
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

azDeploy: Remote Deployment of
.NET Applications and Database Schemas

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplomingenieur

im Masterstudium

Software Engineering

Eingereicht von:

Rainer Pichler BSc

Angefertigt am:

Institut für Systemsoftware

Beurteilung:

o. Univ.-Prof. Dr. Dr. h.c. Hanspeter Mössenböck

Mitwirkung:

Dr. Reinhard Wolfinger

Linz, Dezember 2011

Maintaining software on appliances installed at remote sites is a time-consuming
task. This thesis presents azDeploy, a solution for remotely deploying .NET appli-
cation and database schema upgrades. Compared to manual operations, it aims to
reduce the time needed for these tasks and the error probability through automation.
Furthermore, it interacts with the maintained applications, allowing seamless and non-
disturbing upgrades. Besides elaborating its concept, a prototype was implemented.

Die Wartung der Software von Appliance-Lösungen an entfernten Standorten ist zeit-
aufwändig. Diese Masterarbeit stellt eine Lösung zur Fernaktualisierung von .NET-
Anwendungen und Datenbankschemata namens azDeploy vor. Sie soll den Zeitauf-
wand sowie die Fehlerwahrscheinlichkeit gegenüber dem händischen Einspielen dieser
Aktualisierungen mittels Automatisierung verringern. Um den Betrieb durch die Wart-
ungsaktivitäten möglichst wenig zu beeinträchtigen, interagiert sie mit den betroffenen
Anwendungen. Neben der Ausarbeitung des Konzepts wurde ein Prototyp von az-
Deploy entwickelt.

Table of Contents

Aufgabenstellung 1

1 Introduction 2
1.1 Application Scenario . 3
1.2 Requirements . 4
1.3 Thesis Structure . 4

2 Specification 5
2.1 Actors and Use Cases . 5
2.2 Database Management . 6
2.3 Application Management . 8

3 Architecture 9
3.1 System Overview . 9
3.2 Design Considerations . 12

4 Communication 13
4.1 Windows Communication Foundation 14
4.2 Identifiers . 19
4.3 Agent Upgrade Services . 21
4.4 Operation Control Services . 23

4.4.1 Main Service . 23
4.4.2 Gateway Service . 26
4.4.3 Remote Events . 27

4.5 Tasks . 28
4.5.1 External View of the Task System 29
4.5.2 Inner Workings of the Task System 31

4.6 Notification Services . 37
4.6.1 Application Interface . 38
4.6.2 Integration within azDeploy 46

4.7 File Transfer Services . 47

5 Project Structure and Applications 50
5.1 Project Structure . 50
5.2 Server Application . 52
5.3 Gateway and Client Agents . 53
5.4 Administration Center . 54

6 Implementation Details 57
6.1 Database Management . 57
6.2 Application Management . 58

6.2.1 Windows Installer . 58
6.2.2 Integrating Windows Installer within azDeploy 64

6.3 Windows Communication Foundation Custom Behaviors 66
6.4 Windows Communication Foundation Security 70

6.4.1 Authentication, Integrity and Confidentiality 71
6.4.2 Role-based Authorization . 73

7 Setup 74

8 Usage 77
8.1 Deploying Applications and Database Schemas 77
8.2 Preparing Application Packages . 83

9 Discussion 84

Bibliography 87

List of Abbreviations 92

Lebenslauf 93

Eidesstattliche Erklärung 94

Aufgabenstellung

Installation und Update von Softwarekomponenten und Datenbankschemata

Für die Installation und das Update von komponentenbasierten .NET-Programmen mit
SQL-Datenbank soll ein Werkzeug entwickelt werden. Das Werkzeug soll Änderungen
am Datenbankschema und geänderte .NET-Komponenten beim Kunden über das In-
ternet installieren. Die Installation wird von Mitarbeitern des Herstellers ausgelöst, d.h.
ein Mitarbeiter prüft mit dem Werkzeug welche Updates beim Kunden installierbar
sind und startet manuell das Update.

Das Werkzeug soll aus drei Teilen bestehen: Ein Teil empfängt und installiert das
Update am Zielcomputer. Vom Hersteller aus steuert ein zweiter Teil die Updates. Da es
beim Kunden mehrere Zielcomputer geben kann und diese nicht direkt aus dem Internet
erreichbar sind, empfängt ein dritter Teil am Server des Kunden die Aktualisierungen
und leitet diese über das Intranet an die Arbeitsplätze weiter.

Das Werkzeug soll mit C# und dem .NET-Framework entwickelt werden. Dabei
muss Windows Presentation Foundation, Windows Communication Foundation und
Microsoft SQL-Server 2008 verwendet werden.

Task: Installation and Update of Software Components and Database Schemas
(Translation by Rainer Pichler)

The task is to develop a tool allowing the installation and update of component-
based .NET applications and SQL databases. The tool should install database schema
changes and changed .NET components at customer sites via the Internet. The instal-
lation is triggered by the vendor staff. Thus, an employee uses the tool to determine
the applicable updates and starts the update manually.

The tool should consist of three components: The first component receives and
installs the update on the target computer. At the vendor site, the second component
controls the update process. Since there may exist multiple target computers which do
not have Internet access, the third component runs on the customer’s server, receives
the updates and forwards them to the target computer via the local network.

The tool should be developed with C# and the .NET Framework. Also, Windows
Presentation Foundation, Windows Communication Foundation, and Microsoft SQL-
Server 2008 must be used.

Nähere Auskünfte/Further Information: Dr. Reinhard Wolfinger
Beginn/Issue Date: November 2009

1

1 Introduction

Software vendors often have to maintain appliances installed at remote customer sites.
In this work, appliance refers to an embedded system that many different users use for
one specific purpose. Such an appliance runs a single .NET application and hosts a
database.

Maintaining appliances includes deploying feature enhancements, bug fixes, and se-
curity fixes. This work subsumes them under the term upgrades. Such upgrades can
affect the application running on the appliance or the database it uses. Deploying
upgrades manually has several drawbacks:

• If the vendor sends his operators to the remote site, this can cause traveling
expenses. To avoid this, the vendor could use remote desktop software to main-
tain the appliances remotely. However, this is still manual work and the effort
multiplies with the number of appliances at the remote site, because the whole
procedure must be repeated for each appliance.

• Users cannot use the appliance during the maintenance procedure. Thus, the
longer the procedure takes, the longer the appliance cannot be used.

• Tasks that are carried out manually are error-prone. Especially repeating the
same upgrade procedure on several appliances under time pressure can lead to
reduced concentration. This entails a higher risk of making mistakes and render-
ing appliances unusable.

• It is a cumbersome task for the vendor to keep track of the rolled out application
and database schema versions. Manually recording changes is error prone and
time-costly.

Therefore, this thesis elaborates azDeploy, a deployment solution which addresses
these issues. azDeploy provides:

Reduced Upgrade Time: azDeploy reduces the time an upgrade takes. Firstly,
automation is faster than human interaction. Secondly, azDeploy can carry
out the same task on many appliances simultaneously.

Reduced Risk: Through automation, azDeploy decreases error probability. If an
upgrade fails, it restores the previous state of the appliance.

Reliable Information: azDeploy keeps track of the installed upgrades.

2

1 Introduction

Feature Remote Desktop Customer-Managed azDeploy

Operator Vendor Customer Vendor
Scope Universal Applications Applications and

Databases
Scalability low high high

Vendor Adoption Effort low high moderate
Flexibility high low moderate
Error Rate high low low

Customer Involvement low high low

Table 1.1: Distinguishing Features of azDeploy

Table 1.1 compares azDeploy with the Remote Desktop approach and with using
existing deployment systems managed by the customers.

Using remote desktop software gives the highest flexibility, but does not scale well
and is error prone. In contrast, the two other approaches take less time but also sacrifice
flexibility. The main disadvantage of a customer-managed deployment system is that
its availability and implementation vary between customers. Thus, this approach incurs
a high customer involvement and a high adoption effort as the vendor needs to support
different deployment systems.

When using azDeploy, the deployment system is under the control of the vendor,
thus minimizing the customer involvement. Also, compared to the customer-managed
deployment system, the vendor’s adoption effort is lower as the vendor needs to support
only azDeploy. Finally, azDeploy is flexible, since vendor applications can hook
into its operations.

Platform and Technology The prototype presented in this thesis was implemented
for .NET 3.5 applications and Microsoft SQL Server 2008 running under Windows XP.
However, as the concept is universally applicable, azDeploy could be ported to other
platforms.

1.1 Application Scenario

The requirements for azDeploy are derived from the following scenario, which resem-
bles features of real world applications: A software vendor has sold a time recording
solution called Jornada to a manufacturing company. Jornada consists of a server
application and of a client application. The server machine hosts the server application
and the main database. The server application only accesses the main database. The
client application accesses the main database on the server machine and the appliance’s
local database. The appliances cannot directly access the Internet.

Every employee at the manufacturing company uses Jornada, but not all of them
are computer experts. Therefore, Jornada is designed as an appliance: The client

3

1 Introduction

application runs in full screen mode all the time on a dedicated embedded system.
Several appliances are installed in the company’s buildings and are used by numerous
different employees throughout the day. Since the employees have flexible working
hours, they expect Jornada to be available around the clock. Thus, there are no
exclusive time intervals for system maintenance. Instead, the vendor must try to keep
the downtime of the system as short as possible.

1.2 Requirements

To meet the requirements of the application scenario (see Section 1.1), the software
vendor wants a solution that

• upgrades all Jornada applications and databases on an arbitrary number of
appliances in parallel. The software vendor ships the Jornada applications as
Windows Installer packages and the database schema upgrades as incremental
SQL scripts. Also, the vendor wants to back-up and restore multiple databases
in parallel. The solution ensures that the applications and databases stay in a
valid configuration at all times. As a consequence, whenever an upgrade fails,
the solution rolls back all changes.

• provides information about the installed applications and databases as well as
their upgrade history.

• interacts with the Jornada applications: For example, it ensures that the Jor-
nada client application is shut down properly before an application upgrade. To
avoid interrupting operations, the solution obtains approval from the Jornada
client application that it is in an idle state before the upgrade is started.

• displays debug information generated by the Jornada applications for trou-
bleshooting. As it is stored in the databases, the software vendor wants to be
able to display data for arbitrary SQL queries.

• the software vendor can control remotely via a secure web interface.

1.3 Thesis Structure

Chapter 2 derives the specification for azDeploy from the requirements in Section
1.2. Chapter 3 introduces the system architecture. Chapter 4 describes how the
individual parts of azDeploy communicate with each other. Chapter 5 describes the
solution’s components and the features of the individual applications. Chapter 6 will
highlight several implementation details. Chapter 7 and 8 explain how to set-up and
work with azDeploy. Chapter 9 discusses the result of this work and suggests further
improvements.

4

2 Specification

This chapter describes the specification for azDeploy, that is the actors and the use
cases, and the database and application management capabilities.

2.1 Actors and Use Cases

azDeploy distinguishes between five actor types:

Operators: They work for the software vendor and use azDeploy actively.

Developers: They work for the software vendor and prepare the packages and scripts
to deploy via azDeploy.

Vendor Applications: These .NET applications are administered by azDeploy and
can influence azDeploy’s operations.

Customer Administrators: They work for the customer and manage its IT infras-
tructure. Thus, they demand that azDeploy is secure, that it does not require
additional maintenance and uses a limited number of Internet protocol ports to
allow efficient firewall configuration.

Users: They work for the customer and use the vendor applications administered by
azDeploy. Users cannot see azDeploy, as it runs as a service in the back-
ground.

Since customer administrators and users do not directly interact with azDeploy, they
are passive actors.

Use Cases azDeploy has several use cases:

• The operator is curious about which version of an application is installed on an
appliance. S/he uses azDeploy to retrieve this information.

• The operator wants to upgrade an application at a customer site. Therefore
the operator upgrades the application and the database schema via azDeploy.
Users are affected by this upgrade since azDeploy restarts the upgraded appli-
cation.

• The operator retrieves the log of an application from the appliance, because a
user reported that the application does not work as expected.

5

2 Specification

• The operator wants to back up all databases at a customer site. S/he uses
azDeploy to back up all databases in one step.

• Users want to finish their work when using Jornada. Therefore, azDeploy
will not install upgrades while an appliance is in use.

2.2 Database Management

azDeploy introduces version control for databases schemas. A database schema de-
scribes the structure of a database’s objects. azDeploy allows the operators to put
one schema per database under version control. Developers provide upgrades for a
database schema as annotated SQL scripts.

Features

The system supports the following functions for managing databases:

Manage Databases: The operator can create, delete, back-up and restore databases.
Also, s/he can delete database backups.

Initialize Database: The operator can put a database under version control by defin-
ing two properties:

Database Schema: This property determines which upgrade scripts can be run
on the database.

Initial Version: This property defines the current version of the database schema.
Empty databases should be set to version 0.0.0.0. Setting a deviating version
number is useful when putting existing databases under version control.

Upgrade Database Schema: The operator can only apply this operation to databases
that are under version control. The operator upgrades a database schema by
choosing an upgrade path. Such upgrade path consists of one or more SQL
upgrade scripts, which are executed one by one. For each SQL upgrade script,
the target schema version of the preceding script matches the required schema
version of the current script.
azDeploy offers the operator only the shortest upgrade path to each schema
version: For example, if a database with schema version 1.0 should be upgraded
to version 1.2 and there are three upgrade scripts available - version 1.0 to 1.1,
version 1.1 to 1.2 and version 1.0 to 1.2 - azDeploy will only offer the upgrade
path consisting of the cumulative upgrade script from version 1.0 to 1.2.
Since the SQL upgrade scripts are run within a transaction, the upgrade only
turns effective if all upgrade scripts execute without errors.

