux uses the metaphor of extensions that have slots and
plugs (Fig. 1). An extension is a component that provides
services to other extensions and uses services provided by
other extensions. If an extension wants to use a service of
some other extension it declares a slot. Such an extension
is called a host. If an extension wants to provide its service
to other extensions it declares a plug. Such an extension is
called a contributor.

Slots and plugs are identified by names. A plug matches
a slot if their names match. If so, Plux will try to connect
the plug to the slot. A slot represents an interface, which
has to be implemented by a matching plug. The interface
is specified in a so-called slot definition. A slot definition
has a unique name as well as optional parameters that are
provided by the contributors and retrieved by the hosts. The

Composing user-specific web applications from distributed plug-ins

public enum LoggerKind { Warning, Error }
[SlotDefinition(“Logger”)]
[ParamDefinition(“Kind”, typeof(LoggerKind))]
public interface ILogger {
void Print(string msg);

}
Fig. 2 Definition of the Logger slot

[Extension]
[Plug(“Logger”)]
[Param(“Kind”, LoggerKind.Error)]
public class ErrorLogger : ILogger {
public void Print(string msg) {
Console.WriteLine(msg);

}
}
Fig. 3 ErrorLogger as a contributor for the Logger slot

names of slots and plugs refer to the respective slot defini-
tions.

The means to provide metadata is customizable in Plux.
The default mechanism extracts metadata from .NET at-
tributes in assembly files. Attributes are pieces of informa-
tion that can be attached to .NET constructs, such as classes,
interfaces, methods, or fields. At run time, the attributes can
be retrieved using reflection [6].

Plux has the following custom attributes: The SlotDefi-
nition attribute to tag an interface as a slot definition, the
Extension attribute to tag classes that implement compo-
nents, the Slot attribute to specify requirements for optional
contributors in hosts, the Plug attribute to specify provi-
sions in contributors, the ParamDefinition attribute to de-
clare required parameters in slot definitions, and the Param
attribute to specify provided parameter values in contribu-
tors. Although the default mechanism for providing meta-
data (namely by .NET attributes) limits parameter values to
compile-time constants, Plux in general can use arbitrary ob-
jects as parameter values.

Let us look at an example now. Assume that a host wants
to print log messages as errors or warnings. The loggers
should be implemented as contributors that plug into the
host. Every logger should use a parameter to specify whether
it prints errors or warnings. First, we have to define the slot
into which the logger can plug (Fig. 2).

Next, we write logger contributors. Figure 3 shows the
logger for errors. The logger for warnings is implemented
similarly (not shown). Since ErrorLogger has a Logger plug
it has to implement the interface ILogger specified in the
slot definition of Logger. It also has to provide a value for
the parameter Kind specified in the slot definition.

Finally, we implement the application that uses the log-
gers (Fig. 4). In order to be able to use loggers it has a Log-
ger slot. It also has an Application plug that fits into the Ap-
plication slot of the Plux core. At startup, Plux creates an

[Extension]
[Plug(“Application”)]
[Slot(“Logger”)]
public class HostApp : IApplication {
public HostApp(Extension e) { . . . }
void Work() { . . . }

}
Fig. 4 Application host with a Logger slot

instance of HostApp and connects it to the core. The full
implementation of HostApp is shown in Sect. 2.4.

2.2 Discovery

In order to match requirements and provisions, Plux needs
the metadata of the extensions. Extensions are deployed as
plug-ins, i.e. DLL assembly files. A plug-in can contain sev-
eral functionally related extensions that should be jointly
installed. The discoverer is the part of Plux which discov-
ers plug-ins and provides the metadata for the extensions
in the plug-in. Plux supports dynamic discovery, i.e. plug-
ins can be added and removed without restarting the appli-
cation. The default discoverer reads the metadata from at-
tributes stored in the plug-in assemblies. As the discoverer
is an extension itself, one can write custom discoverers, e.g.,
to retrieve metadata from a database or from a configuration
file.

2.3 Composition

Composition is the mediating process which matches the re-
quirements of hosts with the provisions of contributors. In
Plux, this is done by the composer. The composer assem-
bles programs from the extensions provided by the discov-
erer. Thereby it connects the slots of hosts with the plugs of
contributors.

When the discoverer provides a new extension, the com-
poser integrates it into the program on-the-fly. Similarly, if
an extension is removed from the plug-in repository, the
composer removes it from the program.

Integrating an extension means, that the composer instan-
tiates it and connects its plugs with the matching slots of ex-
tensions in the program. If a plug is connected to a slot, we
call this relationship plugged. Removing an extension means
that the composer unplugs the instances of this extension
from the slots where they are plugged, i.e. it removes the
plugged relationship for the corresponding slots and plugs.

Slots can declare whether they want an instance of their
own or a shared instance of a contributor. The composer con-
nects a new instance to slots that want their own instance
and the same (shared) instance to slots that want the shared
instance.

M. Jahn et al.

Fig. 5 Meta-objects for instantiated extensions in the composition
state

2.4 Composition state

In Plux, all connections between components are established
by the composer. Therefore the composer has full knowl-
edge about the instantiated extensions, their slots and plugs
as well as about their connections. This is called the compo-
sition state. If a host wants to use its plugged contributors,
it can simply retrieve them from the composition state. For
every instantiated extension, the composition state holds the
meta-object of the extension, the meta-objects of its slots
and plugs as well as a reference to the corresponding ex-
tension object (Fig. 5). For every slot, the composition state
also indicates which plugs are connected to this slot.

Figure 6 describes the host of Fig. 4 in more detail show-
ing how meta-objects can be used by a program. When
the composer creates an extension it passes the extension’s
meta-object to the constructor. In Fig. 6, the constructor re-
trieves the meta-object of the slot Logger and starts a new
thread. In the Run method, the host does its work and uses
the connected loggers to print a message. It retrieves the log-
gers using the PluggedPlugs property of the logger slot. For
each logger, it checks the logger kind using the parameter
Kind. Finally, it retrieves the extension objects for loggers
of the desired kind and prints the message.

2.5 Composition events

In addition to accessing the composition state, a host can
listen to composition events. This is appropriate for hosts
that want to react to added or removed contributors imme-
diately, e.g., in order to show them in the user interface.
Figure 7 shows a modified version of our host from Fig. 6.
It uses the Slot attribute to register event handler methods
for the Plugged and Unplugged events. In this example, the
event handlers just print out which logger was plugged or
unplugged.