View Custom Data: The operator may run arbitrary SQL queries on a database.
S/he can store a SQL query as a view that is available for all databases that

6

2 Specification

have specific schema. The operator can define a schema version range for which
the view is available.

All but the last operation can also be applied to a set of databases at the customer
site. Because azDeploy manages the database backups too, the databases must be
installed locally on the appliance. For upgrades, the schema and version of the selected
databases must match.

Version Format

azDeploy uses the .NET version format (see [1]). Database schemas should use its
four numbers as follows:

Major and Minor: These numbers designate the major and minor version number of
the database schema. A schema upgrade where one or both of these numbers
increase may not be compatible with applications requiring the previous schema
version. Such upgrades include introducing new mandatory columns or renaming
database objects accessed by the applications.

Build: A change of this number indicates that new optional database objects are in-
troduced. Such upgrade could be the insertion of a new nullable column or a
new table. Therefore, such an upgrade does not break application compatibility.

Revision: A change of this number indicates that the structure of database objects
accessed by applications have not changed. Such upgrade could be the inser-
tion of new rows in list of values tables or changing database object settings to
improve performance. Therefore, such an upgrade does not break application
compatibility.

azDeploy does not require to obey this scheme. However, vendor applications in-
teracting with azDeploy can take advantage of it: For example, instead of being
restarted, Jornada Client keeps running and merely needs to refresh cached data if
only the build or revision numbers of the database schema changed after a database
upgrade.

SQL Upgrade Scripts

Developers publish database schema upgrades as annotated SQL scripts (Listing 2.1).
An upgrade script starts with metadata that azDeploy interprets, afterwards the
SQL statements modifying the database schema follow. Since the metadata is defined
in the commentary section, developers can run upgrade scripts without azDeploy
throughout development.

Developers must set all attributes and tags shown in Listing 2.1. azDeploy allows
to run the script only on databases that have both a schema name matching the
schema attribute value and a schema version matching the requiresVersion attribute
value. Once the script has been run without errors, azDeploy sets the database
schema version to the value of the attribute providesVersion.

7

2 Specification

1 /*<databaseScript

2 author="Rainer Pichler"

3 date="2011 -07 -08"

4 schema="JornadaClient"

5 requiresVersion="1.0.1.0"

6 providesVersion="1.2.0.0">

7 <description >

8 introduce security log

9 </description >

10 </databaseScript >*/

11

12 CREATE TABLE SecurityLog (

13 [...]

Listing 2.1: A Database Schema Upgrade Script

2.3 Application Management

azDeploy can deploy software distributed as Microsoft Windows Installer (MSI) pack-
ages that comply with the restrictions mentioned on page 58. Developers use Microsoft
Visual Studio 2008 and the package tool application to create such packages.

An operator can use azDeploy to install or upgrade an application on multiple
appliances in parallel. Also, s/he can uninstall arbitrary applications installed by
Windows Installer on multiple appliances in parallel. Because upgraded applications
may render configuration files unusable for the previously installed application version,
azDeploy does not allow to downgrade an application directly. However, a downgrade
is possible through uninstalling the newer application version first and then installing
the previous application version.

Finally, vendor applications can track azDeploy’s operations and prevent them,
for instance while they are in use (see Section 4.6 on page 37).

8

3 Architecture

This chapter gives an overview of the components of azDeploy and addresses the key
design considerations.

3.1 System Overview

This section introduces the six applications of azDeploy.

Server Application There is a single installation of the server application which
resides on a machine called server at the vendor site. The server has direct Internet
access and listens for incoming connections from the customer sites.

Administration Center The administration center browser application enables op-
erators to control azDeploy. It is hosted on the server via a web server and commu-
nicates with the server application. Because multiple operators can use azDeploy in
parallel, several instances of the administration center may run at the same time.

Gateway Agent The gateway agent resides on a machine called gateway at the cus-
tomer site. There is one gateway agent installation per customer and the gateway
must have Internet connectivity. The gateway agent communicates with the server
application at the vendor site via the Internet. It distributes control commands within
the customer’s network.

Client Agent An instance of the client agent runs on each appliance and carries out
the deployment tasks. Thus, it runs under a privileged user session. Because the client
agent communicates with the server application indirectly via the gateway agent, it
does not require Internet access.

Package Tool The package tool resides on the developer workstations and enables
developers to prepare software installation packages for deployment.

Application Starter The application starter runs on each appliance and allows to
start installed or restart upgraded applications. It interacts with azDeploy like a
vendor application.

Table 3.1 lists the different machine types and their properties.

9

3 Architecture

Machine Instances Internet Access DBMS Installed Applications

Server 1 Direct Yes Server Application
Administration Center

Operator
Workstation

many Needs to access
Server

No Web Browser

Developer
Workstation

many No No Package Tool

Gateway 1 per site Yes No Gateway Agent
Appliance many No Yes Client Agent

Application Starter

Table 3.1: Machine Types

Network Topology Figure 3.1 depicts the network topology of the Jornada sce-
nario. Its left side shows the vendor site network, consisting of the server and two
workstations. The server hosts the azDeploy server database and the azDeploy
server application, and is connected to the Internet. The workstations run the admin-
istration center within a web browser. The right side of Figure 3.1 shows a customer
site network, consisting of a gateway, a Jornada server machine and three appliances.
The gateway is connected to the Internet and runs the azDeploy gateway agent. The
Jornada server runs the Jornada server application whereas the appliances run the
Jornada client application. Additionally, each of them hosts a database and runs the
azDeploy client agent. azDeploy considers the Jornada server an appliance that
differs from the other appliances only in the installed applications and the database
schema.

Figure 3.1: Network Topology

10

3 Architecture

Example Figure 3.2 visualizes how azDeploy works. It is based on the scenario
shown in Figure 3.1, but does not show the second workstation and the network links.
Instead, it depicts an operator and the basic steps that take place when upgrading two
databases (upgrading vendor applications works analogous). While any communication
between the workstation and the customer site involves the server and the gateway,
Figure 3.2 does not show these details for the sake of clarity. Upgrading the databases
on two appliances consists of the following logical steps:

1. The operator logs onto the administration center.

2. The administration center queries the server application for the customer sites.

3. The operator selects the customer site s/he wants to administer.

4. The administration center queries the gateway agent of the administered site for
the available databases. In turn, the gateway agent queries the client agents
of all appliances and the Jornada server for the hosted databases. Then, the
administration center displays the available databases.

5. The administration center queries the server application for applicable upgrades.

6. The operator selects the two databases that should be upgraded and the upgrade.

7. The administration center initiates the upgrade operations. The upgrade scripts,
that are stored on the server, are transferred to the affected appliances.

8. Both affected appliances request permission from the vendor applications to up-
grade their databases (see Section 4.6 on page 37).

9. Both affected appliances run the upgrade scripts on their databases indepen-
dently and report the result to the administration center and to the vendor
applications. Thus, failed upgrades do not prevent the upgrade of the other
databases.

10. The administration center displays the results of the upgrade operations.

Figure 3.2: Upgrading Two Databases

11

3 Architecture

3.2 Design Considerations

Deployment and Maintenance One goal of azDeploy is to make deployment more
efficient. Therefore, the benefits must exceed the additional deployment effort of az-
Deploy itself. Deployment effort can be divided into two phases:

1. Initial deployment effort is needed once for each customer site: It consists of
setting up the gateway agent on the gateway machine and setting up the client
agent on each appliance. Because this initial task must be carried out manually,
the effort scales with the number of appliances.
To ease initial deployment, azDeploy’s applications are installable through
Windows Installer and have no dependencies other than the .NET Framework.
Also, the configuration effort is held minimal: Through the use of port sharing,
only a single port must be forwarded to the gateway machine if using network
address translation. The operator must enter the site’s credentials in the gateway
agent configuration file and enter the gateway’s hostname in the client agents’
configuration files. To give the client agent access to the administered databases,
a plug-in that extracts the database connection string from the vendor applica-
tion’s configuration file is added.

2. Maintenance deployment effort: To adapt to new scenarios and to fix bugs,
the system is able to update itself without user interaction. Because the core
applications of azDeploy (server application, gateway agent and client agent)
are tightly coupled, each application must patch itself to the newest release before
connecting. The browser application can be updated centrally by publishing a
new version on the web server. The azDeploy prototype cannot update the
application starter.

Portability azDeploy targets a Microsoft Windows environment. Even the adminis-
tration center requires the .NET Framework. However, since the administration center
uses an interoperable protocol to communicate with the server application, developers
could implement a version that runs on other platforms.

Security azDeploy spreads across three network zones: Firstly, the vendor site in-
cludes the server and the operators’ workstations. Secondly, the customer site includes
the gateway machine and the appliances. Thirdly, as the Internet is untrusted, az-
Deploy encrypts all communication between the vendor site and the customer site.
By default, encryption is not enabled within the customer site. At the vendor site,
all internet-accessible WCF services use encryption. Thus, operators can use the ad-
ministration center securely at remote locations such as customer sites. Section 6.4 on
page 70 will discuss the security aspects in more detail.

12

4 Communication

azDeploy uses Windows Communication Foundation (abbreviated WCF) for net-
working. Therefore, the first section introduces the basic concepts of WCF. The re-
maining sections describe the WCF services azDeploy consists of and their interaction
with each other.
azDeploy employs four classes of WCF services (Figure 4.1):

Agent Upgrade Services: azDeploy uses these WCF services to remotely upgrade
its own components, excluding the application starter. It should not be confused
with the ability to upgrade vendor applications, as it only affects the gateway
agent and the client agent. These WCF services involve the server application,
the gateway agent and the client agent.

Operation Control Services: azDeploy uses these WCF services to control the in-
dividual components and processes. They involve the administration center and
the server application at the vendor site, as well as the gateway agent and the
client agent at the customer sites.

File Transfer Services: The operation control services rely on these services to trans-
fer files, such as application packages or database upgrade scripts, to the appli-
ances. These WCF services involve the server application, the gateway agent and
the client agent.

Notification Services: These WCF services allow vendor applications to track and
deny configuration changes.

Figure 4.1: Distribution of the Service Classes

13

4 Communication

4.1 Windows Communication Foundation

Windows Communication Foundation (WCF) is a framework for creating network ser-
vices and clients in .NET. To avoid confusion with daemon-like Windows services, these
services will be termed WCF services throughout this work.

Service Definition

Service Contracts and Endpoints Service contracts specify the methods a certain
type of WCF service exposes. A service contract is defined through a .NET interface
with the exposed methods. The actual WCF service class implements the methods of
the service contract interface. Because a WCF service class can implement multiple
service contracts, there is the concept of endpoints. Each endpoint satisfies a certain
service contract and exposes its methods. Clients can address an endpoint by a URL
[2,3].

Bindings A binding defines the underlying communication protocol and its properties
like for instance security options for an endpoint. WCF assigns exactly one binding to
an endpoint [2]. azDeploy uses four binding types:

The proprietary netTcpBinding has limited interoperability, but offers many features
like for example client callbacks. It is therefore used for the communication between
the server application, the gateway agent and the client agent. In contrast, the commu-
nication between the server application and the administration center is based on the
wsHttpBinding, which has less features, but provides cross-platform interoperability.
To facilitate this interoperability, mexHttpBinding publishes standardized metadata
about the service. netNamedPipeBinding is used to interconnect the WCF services
within the server application, as it is only capable of and optimized for local machine
communication [4, 5].

Binding Configuration Bindings can be configured both via the application config-
uration file and in code [6]. azDeploy uses an application configuration file for both
the server application and the administration center. Thus, the operators can ad-
just the binding configuration without having to change the application. In contrast,
the applications installed at the customer site configure the bindings in code. There-
fore, customer administrators cannot inspect the binding configuration. Instead, the
variable parameters like the log-on credentials are stored as settings in the respective
application configuration file. Section 6.4 on page 70 discusses the fundamental binding
configurations of the server application.

Example The server application’s core WCF service illustrates these concepts: The
WCF service class MainService implements the service contracts IAdminService and
IControlService. For IAdminService, it exposes an endpoint via a wsHttpBinding under
the URL https://localhost:8002/AdminService, which is consumed by the administra-
tion center. For IControlService, it exposes another endpoint via a netTcpBinding

14

4 Communication

1 [ServiceContract]

2 public interface IAdminService {

3 [OperationContract]

4 string [] GetSites ();

5 [OperationContract]

6 Host[] GetHosts(Site site);

7 ...

8 }

Listing 4.1: Service Contract for the IAdminService Endpoint (simplified and
shortened)

1 [DataContract]

2 public class Host {

3 [DataMember]

4 public string SiteName { get; set; }

5 [DataMember]

6 public string HostName { get; set; }

7 }

Listing 4.2: Host Data Contract

under the URL net.tcp://localhost:8001/ControlService, which is consumed by the
gateway agent. Additionally, the service offers a metadata exchange endpoint via
a mexHttpBinding for the IAdminService endpoint.