This completes the example. We compile the slot defi-
nition interface ILogger to a DLL file, the so-called con-
tract assembly. Contracts and plug-ins should be separate
DLL files, because bundling slot definitions with extensions

[Extension]
[Plug(“Application”)]
[Slot(“Logger”)]
public class HostApp : IApplication {
Slot s; // logger slot
public HostApp(Extension e) {
s = e.Slots[“Logger”];
new Thread(Run).Start();

}
void Run() {
while(true) {
string msg; LoggerKind kind;
Work(out msg, out kind);
foreach(Plug p in s.PluggedPlugs) {
if((LoggerKind) p.Params[“Kind”]

== kind) {
Extension e = p.Extension;
ILogger logger = (ILogger)e.Object;
logger.Print(msg);

}
}
Thread.Sleep(2000);

}
}
void Work(out string msg,

out LoggerKind kind) {
/* not shown */

}
}

Fig. 6 Application host using logger contributors

[Extension]
[Plug(“Application”)]
[Slot(“Logger”,
OnPlugged=“Plugged”,
OnUnplugged=“Unplugged”)]

public class HostApp : IApplication {
. . .

void Plugged(CompositionEventArgs args) {
Extension e = args.Plug.Extension;
ILogger logger = (ILogger) e.Object;
logger.Print(“plugged: ” + e.Name);

}
void Unplugged(CompositionEventArgs args) {

. . .

logger.Print(“unplugged: ” + e.Name);
}
void Run() { . . . }
void Work(. . .) { . . . }

}
Fig. 7 Modified application reporting connected contributors

would constrain customization. We could not use a slot def-
inition in a program without also including the extensions
that come with it. If we compile the classes ErrorLogger and
HostApp to plug-in DLL files and drop them into the plug-in
repository of Plux everything will fall into place. The Plux
infrastructure will discover the extension HostApp and plug
it into the Application slot of Plux. It will also discover the
extension ErrorLogger and plug it into the Logger slot of
HostApp (Fig. 8).

Composing user-specific web applications from distributed plug-ins

Fig. 8 Composed application with host and logger contributor

2.6 Lazy activation

In order to minimize startup time and memory usage, Plux
supports lazy activation of extensions. This means that con-
tributors are only instantiated on demand, i.e. when the host
accesses the extension’s Object property. For the example in
Fig. 6 this has the effect that loggers which do not match
the desired kind are not instantiated; only their meta-objects
exist.

If a contributor is no longer needed and the host wants to
release the resources used by it, the host can deactivate the
contributor. To deactivate means to free the extension object,
so that only its meta-object remains. On the next access to
the Object property, the contributor is automatically reacti-
vated.

Hosts can listen to the composition events Activated and
Deactivated if they want to distinguish between activated
and deactivated contributors. Typically such a host cooper-
ates with another host. The first host handles only activated
contributors while the other one controls which contribu-
tors get activated. For example, a window host might show a
child window for every activated contributor, while a menu
host might allow the user to activate and deactivate contrib-
utors causing child windows to be opened or closed.

2.7 Selection

The composition infrastructure allows selecting plugged
contributors in a slot. This is useful if hosts cooperate in
such a way that one host uses only selected contributors and
another hosts controls which contributors are selected. Ap-
plied to the logger host from Fig. 6 this could mean that
the host only accesses selected loggers, while another host
allows the user to select or deselect contributors, e.g., by
checking or unchecking them in a list. Figure 9 shows the
modified Run method of the logger host, which works with
the selected loggers only.

2.8 Programmatic composition

The mechanism described in the previous sections, where
the composer makes connections and extensions retrieve
connections, is called automatic composition. In addition
to that, hosts can assemble contributors using programmatic
composition, i.e. the host can control how the composer as-
sembles the program. For example, the host can use API
calls to integrate specific contributors, a script interpreter
can assemble a program from a script, or a serializer can
restore a previously saved program.

void Run() {
while(true) {
string msg; LoggerKind kind;
Work(out msg, out kind);
foreach(Plug p in s.SelectedPlugs) {
if((LoggerKind) p.Params[“Kind”]

== kind) {
Extension e = p.Extension;
ILogger logger = (ILogger) e.Object;
logger.Print(msg);

}
}
Thread.Sleep(2000);

}
}

Fig. 9 Run method of application host with contributor selection

2.9 More features

Other features of Plux that cannot be discussed at length here
are the management of composition rights (e.g., which ex-
tensions are allowed to open a certain slot, and which ex-
tensions are allowed to fill it), slot behaviors that allow de-
velopers to specify how slots behave during the composition
(e.g., one can limit the capacity of a slot to n contributors,
or automatically remove a contributor from a slot when a
new contributor is plugged), component templates to define
generic extensions, that can be reused with different meta-
data in different parts of the program, as well as a scripting
API that allows experienced users to override the operations
of the composer. For a more extensive description of these
features see [11, 21, 22].

2.10 Summary

In Sect. 2 we described how Plux assembles programs from
extensions. The extensions use metadata to declare their re-
quirements and provisions. The discoverer discovers plug-
ins and provides metadata for the extensions in the plug-ins.
The composer matches requirements and provisions; it as-
sembles a program by plugging plugs of contributors into
slots of hosts. Hosts retrieve the composition state and react
to events sent by the composer. Plux instantiates contributors
lazily, i.e., the associated extension object is only instanti-
ated when the first host accesses it. Contributors which are
no longer needed can be deactivated in order to release their
resources. As contributors of a host can be selected, hosts
can consider this selection, thus allowing the user to switch
between contributors. For scenarios where automatic com-
position does not yield the desired result, programmers can
use the API of the composer to influence how the program
is assembled.

Figure 10 explains the graphical notation for the compo-
sition state which we use in the rest of this paper. The ver-
bose notation shows both the extension objects and their

M. Jahn et al.

Fig. 10 Compact and verbose notation for composition relationships

meta-objects (as introduced in Fig. 5). For clarity, however,
we use the compact notation wherever possible.

Figure 10a shows a contributor plugged into a host, where
the contributor has not yet been activated or has been deac-
tivated. Figure 10b shows the same host and contributor, but
this time the contributor is activated. Figure 10c shows the
notation for a selected contributor. Note that contributors can
also be selected when they are not activated (not shown).

3 Composition infrastructure of Plux

The composition infrastructure builds programs from con-
tracts and plug-ins. It discovers extensions from a plug-in
repository and composes the program from them by con-
necting matching slots and plugs. The plug-in repository is
typically a directory in the file system containing contract
DLL files (with slot definitions) and plug-in DLL files (with
extensions).

3.1 Architecture

Figure 11 explains the subsystems of the composition infras-
tructure and how they interact. The discoverer ensures that
at any time the type store contains the metadata of exten-
sions and slot definitions from the plug-in repository. When
the discoverer detects an addition to the repository, it ex-
tracts the metadata from the DLL file and adds them to the

type store. Vice-versa, when it detects a removal from the
repository, it removes the corresponding metadata from the
type store. The discoverer is implemented as an extension
itself. Thus, it can be replaced with or extended by other
discoverers.

The type store maintains the metadata of slot definitions
and extensions which are available for composition and no-
tifies the composer about changes. When new metadata be-
come available or when metadata are removed, the com-
poser updates the program. In addition to that, the type store
can be queried for contributors, e.g., by the composer when
it tries to fill slots.

The composer assembles a program by matching require-
ments and provisions. It listens to changes in the type store
and updates the program accordingly. If extensions become
available or unavailable, it integrates or removes them and
updates the composition state held in the instance store.

The instance store maintains the composition state of a
program, i.e. the meta-objects of extensions, slots and plugs
as well as the relationships between them. The instance store
is also used by other tools which, for example, visualize the
composition state and its changes during run time. Plux in-
cludes a visualizer tool which uses a notation similar to the
one in the figures of this paper.

3.2 Composition process

The composition process is directed by the composer. On
changes in the type store, the composer updates the pro-
gram by matching slots and plugs. If a contributor becomes
available in the type store, the composer queries the instance
store for matching slots. A plug matches a slot if their names
match. The composer plugs a matching plug into a slot if
the slot definition is available, the plug implements the in-
terface of the slot definition, and the plug provides values
for the parameters declared by the slot definition. To plug
a contributor means to instantiate it, add it to the instance
store, and add a plugged relationship between the host and
the contributor to the instance store. As the composer now
treats the contributor itself as a host, it opens its slots and
fills them with other contributors. In that way the composer
continues the composition until all qualifying extensions are
assembled.

Vice-versa, if a contributor is removed from the type
store, the composer queries the instance store for relation-
ships containing the contributor’s plugs. If it finds such re-
lationships, it unplugs the contributor’s instance. To unplug
a contributor instance means to close its slots, to remove the
plugged relationship from the instance store, to remove the
contributor instance from the instance store, and to release
it. Closing the contributor’s slots causes the decomposition
to be propagated, i.e. all contributors are unplugged from
those slots as well.

Composing user-specific web applications from distributed plug-ins

Fig. 11 Architecture of the
composition infrastructure

Fig. 12 Steps of the Plux
composition process

Figure 12 shows the steps performed by the composer
when it activates a host and fills its slots. In Fig. 12.1, the
extension E1 is plugged into some host (not shown) but is
not activated. In Fig. 12.2, the host of E1 accesses the Ob-
ject property of E1. Thus, the composer activates E1, i.e. it
instantiates the associated extension object. As part of the
activation, the composer opens the slot S1 of E1 (Fig. 12.3).
Opening S1 causes the type store to be queried for plugs
matching S1. In our example, the composer finds E2 with
the plug S1. It creates an instance of E2 and plugs it into S1
of E1 (Fig. 12.4). In Fig. 12.5 the composition is completed
and E2 is in same state as E1 in Fig. 12.1.

3.3 Runtime

The Plux runtime implements the composition infrastruc-
ture. To start a Plux program, one has to launch the runtime
and provide a discoverer as well as the plug-in repository
with the components that make up the program. At startup,
the runtime activates its built-in Startup extension, which is
the root for the Plux program. It has two slots: one for dis-
coverers and one for applications.

To start the logger application from Sect. 2, we put the
Logger contract, the HostApp plug-in, and the ErrorLogger
plug-in into the plug-in repository, which is a file system
folder. When we launch the runtime, we pass the folder and
a file system discoverer as command-line arguments. The
composer plugs the discoverer into the Discoverer slot of
the Startup extension (Fig. 13). The Startup extension acti-
vates the discoverer, which discovers the contracts and the
plug-ins from the provided folder. After the HostApp exten-
sion has become available in the type store, the composer
plugs it into the Application slot of the Startup extension.
The Startup extension activates HostApp, whereon the com-

Fig. 13 Plux runtime with startup extension and composed logger ap-
plication

poser fills HostApp’s Logger slot, i.e., it plugs the ErrorLog-
ger extension.

4 Enabling Plux for building web applications

Web applications face similar problems as desktop applica-
tions: If they get big and feature-rich, they become hard to
understand and difficult to maintain. They are hardly cus-
tomizable and usually not extensible by end users. Further-
more, web applications cannot access the local hardware
of client computers. In order to solve these problems we
applied the plug-in approach also to web-based software.
While the original version of Plux targeted single-user desk-
top applications, we enhanced it so that it can be used to
build multi-user web applications.

Plux makes web applications extensible. Extensions can
either be installed by the administrator or by the end user.
Authorized users can install them directly on the server,
while non-authorized users can install them on the client.
Regardless of where an extension is installed, it is always
seamlessly integrated into the web application.

Plux allows setting different user scopes. Extensions can
be made available for all users of a web application, for a

M. Jahn et al.

Fig. 14 Base composition of
the time recorder web
application

group of users, or for a single user. Thus every user can have
an individual set of components, i.e., an individual compo-
sition state.

Depending on their type of integration, extensions are
classified into three categories: (a) Server-side extensions
are installed and executed on the server. (b) Client-side ex-
tensions are installed and executed on the client. (c) Sand-
box extensions are installed on the server, but executed in a
sandbox on the client. Regardless of where the extensions
are executed, Plux composes them into a coherent web ap-
plication giving the user a seamless experience.

In this section, we describe several usage scenarios
demonstrating the need for extensible web applications. As
a running example we use a time recorder as a case study.
The usage scenarios cover the different user scopes as well
as the different types of extension integration.

Our time recorder can be used to record and evaluate
working hours. Figure 14 shows its architecture. Every fea-
ture of the time recorder is implemented as an extension, and
the business logic is separated from the user interface. The
Data Store extension stores arbitrary data for its hosts, e.g.,
working time data for the Recorder extension. The Recorder
extension allows a user to log the start time and the end time
of his work. The Statistics extension computes working time
metrics. Recorder and Statistics are plugged into the user in-
terface, i.e., into the Recorder GUI and the Statistics GUI,
which are plugged into the Time Recorder host. In order to
keep the figures simple, extensions that are irrelevant for the
usage scenarios are hidden in Figs. 14–20. For example, the
startup extension and the discoverer extension of Plux are
not shown.

Figure 15 shows the user interface of the time recorder.
The Recorder GUI displays the current date and time, and
allows the user to start, stop, and pause the recording. The
Statistics GUI shows the recorded working hours for the se-
lected month.

As the time recorder is extensible, the user interface must
be extensible as well. Control contributors, such as Recorder
GUI and Statistics GUI, declare their desired positions in
their metadata. The layout manager of the time recorder re-
trieves these positions and arranges the contributors accord-
ingly.

The composition in Fig. 14 is the base configuration
available to all users. As all these extensions are server-side
extensions, they are installed and executed on the server. In

Fig. 15 User interface of the time recorder web application

the following subsections, we show how users can extend
this web application with user-specific extensions. We will
describe the different types of extension integration and ex-
plain in which scenarios they are suitable.

4.1 Server-side extensions

Let us assume that the time recorder is used in a com-
pany with three groups. Group A wants an extension that
allows users to add notes to recorded time stamps. Therefore
they develop a note plug-in, consisting of a Notes extension,
which stores notes for the time stamps in the data store, and
a Notes GUI extension, which can be used to edit a note
from the Notes extension. As the users of group A want to
access the note plug-in from any computer, it is installed on
the server. And because only members of group A should
see the note plug-in, its user scope is set to this group (user
scopes are covered in Sect. 5.1). The composition for group
A is shown in Fig. 16. It comprises the base composition
(Fig. 14) extended by the note plug-in.

The server-side extensions are installed and executed on
the server. Because they are executed on the same server as
the time recorder, there is no performance penalty caused
by remote communication and they are available regardless
from which computer the user connects. However, server-
side extensions increase the work load on the server and may
execute malicious code. For that reason, users typically need
to be authorized to install extensions on the server.

Composing user-specific web applications from distributed plug-ins

Fig. 16 Composition for Group
A comprising the base
composition extended by the
server-side extensions for notes

Fig. 17 Extending the time
recorder web application with a
client-side extension in the
scope of User A

4.2 Client-side extensions for single users

Assume that user A1 is an engineer in the field. He wants to
track his working hours using a portable device. Because his
device cannot connect to the Internet, he periodically has to
synchronize it with the time recorder.

To synchronize the device, user A1 connects it to his of-
fice computer where he has installed the client-side exten-
sion Sync Portable. Because this extension is executed on
the client computer, it can access the portable device there.
Figure 17 shows the composition for user A1. To synchro-
nize the data between the device and the time recorder, the
Data Store extension is also plugged to the Sync Portable
extension.