Listing 4.1 shows two simplified method definitions from the IAdminService service
contract: GetSites returns all customer sites connected to the server. Likewise, GetH-
osts returns the on-line appliances of the specified site. Each WCF service method
must be annotated with an OperationContract attribute [3].

Data Contracts Analogous to service contracts, there are data contracts: These
enable the developer to use complex data structures as both parameters and return
values of service methods. Data contracts are defined through a class annotated with
the DataContractAttribute. Furthermore, each property of the class must be annotated
with a DataMember attribute [7].
azDeploy uses the data contract Host (Listing 4.2) to address a machine at a

customer site. It contains the name of the customer site and the host name of the
appliance.

Advanced Concepts

To explain the more advanced WCF techniques that azDeploy uses, the rest of the
section refers to the service contract IControlService (Listing 4.3).

Consuming the endpoint IControlService allows the gateway agent to log on and off
the server as well as to inform the server about events. In contrast to the previously
discussed service contract example, it uses the concepts of fault contracts, callback
contracts, sessions, instancing, concurrency and one-way operations.

15

4 Communication

1 [ServiceContract(SessionMode = SessionMode.Required , CallbackContract = typeof(

IGatewayCallback))]

2 public interface IControlService {

3 [OperationContract(IsOneWay = false , IsInitiating = true , IsTerminating = false

)]

4 [FaultContract(typeof(IdentifierInUseFault))]

5 void LogOn();

6 [OperationContract(IsOneWay = false , IsInitiating = false , IsTerminating = true

)]

7 void LogOff ();

8 [OperationContract(IsOneWay = true)]

9 void NotifyEvent(RemoteEvent ev);

10 }

Listing 4.3: IControlService Service Contract

Fault Contracts By default, if a service method like LogOn throws an exception,
no exception details are disclosed to the consumer of the service for security reasons.
To transport information about certain errors, developers use fault contracts. A fault
contract is a data contract carrying error information. The FaultContract attribute of
the method LogOn indicates that the method may return a fault of the type Identi-
fierInUseFault. This happens in case a gateway agent tries to log on with a site name
already used by another gateway agent. To propagate this fault, LogOn throws an
exception of the generic type FaultException, passing along the fault contract object
(Listing 4.4, line 10) [8, 9].

Note that this example merely uses the fault contract object to indicate the type of
error as it does not contain further error information. The gateway agent handles this
error by surrounding the service call with a try-catch block and catching an exception
of the type FaultException<IdentifierInUseFault> [9].

Callbacks To issue commands to customer sites, MainService invokes operations on
gateway agents through a callback contract. A callback contract is an interface similar
to a service contract which the calling client must implement. The CallbackContract
property of the ServiceContract attribute indicates the interface to implement [10].

Listing 4.5 shows the callback contract for the gateway agent: The method GetSite-
Hosts retrieves all appliances connected to the gateway agent. The method RunTask
is used by the task system (see Section 4.5 on page 28), which allows the service and
callback contracts to stay lean.

MainService can call these methods on the respective gateway agent’s communica-
tion channel object, which implements IGatewayCallback [10].

But how can MainService obtain a reference to such an object for a specific gateway
agent? This question will be answered through a look at the session concept in the
next paragraph.

Sessions Because several customer sites may log onto the server, MainService main-
tains a session for each connected gateway agent to distinguish between them. There-
fore, the property SessionMode is set to Required in the service contract attribute

16

4 Communication

1 private ClientManager <string , IGatewayCallback , SiteSessionData > clientManager;

2

3 public void LogOn() {

4 var callback = OperationContext.Current.GetCallbackChannel <IGatewayCallback >();

5 ((IDuplexContextChannel)callback).Closed += GatewayCallback_Closed;

6 var siteName = CallingSiteName;

7 var success = clientManager.LogOnClient(siteName , callback , OperationContext.

Current.SessionId , new SiteSessionData ());

8

9 if (! success)

10 throw new FaultException <IdentifierInUseFault >(new IdentifierInUseFault (),

"A site with the given name is already logged on.");

11

12 AdminSessionManager.DispatchPublicEvent(new SiteConnectivityChangedEvent(

siteName , true));

13 Trace.WriteLine(string.Format("Site {0} logged on.",siteName));

14 }

15

16 private string CallingSiteName {

17 get {

18 return OperationContext.Current.ServiceSecurityContext.WindowsIdentity.Name

.Split(’\\’)[1]; // omit Windows domain

19 }

20 }

Listing 4.4: The LogOn Method of MainService

1 public interface IGatewayCallback {

2 [OperationContract]

3 Host[] GetSiteHosts ();

4 [OperationContract(IsOneWay = true)]

5 void RunTask(Task task);

6 }

Listing 4.5: Callback Contract for the Gateway Agent

(Listing 4.3). Also, the properties IsInitiating and IsTerminating are specified in the
OperationContract attributes for the methods LogOn and LogOff. This tells the WCF
runtime to establish a session when LogOn is called and terminate it once LogOff is
called. Because sessions are mandatory, no operations can be called by the gateway
agent without an established session [11].

The service implementation obtains the IGatewayCallback channel object for the
calling gateway agent through the WCF OperationContext (Listing 4.4, line 4) [10].
It extracts the site identifier from the gateway’s credentials in the CallingSiteName
property. Since WCF does not provide a separate storage for session specific data [12],
the service uses the generic class ClientManager to store the gateway agent’s callback
object and session data (Listing 4.4, line 7).

Concurrency and Instancing As multiple gateway agents and multiple instances of
the administration center connect to the server application, it has to deal with paral-
lelism. To allow scaling, WCF provides service object instancing and multithreading:
WCF offers to instantiate a service object per service, per session or per operation.
Concerning multithreading, a service implementation can basically allow or disallow

17

4 Communication

1 [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Reentrant ,InstanceContextMode=

InstanceContextMode.Single)]

2 public class MainService : IAdminService , IControlService {

3 public void LogOn() { ... }

4 ...

5 }

Listing 4.6: Configuration of Concurrency and Instancing of MainService

concurrent calls [12].
As the concurrency and instancing behavior is specified in the actual service imple-

mentation of MainService (Listing 4.6), it applies to both endpoints of the service.
MainService uses one instance and opts to avoid concurrent threads. Therefore

the property InstanceContextMode of the attribute ServiceBehavior is set to Single.
However, for the property ConcurrencyMode, it uses the value Reentrant instead of
Single: This loosens WCF’s service object locking behavior [12].

In the mode Single, the WCF runtime only allows to process one message at a time.
Suppose that the administration center wants to retrieve the list of online appliances
for a site. Therefore, it calls the method GetHosts which is exposed through the service
contract IAdminService. Its implementation by MainService is shown in Listing 4.7.
To call GetHosts, the administration center sends a request message to MainService. In
turn, the WCF runtime receives the message and locks MainService so that it cannot
process further requests. Then it interprets the message and invokes GetHosts on the
service thread. In line 2 of GetHosts, MainService calls the GetSiteHosts method on
the callback channel of the corresponding gateway agent. To do so, MainService sends
a request message to the gateway agent. Then MainService blocks until it receives
a reply message. At the gateway agent, the WCF runtime interprets the message,
calls the GetSiteHosts method and sends a reply message containing the connected
appliances to MainService. However, since MainService waits for the reply message in
line 2, processing of the initial message to call the GetHosts method has not yet finished.
Therefore, the service is still locked and cannot process the reply message [10,12].

All in all, a deadlock situation occurs as MainService waits for the reply message
from the gateway agent, while the reply message waits for the service lock to disappear.

In contrast, in the concurrency mode Reentrant, the WCF runtime unlocks the
service each time it makes an outgoing call. Therefore, in the previous example, the
service is unlocked when MainService waits for the reply message from the gateway
agent, implying that a deadlock situation cannot occur. Because the service accepts
further calls while waiting for the reply message from the callback invocation, any
client can invoke service methods meanwhile. Therefore, the service has to ensure that
it is in a consistent state before invoking a callback [10,12].

The third concurreny mode is Multiple, where WCF does no locking and the service
has to ensure thread safety itself. It is used in the agent upgrade service (see Section 4.3
on page 21).

18

4 Communication

1 public Host[] GetHosts(string siteName) {

2 return clientManager.GetCallback(siteName).GetSiteHosts ();

3 }

Listing 4.7: The GetHosts Method of MainService

One-way operations One-way operations do not return data nor report the operation
execution success. The service does so by not sending a reply message to the client.
Depending on the service configuration, the client often does not block when calling a
one-way operation, because the service can receive and buffer several messages before
processing them. One-way operations must be marked by setting the IsOneWay prop-
erty of the OperationContract attribute to true [10]. The method NotifyEvent shown
in Listing 4.3 is marked as one-way, as the notifying gateway agents do neither care
about when the service processes the remote event nor expect a result.

4.2 Identifiers

This section explains the most important identifiers azDeploy uses.

Sites azDeploy uses a site name string to refer to a specific customer site. The
gateway agents authenticate themselves to the server with the site name and a pass-
word.

Hosts To address a customer site’s gateway and appliances, azDeploy uses a host
identifier (data contract in Listing 4.2 on page 15). It has the properties SiteName
and HostName. For an appliance, SiteName is the site identifier whereas HostName is
the appliance’s machine name. To refer to the gateway, HostName is set to the value
“@”. Additionally, the task system uses Host to address certain WCF services hosted
by the server application. In this case, SiteName has the value “@” and HostName
contains the addressed service’s name. The string representation of host identifiers is
sitename/hostname. Table 4.1 shows examples for the three types of host identifiers.

SiteName HostName Refers To Description

demosite EXAMPLEAPPLIANCE Appliance Addresses the appliance
EXAMPLEAPPLIANCE of the

site demosite.
demosite @ Gateway Addresses the gateway of the site

demosite.
@ ServerTaskProcessor Service Addresses the service

ServerTaskProcessor hosted by
the server application.

Table 4.1: Different Types of Host Identifiers

19

4 Communication

Connection Strings azDeploy refers to database connection strings via an identi-
fier. The database connection strings are stored on the appliances and not transmitted
over the network, but referenced by a string like “JornadaLocal”. As the locally stored
connection strings may differ between appliances for a connection string identifier, a
specific connection string can only be referenced by specifying the appliance and the
connection string identifier. This is useful in the presented scenario: Although each
local database of a Jornada appliance requires different log-in credentials stored in
the connection string, the administration center abstracts this and shows only one
connection string identifier called “JornadaLocal”.

Databases Multiple databases may exist on an appliance. To uniquely address a
database, azDeploy uses the class Database that contains three properties:

Host: The host identifier of the appliance hosting the database.

ConnectionStringIdentifier: The identifier which refers to the connection string. It is
required as the referenced connection string contains the log-in credentials and
the database server instance.

Name: The name of the database.

Table 4.2 shows how to address the database JornadaLocalDB on the appliance de-
mosite/EXAMPLEAPPLIANCE, using the credentials stored in the connection string
JornadaLocal.

Property Value

Host new Host("demosite","EXAMPLEAPPLIANCE")

ConnectionStringIdentifier JornadaLocal
Name JornadaLocalDB

Table 4.2: Database Identifier Example

Database Backups To refer to database backups, azDeploy uses backup points.
A backup point identifies a set of database backups that were created at the same
time. It can be used to undo a database schema upgrade that was applied to multiple
databases by restoring the individual backups in a single step. Its class BackupPoint
has a Name and a Date property.

Upgrade Paths Database schema upgrade scripts are referred to indirectly by an
upgrade path. An upgrade path includes one or more upgrade scripts that are executed
sequentially. It is represented through the class UpgradePath which contains one or
more DatabaseScriptInfo objects.

20

4 Communication

4.3 Agent Upgrade Services

These WCF services upgrade the gateway agent and the client agent to the newest
version.

Protocol The upgrade protocol works as follows: Before the gateway agent connects
to the other WCF services hosted by the server application, it connects to AgentUp-
gradeService and retrieves the version information about the newest gateway agent
release. If the version matches, it disconnects from the service and proceeds normally
by connecting to the other services. In case of a version mismatch, the gateway agent
upgrades itself: It repeatedly fetches blocks of data from AgentUpgradeService and
writes them into a file until the service provides no more data. Then it disconnects
from AgentUpgradeService. The transmitted file is a Windows Installer package. The
gateway agent invokes a command sequence within a shell session that installs the
package. Then the agent shuts down. Once Windows Installer has upgraded the agent
installation, it starts the new agent version as a Windows service. Because now the
newest version is already installed, the agent starts up normally.

For the client agent, the protocol works similar. However, it connects to the WCF
service AgentUpgradeProxy running on the gateway agent. This proxy service forwards
the requests from and responses to the client agent.

Therefore, both AgentUpgradeService and AgentUpgradeProxy fulfill the same service
contract IAgentUpgradeService (Listing 4.8). To ensure compatibility with any agent
version, the service contract uses basic data types and should not change.

1 [ServiceContract]

2 public interface IAgentUpgradeService {

3 [OperationContract]

4 string GetContractVersion ();

5 [OperationContract]

6 byte[] GetClientChunk(string clientType , int index);

7 }

Listing 4.8: Service Contract for the Agent Upgrade Services

Implementation These services do not establish sessions. Instead of having a server
side state, the client increases the index parameter whenever it calls the method Get-
ClientChunk (Listing 4.9). It also indicates its client type, that is Gateway for the
gateway agent and Client for the client agent. This stateless approach allows AgentUp-
gradeService to handle multiple requests at the same time with a single service object
instance, as shown in the service behavior configuration (Listing 4.9, line 1). Due to
the small filesize of the setup packages, AgentUpgradeService loads them completely
into a plain byte array. Therefore no concurrency issues occur. AgentUpgradeProxy,
which is hosted by the gateway agent, also has a single service object instance and
allows concurrent service calls.