Client-side extensions are installed on the client and are
remotely plugged into the web application. To plug remotely
means that the host and the contributor are executed on dif-
ferent computers. Plux creates proxies on both sides on-the-
fly. These proxies handle the communication between the
host and the contributor transparently, i.e., Plux allows every
extension to run remotely without any special coding effort.

Client-side extensions allow users to build components
that integrate local hardware or software into the web ap-
plication. Furthermore, since client-side extensions are in-
stalled on client computers, they open the web application

also for extensions of users who are not authorized to install
extensions on the server. The disadvantage of client-side ex-
tensions is that the remote execution of extensions causes
some communication overhead.

4.3 Client-side extensions for a group of users

Now we look at a scenario where a group B of users wants
to use the same set of client-side extensions, even if these
extensions are running on different computers.

Assume that the users in a group B use a hardware time
clock to track their working hours. The time clock is con-
nected to a dedicated computer on which the Hardware
Recorder GUI is installed as a client-side extension, which
integrates the time clock into the time recorder.

The user scope of the Hardware Recorder GUI is set to
group B. Thus, if a user of group B uses the time recorder
from any computer (e.g., to check his statistics) he will see
the user interface of the Hardware Recorder GUI (Fig. 18).
If a user inserts his id card into the time clock, the user inter-
face allows him to press the In and Out controls. As long as
no id card is inserted, the controls are disabled. Note that the
users of group B get this user interface on any computer, but
since only the dedicated time clock computer has the time

M. Jahn et al.

clock connected, the In and Out controls stay disabled on
other computers.

Since users of group B must use the time clock instead of
the Recorder GUI, a configuration file on the server (cov-
ered in Sect. 5.1) configures Plux such that the Recorder
GUI is excluded from the composition for users in group
B (Fig. 19). In other words, the server-side Recorder GUI is
replaced by the client-side Hardware Recorder GUI, which
uses the remotely plugged Recorder.

The hardware recorder extension in this scenario is made
available to multiple users; this might suggest a server-side
extension. However, we need to use a client-side extension
here, because the extension accesses local hardware. Since
the hardware recorder is set up for group scope, it is inte-
grated into the time recorder application for every user of
group B. Thus, a user from group B can access the hardware
recorder from a different computer that the one on which it
is executed. Client-side extensions are always executed on
the computer on which they are installed. One might won-
der, how the client-side extension Hardware Recorder GUI
can contribute to the user interface. As the user interface is
described in HTML, the client-side extension contributes its

Fig. 18 Modified time recorder user interface of the Hardware
Recorder GUI extension

HTML parts to its host extension Time Recorder. The Time
Recorder arranges the HTML parts from all its contributors
into the final user interface.

Another possible reason for using client-side extensions
with group scope instead of a server-side extension is autho-
rization. Even if one is not authorized to install an extension
on the server, one can make it available to multiple users as
a client-side extension with group scope.

4.4 Sandbox extensions

For the next scenario, assume that users of a group C want a
richer user interface, e.g. one that was built with Silverlight
[19] instead of HTML. Silverlight code runs in a sandbox
within the web browser of the client, so the best way to inte-
grate such code into a Plux application is to implement Sil-
verlight components as extensions that reside on the server
but are downloaded to the web browser on demand and are
executed there.

We implement the Silverlight extensions Recorder SL
GUI and Statistics SL GUI as replacements for Recorder
GUI and Statistics GUI and install them on the server. They
are discovered there as sandbox extensions and are config-
ured with the scope for group C. We exclude the original
Recorder GUI and Statistics GUI for group C using the con-
figuration file on the server (see Sect. 5.1). When a member
of group C starts the time recorder, the sandbox extensions
are downloaded from the server to the client computer and
are executed in the Silverlight environment. The business
logic extensions on the server are remotely plugged into the
Silverlight user interface extensions on the client. The com-
position for users of group C is shown in Fig. 20.

Like client-side extensions, the sandbox extensions in
this scenario are executed on the client, but unlike client-side
extensions, they are installed on the server and downloaded
to the client on demand. On the client, they are executed in
a sandbox, e.g., in the Silverlight environment. This integra-
tion type is useful for building rich user interfaces for web

Fig. 19 Replacing the Recorder
GUI extension by the Hardware
Recorder GUI extension
executed on another computer

Composing user-specific web applications from distributed plug-ins

Fig. 20 Sandbox extensions are
installed on the server, but
transferred to the client on
demand and executed in a
client-side sandbox

Fig. 21 The component
architecture for a specific user
composed by server-side,
client-side and sandbox
extensions

applications. Because sandbox extensions are executed on
the client, they reduce the work load on the server.

4.5 Concluding example

Finally, assume that user B1 wants to use the portable de-
vice when he is in the field, as well as the time clock when
he is on site. The customized time recorder for user B1 uses
all integration types presented in this section. As user B1 is
a member of group B, the base composition built from the
server-side extensions is extended by the client-side exten-
sion Hardware Recorder GUI (with group scope). Further-
more, because he uses the portable device, he installed the
client-side extension Sync Portable (with user scope) on his

computer, as well as the Sync Portable GUI as a sandbox
extension on the server (Fig. 21).

The composition is distributed over three different com-
puters: the web server, the time clock computer, and B1’s
client computer. The Sync Portable GUI is installed on the
web server, downloaded to every client computer, and exe-
cuted in the Silverlight sandbox there. As Sync Portable and
Sync Portable GUI run both on the same client computer,
the communication between them does not affect the server.

Server-side, client-side and sandbox extensions are im-
plemented in exactly the same way. The different modes
in which they are composed and executed are managed by
Plux. Therefore, a server-side extension of one web ap-
plication can be reused as a client-side extension in some
other web application and vice versa. The only exception

M. Jahn et al.

are client-side extensions that use local devices: these ex-
tensions have to run on the client on which this device is
installed.

This section showed scenarios for the integration of
server-side and client-side extensions into a coherent web
application. The next section explains the architecture of the
Plux web runtime and how it implements the support for the
described scenarios.

5 Plux web runtime

The web runtime of Plux provides the infrastructure for run-
ning plug-in-based web applications like the ones that were
shown in Sect. 4. It extends the Plux desktop runtime with
the following features:

Multi-user support. For every user the web runtime main-
tains an individual set of plug-ins and an individual compo-
sition state.

Distribution support. The web runtime can compose a
web application from extensions running on different com-
puters by plugging them remotely. It provides a distributed
composition infrastructure that maintains the composition
state of a distributed web application.

5.1 Multi-user support

This section describes the infrastructure necessary to sup-
port multiple users with different sets of server-side exten-
sions on a single web server. The handling of client-side ex-
tensions and distribution is shown in Sec. 5.2.

The web runtime supports multiple users by maintain-
ing one runtime node per user on the web server. A run-
time node comprises the infrastructure necessary to com-
pose the web application for the corresponding user, i.e. a

type store, an instance store, and a composer (Fig. 22). The
type store maintains the type metadata for the user’s exten-
sions. The instance store maintains the user’s composition
state. The instances in a user’s composition state are isolated
from the composition states of other users, i.e., instances are
not shared among users.

The composer is bound to the type store as well as to the
instance store of a user. It assembles the extensions from
the type store and stores the composition state in the in-
stance store. For reasons of responsiveness, every runtime
node is executed in a separate thread so that the composition
for multiple users occurs concurrently.

The server runs a session manager which creates a new
runtime node when a user session begins, and releases the
node when the session ends. During a session it reuses the
runtime node for every request of this user.