21

4 Communication

1 [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple , InstanceContextMode =

InstanceContextMode.Single)]

2 public class AgentUpgradeService : IAgentUpgradeService {

3 private byte[] gatewayAgent = null;

4 private byte[] clientAgent = null;

5 private const int CHUNK_SIZE = 1024;

6

7 public AgentUpgradeService () { ... } // load files into memory

8

9 public string GetContractVersion () {

10 return ContractMetadata.ContractVersion;

11 }

12

13 public byte[] GetClientChunk(string clientType , int index) {

14 byte[] src = null;

15

16 if (clientType == "Gateway")

17 src = gatewayAgent;

18 else src = clientAgent;

19

20 if (index < 0 || index * CHUNK_SIZE >= src.Length)

21 return new byte[] { };

22

23 var length = CHUNK_SIZE;

24 if (index * CHUNK_SIZE + CHUNK_SIZE >= src.Length)

25 length = src.Length - index * CHUNK_SIZE;

26 var res = new byte[length];

27 for (int i = 0; i < length; i++)

28 res[i] = src[CHUNK_SIZE * index + i];

29 return res;

30 }

31 }

Listing 4.9: AgentUpgradeService implementation

22

4 Communication

4.4 Operation Control Services

The operation control services represent the core WCF services of azDeploy. The
server application hosts MainService, which offers an IAdminService endpoint and an
IControlService endpoint. To control the operations, the administration center con-
nects to the IAdminService endpoint. Each gateway agent hosts GatewayService which
offers an IGatewayService endpoint. GatewayService connects to the IControlService
endpoint of MainService and all client agents of a site connect to the IGatewayService
endpoint of GatewayService.

4.4.1 Main Service

This section describes the two endpoints of MainService.

IAdminService Endpoint

The administration center uses the methods of the IAdminService endpoint (List-
ing 4.10 on page 25) to invoke operations on the server application, the gateway agents
and the client agents. Before calling any other methods, the administration center
calls the LogOnAdmin method. In this method, MainService establishes a session for
the operator. Likewise, before disconnecting from MainService, the administration
center calls the LogOffAdmin method. These methods do not take parameters as they
extract the credentials from the underlying WCF authentication mechanisms. Before
invoking operations on a site, the administration center calls the method LockSite for
the respective site. This ensures that one site is administered by only one operator at
a time. To unlock the site for other operators, administration center can lock another
site, supply null as parameter to LockSite or log off. Since administration sessions
do not expire in the current implementation, terminating the administration center
without logging off keeps the site locked for other operators.

Remote Operations Invoking remote operations works in two manners, depending
on the type of operation:

There are strictly synchronous calls like the GetSites method which returns all sites
connected to the server application. In this case, the administration center is blocked
until MainService has conducted the operation and returns the result.

In contrast, for longer running operations, the task system is used (see Section 4.5
on page 28). Such methods like CreateDatabase invoke the desired operation with the
supplied parameters and return a task handle immediately. Although the administra-
tion center is blocked during the invocation call, it is not blocked while the operation
is running. Once the operation has completed, the administration center is notified
asynchronously about its result.

How does this notification work? MainService dispatches events to do so. Since
the binding used by the IAdminService endpoint does not support callback contracts,

23

4 Communication

MainService cannot push events to the administration center. Instead, the admin-
istration center periodically queries MainService for new events via the FetchEvents
method. These events inform the administration center about the connection and
disconnection of sites as well as about the completion of operations.

Common Parameters Several service methods employ parameters with the names
comment or backupPointDate. The latter is only available in selected database opera-
tions. Whenever a method requires a comment parameter, the administration center
must supply a string describing the reason for the operation. azDeploy stores this
text into the database and product installation history tables.

In contrast, the backupPointDate parameter can be null. If the administration cen-
ter supplies a DateTime object, azDeploy creates a database backup of the target
database before applying the database operation. When the administration center ap-
plies the same operation, such as upgrading the database schema, to several databases
at once, it supplies the same DateTime value for each method call. This way, az-
Deploy aggregates all database backups under a single backup point with the name
automatic for the supplied date. In turn, the operator can undo the operation for all
databases in a single step by restoring all aggregated database backups at once.

Basic Query Operations GetSites returns all sites connected to the server. GetHosts
returns all appliances connected to the gateway of the specified site.

Basic Database Operations CreateDatabase creates a database. The Database ob-
ject contains the name of the new database, the connection string identifier, and the
target appliance. DropDatabase deletes the specified database. BackupDatabase cre-
ates a backup of the specified database. The BackupPoint object specifies the name
and date of the backup point. DeleteDatabaseBackup deletes a database backup on
the specified appliance. The backupPath parameter is the relative path of the backup
file. The administration center extracts it from the BackupInfo object that describes
the backup. RestoreDatabase restores a database backup to the specified database.
Again, backupPath is used to reference the backup.

Database Deployment Operations InitializeDatabase puts the specified database
under version control. The administration center has to specify the name of its database
schema and the initial schema version. UpgradeDatabase upgrades the database schema
of the specified database. The administration center must supply an upgrade path
describing the SQL upgrade scripts to apply. StoreDatabaseQuery saves a database
query on the server. It returns an ID which can be used to delete the query with
DeleteDatabaseQuery.

Database Query Operations GetDatabaseSchemas returns the names of all avail-
able database schemas. GetConnectionStringIdentifiers retrieves the identifiers of all
connection strings available on an appliance. GetDatabaseQueries returns all stored

24

4 Communication

1 [ServiceContract]

2 public interface IAdminService {

3 // Session Management

4 void LogOnAdmin ();

5 void LogOffAdmin ();

6 bool LockSite(string siteName);

7

8 // Basic Query Operations

9 string [] GetSites ();

10 Host[] GetHosts(string siteName);

11 RemoteEvent [] FetchEvents ();

12

13 // Basic Database Operations

14 CreateDatabaseTask CreateDatabase(Database database);

15 DropDatabaseTask DropDatabase(Database database , DateTime? backupPointDate);

16 BackupDatabaseTask BackupDatabase(Database database , BackupPoint backupPoint ,

string comment);

17 DeleteDatabaseBackupTask DeleteDatabaseBackup(Host host , string backupPath);

18 RestoreDatabaseTask RestoreDatabase(Database database , string backupPath , string

comment , DateTime? backupPointDate);

19

20 // Database Deployment Operations

21 InitializeDatabaseTask InitializeDatabase(Database database , string schema ,

MVersion version , string comment , DateTime? backupPointDate);

22 UpgradeDatabaseTask UpgradeDatabase(Database database , DatabaseUpgradePath

upgradePath , string comment , DateTime? backupPointDate);

23 int StoreDatabaseQuery(DatabaseQuery query);

24 void DeleteDatabaseQuery(int queryId);

25

26 // Database Query Operations

27 string [] GetDatabaseSchemas ();

28 GetConnectionStringIdentifiersTask GetConnectionStringIdentifiers(Host host);

29 DatabaseQuery [] GetDatabaseQueries(string schema , MVersion version);

30 QueryDatabaseTask RunDatabaseQuery(Database database , string sqlText);

31 GetDatabaseBackupsTask GetDatabaseBackups(string siteName);

32 GetHostDatabasesTask GetHostDatabases(Host host);

33 GetSiteDatabasesTask GetSiteDatabases(string siteName);

34 GetDatabaseHistoryTask GetDatabaseHistory(Database database);

35 DatabaseUpgradePath [] GetDatabaseUpgradePaths(string schema , MVersion

requiresVersion);

36

37 // Software Deployment Operations

38 ChangeSoftwareTask InstallProduct(Host host , Guid packageCode , string comment);

39 ChangeSoftwareTask UninstallProduct(Host host , Guid productCode , string comment);

40

41 // Software Query Operations

42 GetInstalledSoftwareTask GetInstalledSoftware(Host host);

43 GetInstalledSoftwareTask GetInstalledManagedSoftware(Host host);

44 GetProductHistoryTask GetProductHistory(Host host);

45 ProductPackageInfo [] GetProducts ();

46 }

Listing 4.10: IAdminService Service Contract (shortened)

25

4 Communication

database queries suitable for the specified database schema and version. RunDatabase-
Query then executes the supplied SQL query statement on the specified database. Get-
DatabaseBackups queries all backups on the specified site. GetHostDatabases queries
all databases available on the specified appliance. GetSiteDatabases queries all databases
available within the specified site. GetDatabaseHistory queries the upgrade history of
the specified database. GetDatabaseUpgradePaths returns all available upgrade paths
for the specified database schema and starting version.

Software Deployment Operations InstallProduct installs or upgrades an applica-
tion. The administration center must specify the target appliance and the package
code of the installation package. UninstallProduct removes an application. The ad-
ministration center must specify the target appliance and the product code of the
application to remove.

Software Query Operations GetInstalledSoftware and GetInstalledManagedSoftware
retrieve the applications installed on an appliance. GetInstalledManagedSoftware only
returns vendor applications. GetProductHistory queries the history of software installa-
tions and uninstallations on an appliance. GetProducts returns all software installation
packages available in the server repository.

IControlService Endpoint

The IControlService endpoint offers three methods (Listing 4.3 on page 16). The
gateway agent uses the methods LogOn to connect to and LogOff to disconnect from
MainService. These methods take no parameters as they extract the credentials from
the WCF authentication mechanisms. Further, the gateway agent calls the method
NotifyEvent to inform the server application about completed operations and newly
connected or disconnected appliances. Finally, IControlService employs the callback
contract IGatewayCallback (Listing 4.5 on page 17). It allows MainService to query
which appliances are connected to the gateway agent and to invoke remote operations
via the RunTasks method.

4.4.2 Gateway Service

GatewayService offers an IGatewayService endpoint (Listing 4.11). All appliances of
a particular site connect to it. Its service contract is very similar to IControlService.
However, because GatewayService does not employ WCF authentication mechanisms,
client agents supply their hostname when they call the method LogOn. In turn, this
method returns them the site name. Appliances can also inform their gateway about
completed operations via the method NotifyEvent.

IGatewayService employs the callback contract IHostCallback (Listing 4.12). Through
it, GatewayService can query the databases and database backups available on an ap-
pliance. Finally, it can invoke operations on an appliance via the method RunTask.

26

4 Communication

1 [ServiceContract(SessionMode = SessionMode.Required , CallbackContract = typeof(

IHostCallback))]

2 public interface IGatewayService {

3 [OperationContract(IsInitiating = true)]

4 [FaultContract(typeof(IdentifierInUseFault))]

5 string LogOn(string hostName);

6 [OperationContract(IsInitiating = false , IsTerminating = true)]

7 void LogOff ();

8 [OperationContract(IsOneWay = true)]

9 void NotifyEvent(RemoteEvent ev);

10 }

Listing 4.11: IGatewayService Service Contract

1 public interface IHostCallback {

2 [OperationContract]

3 DatabaseInfo [] GetDatabases ();

4 [OperationContract]

5 BackupInfo [] GetDatabaseBackups ();

6 [OperationContract]

7 void RunTask(Task task);

8 }

Listing 4.12: IHostCallback Callback Contract

4.4.3 Remote Events

azDeploy uses remote events to notify its applications about connecting or discon-
necting sites and appliances as well as completed operations.

The client agent sends remote events. The server application and the gateway agent
send, process and relay remote events. The administration center only processes remote
events. The gateway agent and the client agent transmit remote events via the one-
way operation void NotifyEvent(RemoteEvent ev) of the IControlService and IGatewayService
endpoints. Its one-way character implies that the event sender does not care when its
counterpart processes the event (see page 19). All remote events derive from the class
RemoteEvent and add further properties. RemoteEvent only contains the property
Time, indicating when the event was created.
azDeploy employs several remote event types:

HostConnectivityChangedEvent: Indicates that the state of a client agent’s connec-
tion to its gateway agent has changed. The property Host designates the affected
appliance. If the property IsOnline has the value true, the client agent has con-
nected to its gateway agent. Otherwise, the client agent has disconnected from
its gateway agent.

SiteConnectivityChangedEvent: Indicates that the state of a gateway agent’s connec-
tion to the server application has changed. The property SiteName designates
the name of the affected site. If the property IsOnline has the value true, the
gateway agent has connected to the server application. Otherwise, the gateway
agent has disconnected from the server application.

27

4 Communication

TaskCompletedEvent: Indicates that an operation has completed and also contains
its results.

TaskFailedEvent: Indicates that an operation has failed. It contains a handle for the
affected operation and an error message.

ClientAliveEvent: The gateway agent and the client agent send this remote event
periodically. It contains the property Identifier. azDeploy uses this event type
as a heartbeat mechanism to detect if a communication peer has crashed.

Table 4.3 depicts the flow of the discussed remote event types. In this representation,
events flow from right to left. Send means that the application creates events of the
specified type. Process means that the application reacts to the specified event type.
Relay means that the application relays a received event to the next application. The
server application processes task events that come from the gateway agent or the client
agent, but also sends task events to the administration center.