Users can be hierarchically organized into groups. A user
can be a member of multiple groups and a group can contain
multiple users and groups. These membership relations are
maintained in a user store (Fig. 23a). The default user store
uses the .NET Membership API. However, it can be replaced
by a different mechanism.

Server-side extensions are kept in different directories on
the server. For every user and for every group there is a di-
rectory with the user or group name, which contains the ex-
tensions that are specific to this user or group. In addition
to that, there is a Base directory containing the extensions
for all users as well as an Anonymous directory containing
extensions for unauthenticated users (Fig. 23b).

The user’s identity and his group memberships determine
which plug-ins are available for him. For example, user 1
gets the plug-ins A.dll and B.dll from the Base directory,
C.dll from the directory of group X, and D.dll from his own
user directory. In other words, he inherits the plug-ins from
Base and Group X and adds his own plug-ins.

Fig. 22 Architecture of the
multi-user composition
infrastructure

Composing user-specific web applications from distributed plug-ins

Fig. 23 The multi-user
discoverer uses the user store,
the discovery directories, and an
optional configuration file to
populate the users’ type stores

Fig. 24 Integration of the
shared multi-user discoverer
with the individual runtime
nodes using discovery
connectors

Sometimes it is also necessary to exclude a plug-in from

the inherited set of plug-ins. This is specified with a global

configuration file like the one in Fig. 23c, which excludes

B.dll for members of group X as well as A.dll for unauthen-

ticated users.

In order to find out which extensions are available for a

specific user, the discovery mechanism of Plux had to be ex-

tended. The multi-user discoverer retrieves group member-

ships from the user store, discovers plug-ins from the respec-

tive directories, excludes the plug-ins specified in the config-

uration file, and inserts the resulting set of plug-ins into the

user’s type store. This is the way how the user scopes from
Sect. 4 are implemented.

The multi-user discoverer is integrated into every runtime
node using discovery connectors, which are implemented by
a plug-in that is specified as an initial plug-in when the web
runtime is started. As a result, a discovery connector is in-
serted into the type store of every runtime node. When a
runtime node instantiates its startup extension the composer
plugs a discovery connector into the discovery slot of this
startup extension. The discovery connectors communicate
with the multi-user discoverer, which is shared for all users
(Fig. 24). The multi-user discoverer monitors the user store,

M. Jahn et al.

Fig. 25 Compact and verbose
notation for remotely plugged
extensions

the plug-in directories, and the configuration file and notifies
the discovery connectors on changes so that they can update
their type stores.

5.2 Distribution support

Distribution support allows the web runtime to execute the
extensions on different computers and still to compose a co-
herent application from them. The web runtime supports
distribution by remotely plugging extensions and by syn-
chronizing the type stores and instance stores across mul-
tiple runtime nodes. For every user there is a runtime node
in the web runtime and a runtime node in each client run-
time (a user has multiple client runtimes if he uses client-
side extensions from multiple computers). We implemented
client runtimes in different flavours, namely as plug-ins
for Mozilla Firefox and Microsoft Internet Explorer, as a
Silverlight application for rich client applications, and as
a standalone application, e.g., for the headless time clock
computer in Sect. 4.

Remotely plugged extensions communicate via extension
proxies on both sides of the line. An extension proxy con-
sists of a proxy object, which communicates with the remote
proxy, and a copy of the communication partner’s meta-
object, which represents the remote extension in the local
instance store. The web runtime dynamically creates a con-
tributor proxy on the host’s runtime node, and a host proxy
on the contributor’s runtime node. These two proxies han-
dle the remote communication, such that the host and the
contributor need not care about distribution.

Figure 25 shows a verbose and a compact notation for re-
motely plugged extensions. For clarity, we use the compact
notation wherever possible in this paper. When the host H

wants to call a method of the contributor C, it calls the corre-
sponding method of the host-side Proxy C, which sends the
call to contributor-side Proxy H . On the contributor-side,

Proxy H calls the method of the contributor C. The results
are sent back in the same way.

Every client as well as every Silverlight environment
has its own runtime node with a replicated copy of the
user’s server-side composition state, i.e., the user’s type
store and instance store. In order to synchronize the com-
position states in the runtime nodes of the same user, the
web runtime combines them into a common user runtime.
Figure 26 shows the user runtime of user 1 with two runtime
nodes that are connected via node coordinators. The node
coordinators synchronize the type stores and the instance
stores, coordinate the composers, and provide a communi-
cation API for the proxies.

For consistency reasons, only one node per user runtime
can be active at a time. In order to ensure this, the connected
runtime nodes pass a token between each other. Only the
node with the token can be active. Composition operations
on this node do not lead to an immediate update of the other
nodes. Only when the token is passed to some other node of
the same user runtime, this node gets updated, i.e., it syn-
chronizes its type store and its instance store with the data
from the node that released the token. The node coordina-
tor passes the token along when control is transferred to an
extension that is executed on some other runtime node. Fur-
thermore, a node coordinator can request the token with a
broadcast to the connected runtime nodes. This happens, for
example, when a user interaction initiates a composition op-
eration on a runtime node that does not have the token.

Figure 27 shows the steps when a client-side contributor
C is remotely plugged into a server-side host H . In Fig. 27.1
the server runtime node is active and the slot of H is closed.
In Fig. 27.2 the server-side composer opened the slot of H

and plugged C into H . This can be done locally on the
server, because the server type store is synchronized with
the client type store and therefore holds a local copy of C’s
metadata. When H tries to access the extension object of C

in Fig. 27.3, the server composer needs to activate C. As C

Composing user-specific web applications from distributed plug-ins

Fig. 26 Distributed user
runtime with interconnected
runtime nodes

is to be executed on the client, the server coordinator passes
the token to the client. Please note that before Fig. 27.3 the
composition state was not replicated to the client, because
the server runtime node involves a client runtime node only,
when a contributor of the client is accessed. When the client
receives the token, it updates its type store and its instance
store, i.e., the composition state of the server is replicated on
the client. The client composer also creates a proxy object
for H . In Fig. 27.4 the client composer activates C. Then
the token is passed back to the server (Fig. 27.5) and the
server composer finally creates a proxy object for C. This
concludes the remote plugging process. The server-side host
H can now use the client-side contributor C.

As the composers on the different runtime nodes need
to know on which node an extension should be executed,
the discoverer must annotate the extension types with this
information. The discoverer has to find out whether a plug-
in is a server-side plug-in, a client-side plug-in, or a sand-
box plug-in. To distinguish server-side plug-ins from sand-
box plug-ins, they are installed in separate directories on the
server. The multi-user discoverer annotates the types from
these plug-ins accordingly. Client-side plug-ins are discov-
ered by discoverers on the client.

Figure 28 shows an example of how the type stores are
populated. For user 1, who is a member of group X, the
server-side plug-ins A.dll and B.dll are retrieved from the
Base directory, C.dll from the Group X directory, and D.dll
from the directory User 1. Furthermore, the sandbox plug-
ins G.dll and H.dll are retrieved from the sandbox directories
Group X and User 1. Finally, the client-side plug-in I.dll is

retrieved from the Plugin directory on the client computer
of user 1. The plug-in B.dll is excluded as specified in the
configuration file. When the type store for user 1 is built, the
plug-ins are classified as server plug-ins, client plug-ins, and
sandbox plug-ins. The type stores for user 2 and for unau-
thenticated users are built accordingly.