Remote Event Type Admin. Ctr. Server Gateway Client

HostConnectivityChangedEvent process relay send -
SiteConnectivityChangedEvent process send - -

TaskCompletedEvent process send/process send/relay send
TaskFailedEvent process send/process send/relay send
ClientAliveEvent - process send/process send

Table 4.3: Remote Event Sources and Sinks

Event Subscription Subscribing to remote events works implicitly: MainService in-
tercepts events in its NotifyEvent service method. Depending on the event type, it
notifies either one specific or all administration center instances. HostConnectivity-
ChangedEvent and SiteConnectivityChangedEvent are of general interest and there-
fore all administration center instances receive them. TaskCompletedEvent and Task-
FailedEvent affect specific operations and therefore only the initiator of the operation
receives them. Finally, MainService does not dispatch the ClientAliveEvent to the ad-
ministration center at all. Since MainService cannot use a callback contract to inform
the administration center about events, MainService stores the events for all adminis-
tration center sessions. The administration center fetches new events periodically via
the FetchEvents method of the IAdminService endpoint. The administration center’s
components then can subscribe to specific events (see Section 5.4 on page 54).

4.5 Tasks

The task system allows azDeploy to execute operations asynchronously on the server,
the gateways, and the appliances. Section 4.5.1 explains the task system from the

28

4 Communication

external perspective of the administration center. Section 4.5.2 discusses the internal
workings hidden from the administration center.

4.5.1 External View of the Task System

To run a remote operation asynchronously, the administration center first must tell
the other components of azDeploy to execute it. Once the operation has completed,
the administration center can interpret its result.

Invoking an Asynchronous Remote Operation

To invoke an asynchronous remote operation, the administration center has to deal
with a task object. Its properties contain the parameters for the operation and the
following information:

Host: This describes on which machine to run the operation. Since this property’s type
is Host, the administration center can address services of the server application,
a gateway or an appliance like indicated in Table 4.1 on page 19.

TaskId: The handle azDeploy uses to refer to the operation. Its data type is globally
unique identifier (GUID). MainService assigns its value.

Username: The Windows principal of the user who wants to run the operation.

For the specific operations, azDeploy uses individual task classes deriving from the
class Task. Since these task objects are transferred between the applications, they are
all data contracts. They employ the naming convention “<Verb><Noun>Task”.

For instance, to create a database, the administration center uses a task object of
the type CreateDatabaseTask (Listing 4.13). It has an additional property Database
of the type Database containing the name of the database and the connection string
to use.

1 [DataContract]

2 [Task(TaskResultType = typeof(DatabaseTaskResult))]

3 public class CreateDatabaseTask : Task {

4 [DataMember]

5 public Database Database { get; set; }

6

7 public CreateDatabaseTask(Database database) {

8 Database = database;

9 }

10 }

Listing 4.13: The CreateDatabaseTask Task Class

However, the administration center does not need to construct a task object: The
IAdminService endpoint of MainService (Listing 4.10 on page 25) offers methods which
take the parameters for the operation, start the operation and return the task object.

Running a task consists of three steps:

29

4 Communication

1. Registration: The administration center submits the parameters for the task
to MainService by calling the corresponding method on IAdminService. For
example, to create a database, the administration center calls the method Cre-
ateDatabase. In turn, MainService assigns a TaskId and returns the task object
of the type CreateDatabaseTask. This operation is invoked synchronously.

2. Execution: From the administration center’s point of view, the task is executing
asynchronously. The administration center continues to run meanwhile.

3. Interpretation: Once the task has terminated, MainService notifies the adminis-
tration center via an event. In turn, the administration center can process the
results of the operation.

Interpreting the Operation’s Result

In the interpretation step, the administration center has to handle the three outcomes
of the task execution:

• Task completed with success

• Task completed with errors

• Task failed

Task Completion If a task has completed, the administration center receives a
TaskCompletedEvent. It contains a TaskResult object (Listing 4.14). Like specific
task classes, there are also specific task result classes deriving from the class TaskRe-
sult. These classes contain further information about the outcome of the task. The
property TaskResultType of the task class’ Task attribute denotes its task result type
(Listing 4.13, line 2). The task result type for CreateDatabaseTask is DatabaseTaskRe-
sult (Listing 4.15).

The administration center determines the task the result belongs to through the
TaskId property. Then it inspects the task result further: If the property Success has
the value true, then the operation has executed without errors. Depending on the
task type, the administration center may access further properties which contain the
results of the operation. This does not apply to DatabaseTaskResult, but is used when
querying data.

In contrast, if Success has the value false, the operation did not complete due to
errors. The administration center can find out more about the error by inspecting
the error information within the task result object. Whether and in which form such
an error information is available depends on the task result type. DatabaseTaskResult
provides an Error property that indicates a database error class, an error message and
the line number where the error occurred.

30

4 Communication

1 [DataContract]

2 public abstract class TaskResult {

3 [DataMember]

4 public bool Success { get; set; }

5 [DataMember]

6 public Guid TaskId { get; set; }

7 ...

8 }

Listing 4.14: The TaskResult Class

1 [DataContract]

2 public class DatabaseTaskResult : TaskResult {

3 [DataMember]

4 public DatabaseOperationError Error { get; set; }

5 ...

6 }

7

8 [DataContract]

9 public class DatabaseOperationError {

10 [DataMember]

11 public byte Class { get; set; }

12 [DataMember]

13 public string Message { get; set; }

14 [DataMember]

15 public int LineNumber { get; set; }

16 ...

17 }

Listing 4.15: The Task Result Type for Database Operations and its Error Information

Task Failure If a task has failed, the administration center receives a TaskFailedE-
vent. This means that neither the operation succeeded nor that there is structured
error information available. This can happen due to two reasons: Firstly, the im-
plementation of the task may not have returned a proper task result object, but has
thrown an exception. This may indicate a bug in the task implementation. Secondly,
it may be that the gateway agent or client agent went offline and thus, the operation
could not be executed.

The TaskFailedEvent includes the property TaskId that indicates the corresponding
task and the property ErrorMessage containing an error string. If a task implementa-
tion throws an exception, ErrorMessage contains the exception message.

Note that azDeploy can distinguish between these three outcomes without knowing
anything about the specific task type. The inner workings of the task system described
in Section 4.5.2 take advantage of this abstraction.

4.5.2 Inner Workings of the Task System

This section discusses the mechanisms of the task system which are only visible to the
server application.

From the perspective of the administration center and the target agent, a task starts
executing a single operation and returns its result asynchronously. Therefore, the

31

4 Communication

administration center needs to call a method on IAdminService, retain a reference to
the returned task object and wait for the event which indicates the task completion or
the task failure. The target agent receives a task object, runs the operation and sends
a task completion or a task failure event when it finishes. Once a task has terminated,
the administration center and the target agent can forget about it.

Although this external view is simple and desirable, it is constraining at the same
time. Thus, the server application maintains this model to the outside, but employs a
more flexible model internally.

For instance, the administration center uses IAdminService’s method DropDatabaseTask

DropDatabase(Database database, DateTime? backupPointDate) to delete an existing database. If the
administration center supplies a backup point date, azDeploy creates a backup before
deleting the database (see page 24). To make this work with the external view (see
Section 4.5.1), DropDatabaseTask would need an additional parameter to store the
backup point date. Also, the client agent’s task implementation would need to make
a backup before dropping the database. The same would apply to other tasks offering
a backup option, such as initializing, upgrading and restoring a database.

Composite Tasks Instead of implementing backup functionality within each task
implementation, the server application uses composite tasks. A composite task consists
of multiple sub-tasks. In the example where the administration center wishes to back
up the database prior to deleting it, the server application creates a composite task
with two sub-tasks of the types BackupDatabaseTask and DropDatabaseTask. Once
the backup task finished, the server application starts the drop database task. Finally,
it returns the task result of the drop database task to the administration center.

To adhere to the external view, the server application must consider the following:

• The administration center still starts a single task and receives a single task result
at the end of all sub-task operations. Thus, the returned task result must be of
the same type. Also, the TaskId of the returned task result or task failure must
reference the initial task.

• The gateway and client agents do not need to know that the sub-tasks belong
together. Therefore, they can still treat each task separately.

The server application uses the class CompositeTask to internally represent a composite
task. It has three properties:

OwnerSession: This GUID indicates the administration center session starting the
initial task. It is stored separately as no task object holds this information.

PublicTask: The initial task. It is the only task that the administration center knows.
Therefore the composite task’s final outcome must reference its TaskId.

ControlFlow: It determines the sequence of the composite task’s sub-tasks.

For greater flexibility, a composite task stores its individual sub-tasks not in a collec-
tion, but uses a task control flow instead.

32

4 Communication

1 interface ITaskControlFlow {

2 ControlFlowDecision OnStart ();

3 ControlFlowDecision OnTaskCompleted(TaskResult result);

4 ControlFlowDecision OnTaskFailed(TaskFailedEvent ev);

5 }

6

7 class ControlFlowDecision {

8 public enum CFDOutcome { Completed , Failed , RunTask , Wait };

9 public CFDOutcome Outcome { get; private set; }

10 public TaskResult TaskResult { get; private set; }

11 public string TaskFailedMessage { get; private set; }

12 public Task[] NextTasks { get; private set; }

13

14 public static ControlFlowDecision CreateTaskCompletedDecision(TaskResult result

) {...}

15 public static ControlFlowDecision CreateTaskFailedDecision(string message)

{...}

16 public static ControlFlowDecision CreateRunTasksDecision(params Task[] tasks)

{...}

17 public static ControlFlowDecision CreateWaitDecision () {...}

18 ...

19 }

Listing 4.16: ITaskControlFlow and ControlFlowDecision

Task Control Flows Depending on the previous task’s outcome, a task control flow
determines the next tasks to run. It may also terminate the composite task. A task
control flow is a class implementing the interface ITaskControlFlow (Listing 4.16).

When a composite task starts, it calls its task control flow’s OnStart method. Then,
the task control flow reacts to the termination of each sub-task: When a task completes,
the composite task calls the method OnTaskCompleted. In case a task fails, it calls
the method OnTaskFailed. All three methods return a ControlFlowDecision (Listing
4.16).

The returned ControlFlowDecision’s property Outcome determines how the compos-
ite task proceeds. It can have four values (Listing 4.16, line 8):

Completed: This outcome completes the composite task. The task control flow stores
the task result into the ControlFlowDecision’s TaskResult property. azDeploy
allows this outcome only if all sub-tasks have already terminated.

Failed: This outcome lets the composite task fail. The task control flow stores the error
message for the TaskFailedEvent into the ControlFlowDecision’s TaskFailedMes-
sage property. Again, azDeploy allows this outcome only if all sub-tasks have
already terminated.

RunTasks: This outcome starts one or more sub-tasks. The task control flow stores
their task objects in the ControlFlowDecision’s NextTasks property.

Wait: This outcome leads to no action. It is only allowed when there are still sub-tasks
running.

Table 4.4 lists the outcomes allowed on whether there are running sub-tasks or not.
ControlFlowDecision works as a factory class. Instead of calling a constructor, the

33

4 Communication

task control flow calls the factory method according to the desired outcome with the
required parameters.

State/Outcome Completed Failed RunTasks Wait

Sub-tasks running x x
No sub-tasks running x x x

Table 4.4: Allowed Control Flow Decision Outcomes Depending on Composite Task
State

azDeploy uses three task control flow classes:

LinearControlFlow: This control flow executes a sequence of tasks passed to its con-
structor (Listing 4.17). In case a sub-task fails or completes with errors, it ter-
minates the composite task. If the sub-task’s task result type matches the public
task’s one, it reports the result through a decision with outcome Completed.
Otherwise, it returns a decision with outcome Failed, as it cannot return an un-
expected task result type to the administration center.
All database operations offering back-up option use this control flow. Also, all
composite tasks which contain a single task use it.

InstallProductControlFlow: This control flow installs a software product on an appli-
ance. It copies the installation package to the appliance and starts the installa-
tion. It may be that a previous release was uninstalled during setup. If installing
the new release fails, InstallProductControlFlow reinstalls the old release to re-
store the previous state.

LoggingControlFlow: This control flow wraps any other control flow. It forwards all
created sub-tasks and their outcome to the logging service. To do so, it starts a
LogTask for each terminated sub-task of the wrapped control flow.

Example Listing 4.18 shows MainService’s DropDatabase method. Firstly, it creates
the task objects for the sub-tasks. InitTask is a convenience method to set the task
object’s properties TaskId, Username and Host. Secondly, DropDatabase creates a
composite task object. It contains the session, the public task and the task control
flow. Note that LoggingControlFlow wraps LinearControlFlow to enable logging of
all executed tasks. Fourthly, it uses the TaskManager class to start executing the
composite task. Finally, it returns the public task object to the administration center.

Figure 4.2 on page 36 shows the interaction between the administration center,
the server application and the client agent. The figure does not show the gateway
agent since it merely forwards messages. In this example, the administration center
wants to create a backup automatically prior to deleting the database. The bars
indicate time spans in which the respective application is blocked due to the task
execution. Note that the interaction between the server application and the client
agent is not asynchronous, as the UML notation suggests, but is meant to represent
one-way operations.