Figure 29 shows how server-side and client-side discov-
erers are integrated into a web application. On the server
side, a discovery connector communicating with the multi-
user discoverer is plugged into the discovery slot of the
Startup extension in every user runtime. The multi-user dis-
coverer retrieves server-side plug-ins as well as sandbox
plug-ins and delivers them to the Startup extension, which
populates the type stores of the user runtimes. Client-side
discoverers are remotely plugged into the same discovery
slot of the Startup extensions. They discover client-side
plug-ins and deliver them to the Startup extensions.

Installing plug-ins for a web application means to drop
files into a plug-in directory where they will be discov-
ered. Users can easily put plug-ins into the plug-in directory
on their client. However, if they want to install server-side
plug-ins or sandbox plug-ins, they need to put them on the
server. Administrators typically want to prevent users from
directly accessing directories on the server. Thus, Plux pro-
vides an API for server-side plug-in installation as an alter-
native. Web applications can use this API to provide a user
interface which allows users to install server-side plug-ins.
Administrators can control which user is allowed to install
server-side plug-ins by setting permissions in the user store.

M. Jahn et al.

Fig. 27 Steps of the remote
plugging process

Plux includes an upload tool that demonstrates the usage of
this API.

6 Hosting Plux web applications

Web applications built with Plux are hosted on the Microsoft
Internet Information Server and ASP.NET [1]. An ASP.NET
web application is stored in a virtual directory that contains
web pages, library assemblies and further optional resources
(e.g., images and configuration files). Thus, a Plux web ap-
plication can be hosted in a virtual directory that contains
the web page by which the application is accessed as well

as the plug-ins and the Plux web runtime that composes the
application.

6.1 Structure of the virtual directory

The virtual directory for a Plux web application (Fig. 30)
contains a Bin directory for assemblies that are executed on
the server and a ClientBin directory for Silverlight assem-
blies that are downloaded to the client to be executed in
the client’s sandbox environment. The Bin directory con-
tains a subdirectory Plugins for server-side plug-ins that
are discovered by the multi-user discoverer. It also contains

Composing user-specific web applications from distributed plug-ins

Fig. 28 Populating the types
stores of different users with
server plug-ins, client plug-ins
and sandbox plug-ins

Fig. 29 Integrating client-side
discoverers into the user
runtimes

the framework assemblies of Plux, i.e., Plux.Web.Server.dll,
Plux.Web.Startup.dll and Plux.Web.Discoverer.dll.

The assembly Plux.Web.Server.dll implements the Plux
web runtime and provides an API to start, stop and ac-

cess Plux web applications. Moreover, it implements an
ASP.NET custom web control that can be used in ASP.NET
web pages. The custom control starts the Plux web runtime
on the first request and reuses it on further requests. It also

M. Jahn et al.

Fig. 30 Structure of the virtual
directory for Plux web
applications hosted with
ASP.NET

determines the current user and renders the user interface of
the web application that is plugged into the user’s Startup
extension to the web page.

The assembly Plux.Web.Startup.dll is a plug-in that con-
tains the Startup extension, which is instantiated for every
user at startup.

The assembly Plux.Web.Discoverer.dll implements the
multi-user discoverer. It uses an optional configuration file
Discovery.config, which is stored in the same directory as
the discoverer plug-in. Since all plug-ins at the outermost
level of the Bin directory are discovered by a special boot-
strap discoverer, the multi-user discoverer is discovered at
startup and is plugged into the discoverer slot of the Startup
extension.

Similar to the Bin directory, the ClientBin directory con-
tains a subdirectory Plugins for sandbox plug-ins that are
executed in the client’s Silverlight environment. It also
contains the Silverlight assembly Plux.Web.Silverlight.dll,
which implements the runtime node for the Silverlight en-
vironment.

Finally, the virtual directory contains the ASP.NET web
pages (.aspx pages) that can be requested by the users. For
example, the virtual directory in Fig. 30 contains the web
page TimeRecorder.aspx.

6.2 Including the Plux custom control into an ASP.NET
web page

Plux.Web.Server.dll implements an ASP.NET custom con-
trol (named Application) that can be used to deploy Plux
web applications on .aspx pages. This is shown with an ex-
ample in Fig. 31.

Every .aspx page starts with the <%@ Page> directive,
which specifies, among other things, the language in which
the page is written or where to find an associated code-
behind file.

<%@ Page ... %>
<%@ Register Assembly=“Plux.Web.Server”

Namespace=“Plux.Web” TagPrefix=“plux” %>

<!DOCTYPE ... >
<html>
<head>
<title>Time Recorder</title>

</head>
<body>
<form id=“form1” runat=“server” >
<plux:Application runat=“server” />

</form>
</body>

</html>

Fig. 31 Including the Plux custom control Application into the
ASP.NET web page TimeRecorder.aspx

In order to make the custom control known to the .aspx
page, the assembly Plux.Web.Server.dll has to be registered
using the <%@ Register> directive. This directive specifies
the custom control’s assembly, the namespace in which the
control is located, and a tag prefix that is used to qualify the
control in the .aspx page. Finally, the custom control Appli-
cation can be included under the name <plux:Application>
into the <form> tags.

On every request, the .aspx page gets rendered, i.e., the
<plux:Application> tag is replaced with the HTML con-
tent, which is rendered by the Plux web application that is
plugged into the Startup extension of the current user.

6.3 Implementation of a Plux web application

Finally, we have to provide an application extension that
can be plugged into the Startup extension. Therefore, we
implement an extension TimeRecorder that provides a plug
Plux.Web.Application (Fig. 32). As required by the plug,
the extension implements the interface IApplication, which
specifies a property Control. This property returns another

Composing user-specific web applications from distributed plug-ins

using Plux;
using Plux.Web;
using System.Web.UI.WebControls;

[Extension]
[Plug(“Plux.Web.Application”)]
[Slot(“Control”)]
public class TimeRecorder : IApplication {
public WebControl Control {
get {
Slot cs = Slots[“Control”];
return LayoutManager.Arrange(cs);

}
}
. . .

}
Fig. 32 Implementation of the web application TimeRecorder

ASP.NET custom control, which is added to the custom con-
trol Application and is responsible for rendering the user in-
terface. Application is a container for all extensions that are
plugged into the application slot of the user’s Startup exten-
sion.

The property Control of the class TimeRecorder in
Fig. 32 returns a custom control that renders the user in-
terface of the time recorder. A LayoutManager is used to
arrange the layout of all extensions that are plugged into the
Control slot of the TimeRecorder.

Now we compile TimeRecorder to a .NET assembly and
put it into the Plugins directory for server-side plug-ins.
There it will be discovered and plugged into the Startup
extension. Finally, the custom control Application instructs
the custom control of TimeRecorder to render the time
recorder’s user interface to HTML, which is sent back to
the client’s browser.

7 Related work

Plug-in frameworks have become quite popular recently.
However, most of them were designed for building rich
client applications and not for building web applications.
Even frameworks that do allow building web applications
lack support for per-user extensibility and customization.

Web programming platforms, on the other hand, support
building web applications for multiple users, but without
plug-in extensibility. Of course, there are web applications
that support customization and per-user extensibility. How-
ever, such features are usually not provided by the platform,
but have to be programmed by hand.