34

4 Communication

1 class LinearControlFlow : ITaskControlFlow {

2 private Task[] tasks;

3 private int current_task;

4

5 public LinearControlFlow(params Task[] tasks) {

6 this.tasks = tasks;

7 }

8

9 public ControlFlowDecision OnStart () {

10 return ControlFlowDecision.CreateRunTasksDecision(tasks [0]);

11 }

12

13 public ControlFlowDecision OnTaskCompleted(TaskResult result) {

14 if (current_task == tasks.Length - 1) // last task

15 return ControlFlowDecision.CreateTaskCompletedDecision(result);

16 else if (result.Success)

17 return ControlFlowDecision.CreateRunTasksDecision(tasks [++ current_task

]);

18 else

19 {

20 var type = TaskAttribute.GetAttribute(tasks[tasks.Length - 1]).

TaskResultType;

21 if (type.IsAssignableFrom(result.GetType ()))

22 return ControlFlowDecision.CreateTaskCompletedDecision(result);

23 else return ControlFlowDecision.CreateTaskFailedDecision(string.Format(

"Sub -Task {0} completed with errors.", result.TaskId));

24 }

25 }

26

27 public ControlFlowDecision OnTaskFailed(TaskFailedEvent ev) {

28 return ControlFlowDecision.CreateTaskFailedDecision(ev.ErrorMessage);

29 }

30 }

Listing 4.17: The Linear Task Control Flow

1 public DropDatabaseTask DropDatabase(Database database , DateTime? backupPointDate)

{

2 var session = AdminSessionManager.GetUserSession(OperationContext.Current.

ServiceSecurityContext.PrimaryIdentity.Name);

3 var list = new List <Task >();

4

5 if (backupPointDate.HasValue)

6 {

7 list.Add(AdminSessionManager.InitTask <BackupDatabaseTask >(session , database

.Host , new BackupDatabaseTask(database , new BackupPoint("automatic",

backupPointDate.Value), "Automatic before database drop.")));

8 }

9 var dropDatabaseTask = AdminSessionManager.InitTask(session , database.Host , new

DropDatabaseTask(database));

10 list.Add(dropDatabaseTask);

11

12 var composite = new CompositeTask(session , dropDatabaseTask , new

LoggingControlFlow(session ,new LinearControlFlow(list.ToArray ())));

13 TaskManager.Start(composite);

14 return dropDatabaseTask;

15 }

Listing 4.18: The DropDatabase Service Method of MainService

35

4 Communication

Figure 4.2: Drop Database Task Sequence

Task Scheduling The class TaskManager schedules all tasks. It ensures that gateway
and client agents execute only one operation at a time. TaskManager holds back other
tasks wanting to run on the same gateway or appliance in a task queue until the prior
tasks have finished. The agents run the task operations within a separate thread: This
avoids setting the WCF response timeouts unnecessary high as task operations may
take a long time to complete. Thus, the method call is over as soon as the actual task
operation starts.

In contrast, TaskManager assumes that all server application services support exe-
cuting multiple tasks in parallel: The server task processor service logs task executions.
Therefore it may need to log a task from appliance B while it still processes the logging
of a task from appliance A. The same applies to the file transfer service as there may
be multiple file transfers to different appliances at a time.

Helper Classes The task system requires each task to be executed within a com-
posite task. Therefore, to execute a single task, MainService uses the helper class
SingleTaskPattern. Its Execute method allows to start a task with a single line of
code. The last parameter determines whether to log the task execution. Listing 4.19
shows its use in the service method to retrieve an appliance’s databases. As this query
task does not change the appliance’s configuration, the method turns off the task log-
ging.

To execute the task operation, gateway and client agents use the class TaskRunner.
It enables developers to write task implementation methods which take a task of a

36

4 Communication

specific task type as parameter and return a task result object of the corresponding
task result type. TaskRunner uses reflection to call the appropriate task implementa-
tion method within a separate thread. At startup, TaskRunner checks whether each
task implementation method returns the appropriate task result type. Listing 4.24
on page 46 shows the implementation of the BackupDatabaseTask. After calling the
task implementation method, TaskRunner sends back a TaskCompletedEvent contain-
ing the task result to the server application via the gateway agent. If the task im-
plementation method throws an exception, TaskRunner catches it and sends back a
TaskFailedEvent.

1 public GetHostDatabasesTask GetHostDatabases(Host host) {

2 var session = AdminSessionManager.GetUserSession(OperationContext.Current.

ServiceSecurityContext.PrimaryIdentity.Name);

3 return SingleTaskPattern.Execute(session , host , new GetHostDatabasesTask (),

false);

4 }

Listing 4.19: The GetHostDatabases Service Method of MainService

4.6 Notification Services

As azDeploy does not know about the internals of the deployed applications, it
cannot answer questions such as:

• Can I upgrade the server’s main database without affecting the Jornada appli-
ances?

• Is it necessary to restart the Jornada client after a minor database schema
upgrade?

• Can I upgrade the Jornada client application on an appliance or is it in use?

But finding answers to such questions is crucial for seamless operation. Therefore,
azDeploy lets the applications decide, as they can answer these questions best.

The notification services allow an application to

• track configuration changes taking place at the customer site

• deny configuration changes affecting operations negatively

Configuration changes may affect applications in various ways:

Create or Initialize Database: The application may want to use this information to
configure database connectivity.

Upgrade Database Schema: The application may be in use. If idle, it may need to
disconnect from the target database.

37

4 Communication

Backup Database: Creating a backup may reduce database performance the applica-
tion currently needs.

Restore or Drop Database: The application may use the target database. If idle, it
should disconnect from the target database.

Install or Uninstall Product: The target application may be in use. If idle, it must
shut down properly.

The design of the notification services takes the following into account:

• The developers of the Jornada applications do not know about the internals of
azDeploy.

• The interface of the notification services must be stable.

• Working with the notification services requires no additional dependencies except
the .NET-Framework.

Therefore, the notification services implement a generic protocol which relies on a few
data contracts only. Section 4.6.1 discusses the application interface of the notification
services, while Section 4.6.2 explains how they integrate within azDeploy.

4.6.1 Application Interface

Because applications decide whether a configuration change should take place, the
client agent conducts a configuration change only if:

1. All applications at a customer site respond to the client agent.

2. All applications at a customer site grant the configuration change.

This approach ensures that applying the configuration change does not affect oper-
ations negatively. Because a non-responding application has an unknown state, the
configuration change cannot be applied safely in this case.

An application can react to a configuration change at three points in time which are
called notification stages:

Request: The client agent requests permission from the application to conduct a con-
figuration change. The application can either grant or deny it. When denying it,
the application can state whether the denial is temporary or permanent. Denying
a database schema upgrade while the application is in use would be temporary,
while an attempt to drop the productive database may result in a permanent
denial.
If the application grants the configuration change, it has to ensure that it stays
in a state which allows the configuration change. Thus, in case of an database
schema or application upgrade, the application should switch into a“locked”state
so that no user can start working with the application.

38

4 Communication

In case azDeploy already knows that an application denied the configuration
change, it may not send the configuration change request to the remaining ap-
plications.

Activity: In case all applications granted the configuration change, the client agent
informs the applications that it will start the operation. As the application
now knows that the configuration change will take place, it prepares for it: For
example, before upgrading the application, the currently running instance must
shut down.
After this notification, the client agent starts the configuration change.

Completion: Finally, the client agent informs the application that it completed the
configuration change. It also sends this notification for denied configuration
changes which did not take place. The application may switch back to normal
operation.

Figure 4.3 depicts the transitions between these three notification stages.

Figure 4.3: Notification Stage Transitions

Listing 4.20 shows the service definition of the notification service. When an ap-
plication starts, it logs onto the service. While running, it will be notified about
configuration changes via the callback contract. Finally, when an application shuts
down, it logs off from the service.

The client agent calls the three methods of INotificationCallback (Listing 4.20) cor-
responding to the three notification stages discussed above. They have several similar
parameters:

hostname: The hostname of the appliance which the configuration change affects.

action: This string identifies the type of the configuration change. Configuration
changes affecting databases start with Database whereas these affecting appli-
cations start with Product.

reference: Applications use this identifier to track a configuration change across its
different notification stages.
For example, when granting a database schema upgrade, the application may
store this value and switch to a “locked” state. Then, in NotifyCompletion, it
just needs to check whether the reference parameter matches the stored value. If

39

4 Communication

so, it can return to normal operations, given that it is compatible with the new
schema version.

parameters: This dictionary of string keys and values provides further information
about the configuration change.
For instance, in case of a database schema upgrade request, the key ToVersion
contains the new version number of the database schema.

success: Only available in NotifyCompletion. Indicates whether the configuration
change was applied successfully. The value false can also mean that an ap-
plication denied the configuration change.

1 [ServiceContract(SessionMode = SessionMode.Required , CallbackContract = typeof(

INotificationCallback))]

2 public interface INotificationService {

3 [OperationContract(IsInitiating = true)]

4 void LogOn();

5 [OperationContract(IsInitiating = false , IsTerminating=true)]

6 void LogOff ();

7 }

8

9 public interface INotificationCallback {

10 [OperationContract]

11 void NotifyActivity(string hostname , string action , Guid reference , Dictionary <

string , string > parameters);

12 [OperationContract(IsOneWay = true)]

13 void NotifyCompletion(string hostname , string action , bool success , Guid

reference , Dictionary <string , string > parameters);

14 [OperationContract]

15 RequestResult Request(string hostname , string action , Guid reference ,

Dictionary <string , string > parameters);

16 }

Listing 4.20: INotificationService and INotificationCallback

Configuration Changes and Parameters

Table 4.5 shows the configuration change types. For convenience, the class Actions
in the assembly Client.Contracts contains these action strings as constants. Table
4.6 explains the parameters of the different actions. The notification services pass
these parameters to the applications in each notification stage (request, activity and
completion) of a configuration change. The Database.* row lists the parameters which
all database actions supply whereas the Product.* row lists the parameters which all
product actions supply.

Application Upgrades If an application wants to react to application upgrades, it
listens for both the actions Product.Install and Product.Uninstall. This is because
Microsoft Windows Installer distinguishes two types of application upgrades:

40

4 Communication

Action Constant String Value

Actions.DatabaseCreate Database.Create
Actions.DatabaseInitialize Database.Initialize
Actions.DatabaseUpgrade Database.Upgrade
Actions.DatabaseBackup Database.Backup
Actions.DatabaseRestore Database.Restore
Actions.DatabaseDrop Database.Drop
Actions.ProductInstall Product.Install

Actions.ProductUninstall Product.Uninstall

Table 4.5: Configuration Change Types in Notifications

Action Parameter Description

Database.* Database Name of the database
ConnectionStringIdentifier Connection string identifier

Database.Initialize
Database.Restore

Schema Database schema name.
Null, if restored database is

not initialized.
Version Database schema version.

Null, if restored database is
not initialized.

Database.Upgrade Schema Database schema name
FromVersion Current schema version

ToVersion Schema version after the
upgrade.

Product.* ProductCode MSI product code (GUID)
ProductName MSI product name

ProductVersion MSI product version
Manufacturer MSI manufacturer
PackageCode MSI package code (GUID)

Product.Install UpgradeCode MSI upgrade code
AZProperty.* Properties in the package’s

AZProperty table are
exported as prefixed

parameters.
Product.Uninstall IsUpgrade If true, the product was

removed because of an
upgrade to a newer version.

If false, it was removed
normally.

Table 4.6: Configuration Change Parameters

41

4 Communication

Firstly, Windows Installer applies certain upgrades in one step itself. In this case,
the application only gets informed about the Product.Install action and the action’s
parameters contain information about the new application release.

Secondly, there are upgrades which azDeploy applies by first uninstalling the old
application release and then installing the new application release. In this case, it noti-
fies the application firstly about the Product.Uninstall action. The action parameters
contain information about the application version to be uninstalled. Then, it notifies
the application about the Product.Install action. This time, the action parameters
contain information about the new application release.

Note that it does not suffice to react only to the Product.Install action: Although
Product.Install occurs in either case, the application may need to react to Prod-
uct.Uninstall already: Because if the listening application itself is about to be unin-
stalled, it needs to shut down properly before.

When an application is notified about the Product.Uninstall action, it can determine
whether this is a permanent removal or due to an application upgrade by inspecting
the parameter IsUpgrade. This parameter can have the value true or false.

But how can an application decide whether it is removed during an upgrade, if no
Product.Uninstall action appears? In this case, it can inspect the parameter Upgrade-
Code. If it matches the application’s upgrade code, it is affected by the upgrade.
Section 6.2 will explain the details of the Windows Installer integration.

Handling Configuration Change Requests

To handle a configuration change request, the application returns a RequestResult
object. The application can create it by either calling the static method RequestResult

Allow() or RequestResult Deny(ErrorType errorType, int errorCode, string errorMessage) on the class
RequestResult. If the application denies the request, it supplies three parameters:

errorType: The application states whether the denial is temporary or permanent.

errorCode: An arbitrary error code.

errorMessage: An error message describing the reason for the denial.

azDeploy only takes into account whether the application grants or denies the re-
quest. The error information is used to educate the operator about the reason for the
denial.

Example

The Jornada Client demonstrates how vendor applications interact with the noti-
fication services. Its window displays the application’s state (Figure 4.4). The class
NotificationClient interacts with the notification services and determines the applica-
tion’s reaction to the configuration changes.

The Jornada Client resembles the behavior of the Jornada scenario’s client appli-
cation (see Section 1.1 on page 3) in a simplified way: It has no business logic. Rather,

42

4 Communication

the user can decide whether the application pretends that it is idle or in use. In use
simulates that an employee currently uses the appliance. Additionally, the Jornada
Client writes log data into the appliance’s database. For the sake of brevity, it does
not take into account the existence of the Jornada server machine. Thus, in a real
world scenario, the Jornada Client would also have to track configuration changes
affecting the server application and the central main database.

Figure 4.4: Jornada Client

Application Behavior The Jornada Client interacts with azDeploy as follows:
While it is idle, it grants to upgrade itself. During such an application upgrade, the
application shuts down prior to uninstallation.

Concerning its local database, the application permanently denies the request to
delete it. The application allows to upgrade the local database’s schema or to restore
a backup only while it is idle. When these database operations occur, the application
switches to the state locked and disconnects from the database. In this state, the ap-
plication is idle, but the user cannot interact with it. After azDeploy has conducted
the operation, the application checks whether it is still compatible with the changed
database schema version. It considers schema versions where the first two numbers
match as compatible. If the database schema is still compatible, the application re-
connects to the database, switches to the state idle and can be used again. Otherwise,
if the database schema is incompatible, the application stays in the state locked and
waits for further configuration changes which restore compatibility. This could be a
rollback to a previous database backup or an application upgrade.

Because only NotificatonClient is of interest, the application is abstracted through
the interface IApplicationControl (Listing 4.21). It allows NotificationClient to interact
with the application: Firstly, the application exports the name of the local database
and its schema version. Secondly, NotificationClient can try to switch the application’s
state to locked and unlock it again. Finally, it can change the database connection state
or shut down the application.

43

4 Communication

1 interface IApplicationControl {

2 int LocalDatabaseMajorVersionNumber { get; }

3 int LocalDatabaseMinorVersionNumber { get; }

4 string LocalDatabaseName { get; }

5 bool TryLockApplication ();

6 void UnlockApplication ();

7 void ConnectToLocalDatabase ();

8 void DisconnectFromLocalDatabase ();

9 void ShutdownApplication ();

10 void DisplayDatabaseVersion(Version version); // updates UI only

11 }

Listing 4.21: IApplicationControl Interface

1 [CallbackBehavior(ConcurrencyMode=ConcurrencyMode.Reentrant)]

2 class NotificationClient : INotificationCallback {

3 private List <Guid > notificationFilter = new List <Guid >();

4 public IApplicationControl ApplicationControl { get; set; }

5 private volatile bool stopNotificationClient = false;

6 ...

7 private RequestResult TryLockApplication(Guid reference) {

8 var success = ApplicationControl.TryLockApplication ();

9 if (success)

10 {

11 notificationFilter.Add(reference);

12 wasActivityRun = false;

13 return RequestResult.Allow();

14 }

15 else return RequestResult.Deny(ErrorType.Temporary , 2, "JornadaClient is in

use.");

16 }

17

18 public RequestResult Request(string hostname , string action , Guid reference ,

Dictionary <string , string > parameters) {

19 if (hostname.ToLowerInvariant () == Environment.MachineName.ToLowerInvariant

() && !stopNotificationClient) // on local host

20 {

21 if (action.StartsWith("Database.") && parameters["Database"] ==

ApplicationControl.LocalDatabaseName)

22 {

23 if (action == Actions.DatabaseDrop)

24 return RequestResult.Deny(ErrorType.Permanent , 1, "Not allowed

to drop production database.");

25 else if (action == Actions.DatabaseRestore || action == Actions.

DatabaseUpgrade)

26 return TryLockApplication(reference);

27 else return RequestResult.Allow();

28 }

29 else if ((action == Actions.ProductUninstall || action == Actions.

ProductInstall) && parameters["ProductName"] == "Jornada Client")

30 {

31 return TryLockApplication(reference);

32 }

33 }

34 return RequestResult.Allow();

35 }

Listing 4.22: Handling Configuration Change Requests

44

4 Communication

Configuration Change Requests Listing 4.22 shows how NotificationClient handles
configuration change requests. Because the configuration change action is supplied
as string, it is used to aggregate all database configuration changes. Whenever the
application changes its state to locked, it retains the configuration change’s reference.
Thus, it can determine the notifications of interest in the following stages without
having to inspect all parameters.

Reacting to Configuration Changes Listing 4.23 contains the callback methods for
the notification stages Activity and Completion. Although the Request method al-
ready switches the application to “locked” for certain operations, the actual reaction
takes place in the activity stage. This is because other applications may have denied
the request so that the configuration change does not happen. In this case, the config-
uration change would directly transist from the Request stage to the Completion stage.
Finally, after upgrading the database schema or restoring a backup, the application
returns to the idle state, given that the database schema is still compatible.

1 public void NotifyActivity(string hostname , string action , Guid reference ,

Dictionary <string , string > parameters) {

2 if (! notificationFilter.Contains(reference) || stopNotificationClient)

3 return;

4 wasActivityRun = true;

5 if (action.StartsWith("Database."))

6 ApplicationControl.DisconnectFromLocalDatabase ();

7 else if (action.StartsWith("Product."))

8 {

9 Disconnect ();

10 ApplicationControl.ShutdownApplication ();

11 }

12 }

13

14 public void NotifyCompletion(string hostname , string action , bool success , Guid

reference , Dictionary <string , string > parameters) {

15 if (! notificationFilter.Contains(reference) || stopNotificationClient)

16 return;

17 notificationFilter.Remove(reference);

18 if (action == Actions.DatabaseUpgrade || action == Actions.DatabaseRestore)

19 {

20 string newVersionStr = (action == Actions.DatabaseUpgrade) ? parameters["

ToVersion"] : parameters["Version"];

21 var newVersion = new Version(newVersionStr);

22 ApplicationControl.DisplayDatabaseVersion(newVersion);

23 if (ApplicationControl.LocalDatabaseMajorVersionNumber == newVersion.Major

&& ApplicationControl.LocalDatabaseMinorVersionNumber == newVersion.

Minor)

24 {

25 // schema version considered as compatible

26 if (wasActivityRun)

27 ApplicationControl.ConnectToLocalDatabase ();

28 ApplicationControl.UnlockApplication ();

29 }

30 // else wait for application upgrade

31 }

32 }

Listing 4.23: Reacting to Configuration Changes

45

4 Communication

4.6.2 Integration within azDeploy

azDeploy informs all vendor applications at a customer site about all configuration
changes taking place at the site. Therefore, the client agent disseminates notifications
about all stages of a local configuration change. This happens in the task implemen-
tation. The class Notifier allows the client agent to send notifications and to receive
request results from each vendor application running at the site. It first contacts all
applications running on the local appliance. Then it contacts the gateway agent, which
notifies all other client agents on the site, which in turn inform all vendor applications
running on the respective appliance. In case of a configuration change request, the
gateway agent also collects all request results. After the call to the gateway agent
returns, all applications are informed about the configuration change.

1 public static DatabaseTaskResult RunTask(BackupDatabaseTask task) {

2 var reference = Guid.NewGuid ();

3 var parameters = new Dictionary <string , string >();

4 parameters["Database"] = task.Database.Name;

5 parameters["ConnectionStringIdentifier"] = task.Database.

ConnectionStringIdentifier;

6 var requestResult = AppContext.Notifier.Request(AppContext.Client.Host.HostName

, Actions.DatabaseBackup , reference , parameters);

7 if (requestResult.ErrorType != ErrorType.Success)

8 {

9 AppContext.Notifier.NotifyCompletion(AppContext.Client.Host.HostName ,

Actions.DatabaseBackup , false , reference , parameters);

10 return new DatabaseTaskResult(new DatabaseOperationError () { Class = 1,

LineNumber = 0, Message = requestResult.ToString () });

11 }

12 AppContext.Notifier.NotifyActivity(AppContext.Client.Host.HostName , Actions.

DatabaseBackup , reference , parameters);

13 Trace.WriteLine("Backing up database " + task.Database + ".");

14 var db = new ManagedDatabase ();

15 db.OpenConnection(task.Database.ConnectionStringIdentifier , task.Database.Name)

;

16 var result = db.BackupDatabase(task.BackupPoint ,task.Username ,task.Description)

;

17 db.CloseConnection ();

18 AppContext.Notifier.NotifyCompletion(AppContext.Client.Host.HostName , Actions.

DatabaseBackup , result.Success , reference , parameters);

19 return result;

20 }

Listing 4.24: The Implementation of BackupDatabaseTask

Implementation Listing 4.24 shows the task implementation for backing-up a database.
Firstly, it sets up the reference value and the parameters used by each notification. For
database backups, these parameters are the database name and the connection string
identifier. Then, it uses the class Notifier to request permission from all applications
for backing-up the database.

Notifier returns a single request result object. If all vendor applications granted
to back-up the database, the object’s ErrorType property has the value Success. In
contrast, if at least one vendor application denied the request, the task implementation
receives the request result object of the application which denied the request first.

46

4 Communication

If any vendor application denied the request, the configuration change directly tran-
sitions into the completion stage: Notifier sends a completion notification to all vendor
applications. The success parameter with the value false indicates that the configura-
tion change failed. Then it ends executing the task by returning a database task result
containing the error information.

In contrast, if all vendor applications granted the request, the configuration change
transitions into the activity stage. In turn, Notifier sends an activity notification to
all vendor applications. Then, the task implementation initiates the backup operation
through the class ManagedDatabase. Once the operation finishes, the configuration
change enters the completion stage: Notifier sends a completion notification to all ven-
dor applications. Its success parameter carries the success information of the database
task result. Finally, it finishes executing the task by returning the task result.

4.7 File Transfer Services

The server application uses the file transfer services to transfer SQL upgrade scripts
and software installation packages to the appliances. As these services do not depend
on the operation control services, transferring files does not block operations.

Within the server application, the class FileTransferService implements file transfers.
It uses per-session instancing and the concurrency mode reentrant. The service provides
two endpoints: The IFileTransferAdminService endpoint allows initiating file transfers
and the IFileTransferService endpoint actually transfers the files.

IFileTransferAdminService

Because the IFileTransferAdminService endpoint (Listing 4.25) is operated locally
through MainService, it uses a netNamedPipeBinding for communication. Before us-
ing it, MainService must establish a session. IFileTransferAdminService employs the
task system: To start transferring files, MainService uses TaskManager to enqueue
a TransferFilesTask. TaskManager then calls the AddTransmission method on IFile-
TransferAdminService. A TransferFilesTask object has two properties:

Target: The appliance to which the files are transferred.

Instructions: This array contains objects of the type TransferFileInstruction.

A TransferFileInstruction describes a single file to be copied to the appliance’s down-
load directory and has two properties:

SourcePath: The absolute path of the file to transfer on the server.

DestinationPath: The relative path within the download directory of the appliance
where to store the transferred file.

Once the transfer completes, FileTransferService notifies MainService via the Notify-
LocalEvent method.

47

4 Communication

1 [ServiceContract(SessionMode = SessionMode.Required , CallbackContract = typeof(

IFileTransferAdminCallback))]

2 public interface IFileTransferAdminService {

3 [OperationContract(IsInitiating=true ,IsTerminating=false)]

4 void LogOnAdmin ();

5 [OperationContract(IsOneWay=true)]

6 void AddTransferTask(TransferFilesTask task);

7 [OperationContract(IsInitiating=false ,IsTerminating=true)]

8 void LogOffAdmin ();

9 }

10

11 public interface IFileTransferAdminCallback {

12 [OperationContract(IsOneWay = true)]

13 void NotifyLocalEvent(RemoteEvent ev);

14 }

Listing 4.25: Service Contract for the FileTransferAdminService Endpoint

IFileTransferService

Unlike IControlService, where whole sites log on via their gateway agents, each client
agent logs on“directly”to IFileTransferService (Listing 4.26): The gateway agent hosts
the FileTransferProxy service. This service offers an IFileTransferService endpoint to
the site’s client agents. As its name suggests, FileTransferProxy simply forwards all
service method calls to FileTransferService hosted by the server application. FileTrans-
ferProxy also implements the IFileTransferCallback contract (Listing 4.26). Likewise,
it forwards all callback calls to the corresponding client agent. To make this transpar-
ent proxy behavior work, FileTransferProxy uses per-session instancing with reentrant
concurrency. Therefore, there exist as many FileTransferProxy instances as connected
client agents.

1 [ServiceContract(SessionMode=SessionMode.Required ,CallbackContract=typeof(

IFileTransferCallback))]

2 public interface IFileTransferService {

3 [OperationContract(IsInitiating=true ,IsTerminating=false)]

4 void LogOn(Host host);

5 [OperationContract]

6 FileTransferInfo RetrieveNextFileInfo ();

7 [OperationContract]

8 byte[] RetrieveChunk ();

9 [OperationContract(IsInitiating=false ,IsTerminating=true)]

10 void LogOff ();

11 }

12

13 public interface IFileTransferCallback {

14 [OperationContract(IsOneWay = true)]

15 void NotifyFilesAdded ();

16 }

Listing 4.26: Service Contract for the FileTransferService Endpoint

48

4 Communication

How do the file transfer services differ from the agent upgrade services? Firstly, they
employ a push rather than a pull model: Whereas within the agent upgrade services the
agents initiate the file transfer, within the file transfer services the server application
initiates the file transfer. Secondly, they integrate into the task system. Thirdly,
they allow to transfer an arbitrary number of files to different locations. Finally, they
maintain state and therefore employ sessions.