7.1 Browser Plug-ins

The most frequent form of plug-ins on the web are browser
plug-ins. For example, the Firefox browser can be extended

with plug-ins that run Flash animations or display PDF doc-
uments. However, such plug-ins are leaf components, i.e.,
they do not have slots for being extended with other browser
plug-ins, and cannot communicate with each other. We
are aware, that there are extensible browser plug-ins such
as the Greasemonkey extension for Mozilla Firefox. How-
ever, such plug-ins provide their own extensibility mecha-
nism, which is different from the extensibility mechanism
of the browser. For example, Greasemonkey uses scripts for
that [9]. In contrast to that, Plux plug-ins are first-class build-
ing blocks of web applications. Every plug-in can be ex-
tended with other plug-ins, and all of them can communicate
with each other via interfaces that are specified by slots.

7.2 Plug-in frameworks

The Eclipse Rich Client Platform [7] is a Java-based de-
velopment platform for extensible desktop applications.
Eclipse is based on the OSGi framework Equinox [16],
which allows dynamic loading of components. Like Plux,
Eclipse consists of a core that can be extended with plug-
in components. The differences between Eclipse und Plux
are: (1) The discovery mechanism for retrieving the meta-
data of components is an integral part of Eclipse, whereas in
Plux it is an extension that can be replaced. (2) In Eclipse,
the Java implementation of components is separated from
their metadata, which are kept in XML files. In Plux, the
metadata of components are specified with .NET attributes,
which are placed directly in the source code. (3) In Eclipse,
the hosts integrate their contributors themselves, whereas
in Plux, programs are assembled automatically by the com-
poser. (4) Eclipse maintains a registry of installed compo-
nents, but only the hosts know which components they actu-
ally use. In contrast to that, Plux maintains a global compo-
sition state that keeps track of which components use which
other components. (5) To support dynamic reconfiguration,
an Eclipse host must provide both an implementation for
integrating contributors at startup time and another one for
integrating them dynamically at run time. In Plux, a sin-
gle mechanism is used for integrating contributors both at
startup time and at run time.

The Eclipse Rich AJAX platform RAP [18] allows build-
ing web applications using Eclipse plug-ins. A server-side
Equinox environment [8] loads the Eclipse plug-ins on
the web server and RAP delivers the user interface to the
web browser using web technologies such as HTML and
JavaScript. However, RAP does not maintain a global com-
position state, neither for a single user and even less for mul-
tiple users. It also does not support per-user customization.

SOFA 2 [4, 5, 10] is a system for building distributed
component-based applications. The hierarchical component
model distinguishes primitive and composite components.
Primitive components are programmed, whereas composite

M. Jahn et al.

components are declaratively composed from other primi-
tive or composite components. The runtime environment al-
lows users to transparently distribute the components across
multiple nodes. The distributed components communicate
with each other using automatically generated connectors.
For communication, the connectors can use method invo-
cation, message passing, streaming, or distributed shared
memory. The runtime environment allows reconfiguring
an application by adding, removing, and updating com-
ponents at run time. The differences between Sofa and
Plux are: (1) Sofa uses an architecture description language
(ADL) to specify how a program should be composed from
components. In contrast to that, Plux automatically estab-
lishes the desired composition by matching the requirements
and provisions of components specified in their metadata.
(2) Like Plux, Sofa can dynamically reconfigure an applica-
tion. However, Sofa requires configurations to be statically
specified in ADL, whereas Plux composes programs in a
plug-and-play manner. (3) Sofa lacks support for extensi-
ble multi-user web applications, as it does not maintain the
composition state for multiple concurrent users.

7.3 Web programming platforms

The Java Enterprise Edition (Java EE) [14] allows devel-
oping multi-tiered web applications using server and client
components. Components on the server can be web compo-
nents such as Java Servlets and JavaServer Faces as well as
business components such as Enterprise JavaBeans. Com-
ponents on the client can be application clients (rich-client
applications) and applets. The differences between Java EE
and Plux are: (1) Java EE applications are programmatically
composed, whereas Plux applications are composed auto-
matically in a plug-and-play manner. (2) Java EE lacks built-
in support for per-user customization as well as for transpar-
ent remote plugging and unplugging. It also does not main-
tain a global composition state.

Web services [20] are a means to provide a public API for
components over a network. Thus they can be used to build
distributed component-based programs. One could compare
a web service with a plug of a Plux component. In order
to make a web service discoverable, it is registered in a
public registry. A web service registry can be compared to
a simplified Plux type store, containing only plugs. Con-
sumers of web services typically integrate them using pro-
grammatic composition. Outside these components, the in-
formation about who uses which web service is unknown,
i.e., the composition state is unavailable.

7.4 Portlets

Portlets [12] and [13] are user interface components that al-
low building extensible web applications. They can be in-
tegrated into a web site using a portal server, e.g. Apache

Pluto [17]. The Portlet API is a thin layer on top of Java
Servlets that provides means for integrating user interface
components into web applications. Portlets can communi-
cate with each other, which makes them a means to build
extensible user interfaces. They can communicate via a ses-
sion state if they run on the same server or via events that
can be dispatched to portlets on remote servers. However,
the assembly of programs from portlets must still be written
manually.

8 Summary and future work

In this paper we presented the dynamic plug-in framework
Plux that targets both rich client and web applications. The
focus of the paper was on multi-user web applications that
are extensible by end users.

With Plux, every user can add his own components to
a web application and has an individual composition state.
The distributed composition infrastructure of Plux automat-
ically composes a seamless application from components
that can reside on different computers. Server-side compo-
nents are installed and executed on the server. Client-side
components are installed and executed on the client and can
therefore use local resources there. Sandbox components are
installed on the server, downloaded to the client on demand,
and executed in a sandbox on the client. Components of any
kind can be provided for a single user or for a group of
users. The infrastructure transparently connects components
that are executed either on the same computer or on differ-
ent computers. The communication between remote com-
ponents is handled by the infrastructure using dynamically
generated proxies.

Plux has been implemented under Microsoft .NET. How-
ever, its concepts are easily transferrable to any other plat-
form (e.g. Java) that supports dynamic loading of compo-
nents, interfaces, metadata annotations, as well as reflection.
We have used Plux on various case studies, one of which is
the time recorder web application that was used as an exam-
ple throughout this paper.

Currently we are working on a security model that will al-
low us to specify plugging rights for individual slots, which
are based on the identity of the contributors. We are also
working on a layout manager for extensible user interfaces.
Furthermore, in order to make web applications better scal-
able it must be possible to persist the composition of a user
on the server and to restore it at the next round trip. There-
fore, persistence is another aspect on our agenda.

Further information on Plux as well as a tutorial and
a downloadable version of the framework can be found at
http://ase.jku.at/plux/.

http://ase.jku.at/plux/

Composing user-specific web applications from distributed plug-ins

References

1. ASP.NET (2010) Microsoft ASP.NET. http://www.asp.net. Ac-
cessed 30 July 2010

2. Birsan D (2005) On plug-ins and extensible architectures. ACM
Queue 3(2):40–46. doi:10.1145/1053331.1053345

3. Boudreau T, Tulach J, Wielenga G (2007) Rich client program-
ming, plugging into the NetBeans platform. Prentice Hall Interna-
tional, Englewood Cliffs

4. Bures T, Hnetynka P, Plasil F (2006) SOFA 2.0: balancing ad-
vanced features in a hierarchical component model. In: 4th int
conf on softw eng res manag and appl (SERA 2006), pp 40–48.
doi:10.1109/SERA.2006.62

5. Bures T, Hnetynka P, Plasil F, Klesnil J, Kmoch O, Kohan T,
Kotrc P (2007) Runtime support for advanced component con-
cepts. In: 5th int conf on softw eng res manag and appl (SERA
2007), pp 337–345. doi:10.1109/SERA.2007.115

6. ECMA (2006) ECMA international standard ECMA-335, Com-
mon Language Infrastructure (CLI), 4th edn

7. Eclipse (2003) Eclipse platform technical overview. Object Tech-
nology International, Inc. http://www.eclipse.org. Accessed 28
July 2010

8. Equinox (2010) Server-side Equinox. http://www.eclipse.org/
equinox/server. Accessed 28 July 2010

9. Greasemonkey (2010) Greasespot: the weblog about greasemon-
key. http://www.greasespot.net. Accessed 15 December 2010

10. Hnetynka P, Plasil F (2006) Dynamic reconfiguration and ac-
cess to services in hierarchical component models. In: The 9th
int symp on compon-based softw eng (CBSE 2006), pp 352–359.
doi:10.1007/11783565_27

11. Jahn M, Löberbauer M, Wolfinger R, Mössenböck H (2010) Rule-
based composition behaviors in dynamic plug-in systems. In:
The 17th Asia-Pac softw eng conf (APSEC 2010), pp 80–89.
doi:10.1109/APSEC.2010.19

12. JSR168 (2003) JSR 168: Portlet specification. http://jcp.org/en/jsr.
Accessed 28 July 2010

13. JSR286 (2008) JSR 286: Portlet specification 2.0. http://jcp.org/
en/jsr. Accessed 28 July 2010

14. JSR313 (2007) JSR 313: Java Platform Enterprise Edition 6 spec-
ification. http://jcp.org/en/jsr. Accessed 28 July 2010

15. Mittermair C (2010) Zerlegung eines monolithischen Soft-
waresystems in ein Plug-In-basiertes Komponentensystem. Mas-
ter thesis, Johannes Kepler University, Linz

16. OSGi (2006) OSGi Service Platform, Release 4. The Open Ser-
vices Gateway Initiative. http://www.osgi.org. Accessed 28 July
2010

17. Pluto (2010) Apache Pluto. http://portals.apache.org/pluto. Ac-
cessed 28 July 2010

18. RAP (2010) The Rich Ajax Platform. http://www.eclipse.org/rap.
Accessed 28 July 2010

19. Silverlight (2010) Microsoft Silverlight. http://www.microsoft.
com/silverlight. Accessed 30 July 2010

20. W3C (2002) W3C Web services. http://www.w3.org/TR/ws-arch.
Accessed 28 July 2010

21. Wolfinger R (2010) Dynamic application composition with
Plux.NET: composition model, composition infrastructure. Dis-
sertation, Johannes Kepler University Linz

22. Wolfinger R, Löberbauer M, Jahn M, Mössenböck H (2010)
Adding genericity to a plug-in framework. In: 9th int conf on
gener program and compon eng (GPCE), pp 93–102. doi:10.1145/
1868294.1868308

23. Wolfinger R, Reiter S, Dhungana D, Grünbacher P, Prähofer H
(2008) Supporting runtime system adaptation through product
line engineering and plug-in techniques. In: 7th IEEE int conf
on compos-based softw syst, pp 21–30. doi:10.1109/ICCBSS.
2008.30

Markus Jahn is a researcher in
the Christian Doppler Laboratory
for Automated Software Engineer-
ing at Johannes Kepler University
Linz. He received his Master’s de-
gree (Dipl.-Ing.) in Computer Sci-
ence from the University of Linz.
His ongoing Ph.D. research focuses
on distributed plug-in architectures
for user-specific web applications
on the basis of the plug-in platform
Plux (http://ase.jku.at/plux). Con-
tact him at Johannes Kepler Univer-
sity, 4040 Linz, Austria;
jahn@ase.jku.at.

Reinhard Wolfinger is an assis-
tant at the System Software Insti-
tute of the Johannes Kepler Uni-
versity Linz. He received his Ph.D.
in Business Informatics from the
University of Linz in 2010. His
research focuses on plug-in com-
ponent architectures and dynamic
application composition. His plug-
in platform Plux is available at
http://ase.jku.at/plux. Contact him
at Johannes Kepler University, 4040
Linz, Austria;
reinhard.wolfinger@jku.at.

Markus Löberbauer is a researcher
in the Christian Doppler Labora-
tory for Automated Software En-
gineering at Johannes Kepler Uni-
versity Linz. He received his Mas-
ter’s degree (Dipl.-Ing.) in Com-
puter Science from the University
of Linz. His ongoing Ph.D. research
focuses on testing and debugging of
component-based software on the
basis of the plug-in platform Plux.
Contact him at Johannes Kepler
University, 4040 Linz, Austria;
loeberbauer@ase.jku.at.

Hanspeter Mössenböck is a pro-
fessor of Computer Science at the
Johannes Kepler University Linz
and the head of the Christian Doppler
Laboratory for Automated Software
Engineering. He received his Ph.D.
from the University of Linz in 1987
and was an assistant professor at
ETH Zurich from 1988 to 1994.
His current research interests in-
clude programming languages and
compilers as well as object-oriented
and component-based software en-
gineering. He is the author of sev-

eral books on programming education and the designer of the compiler
generator Coco/R. Contact him at Johannes Kepler University, 4040
Linz, Austria; hanspeter.moessenboeck@jku.at.

http://www.asp.net
http://dx.doi.org/10.1145/1053331.1053345
http://dx.doi.org/10.1109/SERA.2006.62
http://dx.doi.org/10.1109/SERA.2007.115
http://www.eclipse.org
http://www.eclipse.org/equinox/server
http://www.eclipse.org/equinox/server
http://www.greasespot.net
http://dx.doi.org/10.1007/11783565_27
http://dx.doi.org/10.1109/APSEC.2010.19
http://jcp.org/en/jsr
http://jcp.org/en/jsr
http://jcp.org/en/jsr
http://jcp.org/en/jsr
http://www.osgi.org
http://portals.apache.org/pluto
http://www.eclipse.org/rap
http://www.microsoft.com/silverlight
http://www.microsoft.com/silverlight
http://www.w3.org/TR/ws-arch
http://dx.doi.org/10.1145/1868294.1868308
http://dx.doi.org/10.1145/1868294.1868308
http://dx.doi.org/10.1109/ICCBSS.2008.30
http://dx.doi.org/10.1109/ICCBSS.2008.30
http://ase.jku.at/plux
http://ase.jku.at/plux

	Composing user-specific web applications from distributed plug-ins
	Abstract
	Introduction
	Concepts of Plux
	Metadata
	Discovery
	Composition
	Composition state
	Composition events
	Lazy activation
	Selection
	Programmatic composition
	More features
	Summary

	Composition infrastructure of Plux
	Architecture
	Composition process
	Runtime

	Enabling Plux for building web applications
	Server-side extensions
	Client-side extensions for single users
	Client-side extensions for a group of users
	Sandbox extensions
	Concluding example

	Plux web runtime
	Multi-user support
	Distribution support

	Hosting Plux web applications
	Structure of the virtual directory
	Including the Plux custom control into an ASP.NET web page
	Implementation of a Plux web application

	Related work
	Browser Plug-ins
	Plug-in frameworks
	Web programming platforms
	Portlets

	Summary and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