Protocol After a client agent has logged on to the file transfer services, a file transfer
works as follows: MainService adds a new file transfer task. Next, FileTransferService
notifies the client agent that it wants to transfer files by calling the method Noti-
fyFilesAdded on the callback channel. The client agent then uses the method Re-
trieveNextFileInfo to retrieve information about the file to be transferred. It returns
an object of type FileTransferInfo which has three properties:

Path: The path where to store the transferred file within the client agent’s download
directory.

Filesize: The filesize of the transferred file.

Checksum: A string containing the MD5 hash of the transferred file in hexadecimal
representation.

After that, the client agent repeatedly calls the method RetrieveChunk to obtain the
file’s data: Per call, the server transfers a chunk of data. Once the whole file is
transmitted, the method returns null. Finally, the client agent calls the method Re-
trieveNextFileInfo again to obtain information about the next file transfer. When there
are no more enqueued file transfers, this method returns null.

Limitations The client agent does not need to know about distinct file transfer tasks.
It just assumes transfers of independent files. As a consequence, to avoid file name
conflicts, each transfer task should put its files into a separate directory: This applies
if a client agent applies the same database schema upgrade script to several databases
at the same time. As these upgrade tasks are independent, they do not know that the
required upgrade script was already transferred nor that other tasks will need it again.
Therefore, the upgrade script is transferred for each database and will be deleted after
the database schema was upgraded.

Furthermore, the current implementation does not cache the transferred files. Thus,
when sending the same file to several appliances of the same site, the server has to send
it multiple times. As files can be identified by their size and their checksum, caching
can be realized with a small effort.

49

5 Project Structure and Applications

This chapter describes the project structure and the characteristics of the server ap-
plication, the administration center, the gateway agent, and the client agent. The
application starter and the package tool will be discussed in Section 6.2.

5.1 Project Structure

azDeploy consists of the assemblies listed in Table 5.1. Table 5.2 shows some software
metrics for azDeploy. The applications are structured as follows:

Server Application The server application consists of two assemblies: ServerSer-
viceLibrary contains all WCF service classes whereas the assembly Server merely hosts
and configures the WCF services. This allows converting the server application to a
Windows service by replacing the assembly Server with a Windows service project.

Windows Services Gateway and client agents can already run as Windows services.
For development purposes, they can run as standalone applications. Therefore, the
assemblies Gateway and Client already employ a Windows service like structure. The
respective Windows service projects merely pass on the service control calls.

Shared Assemblies The assembly Core contains the functionality all applications
need. The assembly Repository enables the server application and the client agent to
read metadata from Windows Installer packages.

Shared Contracts Since the applications of azDeploy communicate as a closed
system, they share the service and data contracts via separate assemblies. This reduces
development and refactoring effort as developers do not need to generate proxy classes
from service metadata if contracts change. The assembly Common.Contracts contains
the contracts needed by all applications. All other assemblies ending in Contracts
contain contracts used only between some applications. For instance, the contracts
within Gateway.Contracts are used only for customer site communication between the
gateway agent and the client agent.

Extensibility Plug-ins for the client agent use the assembly ExtensionBase. Applica-
tions interacting with azDeploy via the notification services use Client.Contracts.

50

5 Project Structure and Applications

Assembly Description

AdministrationCenter The administration center application.
AgentUpgradeClient Used to upgrade the agent applications itself.
ApplicationStarter The application starter application.

Client The client agent executable.
Client.Contracts Data contracts used by the agents and

applications interacting with azDeploy.
ClientService The windows service which runs the client agent.

Common.Contracts Data contracts used by the server application, the
gateway agent, and the client agent.

Core Classes shared by the server application, the
gateway agent, and the client agent.

ExtensionBase Used by plug-ins for the client agent.
Gateway The gateway agent executable.

Gateway.Contracts Data Contracts which are used between the
agents.

GatewayService The windows service which runs the gateway
agent.

JornadaClient The demo application interacting with
azDeploy.

PackageTool The package tool executable.
Repository Classes shared between the client agent and the

server application.
Server The server application executable.

Server.Administration.Contracts Data Contracts which are used between the
administration center and the server application

Server.Control.Contracts Data Contracts which are used between the
server application and the gateway agent.

ServerDatabase Provides access to the server database.
ServerServiceLibrary The server services.

XMLConnectionStringProvider Plug-in for the client agent which reads
connection strings from a XML file.

Table 5.1: Assemblies

Metric Totala Contracts Administration Ctr. Server Gateway Client

Effective LoCb 10500 1200 2700 1400 500 1500
Number of Classes 260 96 57 43 13 22

aIncludes non-listed applications and shared assemblies, but excludes XAML markup
bLines of Code

Table 5.2: Software Metrics

51

5 Project Structure and Applications

5.2 Server Application

The server application is the central component of azDeploy. It links the admin-
istration center instances with the customer sites. A single instance of the server
application runs at the vendor site. The TCP port of the IControlService endpoint
must be accessible from the Internet.

The server application provides:

• Administration of all customer sites via the IAdminService endpoint

• A central log on point for all customer sites

• The agent upgrade service to keep the gateway and client agents up to date

• Access to the software and database schema upgrade script repositories

• Access to the database upgrade and product installation history

• Management of stored database views

• Logging of all configuration changes

The fundamental classes of the server application are:

AgentUpgradeService: The agent upgrade service implementation. It exposes the
IAgentUpgradeService endpoint.

FileTransferService: The file transfer service implementation. Besides the IFileTrans-
ferService endpoint, it also exposes the IFileTransferAdminService endpoint through
which MainService can initiate file transfers.

MainService: The core service of the server application. It provides both the endpoints
IAdminService and IControlService.

AdminSessionManager: Since the underlying binding configuration of the IAdmin-
Service endpoint does not support WCF sessions (see Section 5.4), this class
maps service calls to custom sessions. It does so by using the username of the
client credentials which the administration center sends with each call as session
identifier. This makes it possible to distinguish between the administration center
users without supplying an additional session parameter in each service method.
However, this approach does not allow one user to use multiple instances of the
administration center in parallel.

WCF Behavior Classes: These classes intercept the service calls to MainService (see
Section 6.3 on page 66).

Repository Classes: QueryRepository, ScriptRepository and SoftwareRepository pro-
vide access to the stored database views, the database schema upgrade scripts,
and the software packages.

52

5 Project Structure and Applications

Task Control Flow Classes: They were discussed in Section 4.5.2 on page 31.

ServerTaskProcessorService: This service implementation exposes the endpoint IS-
erverTaskProcessorService. It processes log tasks and tasks querying the database
and product installation history.

TaskManager: This class schedules the tasks of the task system (see Section 4.5.2 on
page 31).

ServerDatabaseDataContext: This class provides access to the server database.

Figure 5.1 shows all WCF Services that make up the server application.

Figure 5.1: Services hosted by the Server Application

5.3 Gateway and Client Agents

The gateway agent acts as a proxy and links the client agents of a customer site with
the server application. A single instance of the gateway agent runs at each customer
site. It must have Internet access.

The gateway agent provides:

• Proxy functionality for the agent upgrade, control, and file transfer services. It is
implemented in the classes AgentUpgradeProxy, GatewayService and FileTrans-
ferProxy.

• Task implementations to receive all databases and database backups of a site.
They are implemented in the class TaskImplementations.

• The notification service for the site which interchanges notifications between the
individual client agents. It is implemented in the class NotificationService.

The client agent conducts all configuration changes on an appliance and provides:

• Task implementations of all configuration changes

• The notification service for all applications interacting with azDeploy

53

5 Project Structure and Applications

• Plug-in support to add connection strings

The fundamental classes of the client agent are:

CClient: The client class which implements the callback contract IHostCallback re-
quired by IGatewayService.

FileTransferClient: The client class which receives files sent by the server applica-
tion. It implements the callback contract IFileTransferCallback required by
IFileTransferService.

NotificationService: The notification service implementation. It exposes the local
INotificationService endpoint to which the vendor applications connect.

Notifier: This class allows the client agent to send notifications to all vendor appli-
cations of the site. Firstly, it contacts the local notification service, then the
gateway agent’s notification service which disseminates the notification through-
out the site.

PluginManager: This class automatically loads all plug-ins from assemblies.

TaskImplementations: This class handles all tasks conducted on the appliance. It
links the actual operations implemented in other classes with the notification
services.

BackupArchive: This class can compress database backups as zip archives. It also
stores metadata about the backups within the archives.

ManagedDatabase: This class contains the implementations of the database opera-
tions.

MsiInstallerHelper: This class allows to install, upgrade, and uninstall software.

5.4 Administration Center

The administration center is a XAML browser application (short XBAP) which allows
the operators to control all operations of azDeploy. Such applications use Windows
Presentation Foundation (short WPF) to implement their user interface. The operators
must be able to use the administration center also from their homes over the Internet.
Thus, the administration center implements security by encrypting all communication.

Security

The .NET framework enforces a concept called code access security (short CAS). CAS
ensures that the code can only conduct activities for which it has the required security
permissions. CAS distinguishes two fundamental levels of trust: Full trust, if the code
has all permissions. In contrast, if the code has only a limited set of permissions, CAS
refers to it as partial trust [16].

54

5 Project Structure and Applications

Permissions The administration center XBAP specifies its security permissions through
a ClickOnce application manifest. It is set up to use the partial trust security zone
Internet. A security zone defines a set of permissions granted to an application. Ad-
ditionally, the administration center requires the security permission WebPermission
which is not available in the security zone Internet. Therefore, it requests the WebPer-
mission in its ClickOnce application manifest. To actually obtain the additional
security permission, the manifest must be signed with a certificate. This is because a
XBAP from the web is granted only Internet zone permissions by default [15].

The administration center needs the additional WebPermission since WPF appli-
cations have only site-of-origin access [14]. However, in the azDeploy scenario the
administration service endpoint the administration center connects to does not match
the administration center’s URL as it runs on a different port than the Internet Infor-
mation Services (short IIS) web server providing the administration center XBAP.

This is the result of two restrictions: Firstly, it is possible to host a WCF service
within IIS, thus allowing it to use the IIS port. However, WCF services hosted within
IIS can only use HTTP bindings [17]. Therefore, this is not an option as MainService
also exposes the control service endpoint which uses a netTcpBinding. Secondly, it is
also not possible for the server application and IIS to use port sharing under Windows
XP [13].

WCF Constraints CAS employs security demands: This means that all callers on the
call stack must have sufficient permissions to run a certain operation. Most function-
ality of WCF requires the full trust permission set. Therefore, as the administration
center executes under a partial trust permission set, the administration center can only
choose between a few binding configurations which also support partial trust callers. To
secure communication, these binding configurations can only opt for transport security
mode [16]. Securing communication will be discussed in Section 6.4 on page 70.

Binding Selection

Due to these security constraints, the possible bindings for the administration center
are BasicHTTPBinding, WebHTTPBinding, and WSHTTPBinding [16] None of them
supports duplex operations which implies that the server application cannot use a
callback contract to contact the administration center. The administration center
opts for WSHTTPBinding as it has the most features including session support [4].
However, session support for HTTP bindings requires reliable messaging, which partial
trust callers cannot use [16, 18]. Therefore, the administration center cannot employ
sessions. Instead, the server application and the administration center use a custom
session replacement as described on page 52.

Event Processing

Due to the lack of duplex messaging, the administration center polls MainService peri-
odically for new remote events. The administration center uses the class RemoteEvent-

55

5 Project Structure and Applications

1 class RemoteEventDispatcher {

2 public static event EventHandler <RemoteEventArgs <HostConnectivityChangedEvent >>

HostConnectivityChanged;

3 public static event EventHandler <RemoteEventArgs <SiteConnectivityChangedEvent >>

SiteConnectivityChanged;

4 public static event EventHandler <RemoteEventArgs <TaskFailedEvent >> TaskFailed;

5 public static event EventHandler <TaskCompletedEventArgs <DatabaseTaskResult >>

DatabaseTaskCompleted;

6 public static event EventHandler <TaskCompletedEventArgs <

ChangeSoftwareTaskResult >> ChangeSoftwareTaskCompleted;

7 ...

8 }

Listing 5.1: The RemoteEventDispatcher Class

Dispatcher to allow an event-driven programming style in the rest of the application.
RemoteEventDispatcher periodically queries MainService for new remote events. For
each remote event, it triggers a local event with event arguments adapted to the event’s
type.

Listing 5.1 shows some event handlers of RemoteEventDispatcher. It includes an
event handler for each remote event type and an event handler for each task result type.
To wrap the different task result types, it uses the generic TaskCompletedEventArgs
class. To query for remote events periodically, it uses the DispatcherTimer class.

Threading The DispatcherTimer runs within the WPF UI thread. This is important
because WPF UI objects can only be accessed from the UI thread. Thus, the UI classes
of the administration center can react to remote events like WPF UI events and need
not to consider threading issues [19,20].

56

6 Implementation Details

This chapter discusses noteworthy implementation details. It gives information about
database management (Section 6.1), application management (Section 6.2), WCF Cus-
tom Behaviors (Section 6.3), and WCF Security (Section 6.4).

6.1 Database Management

azDeploy applies database schema upgrades only to initialized databases. Initializing
a database means assigning a database schema and database schema version to a
database. The client agent does this by adding the metadata table SYS DBProperties
to the database.

SYS DBProperties stores properties as key and value pairs. It contains three prop-
erties:

DatabaseSchema: The name of the database schema.

DatabaseSchemaVersion: The version of the database schema. Each time the client
agent applies a database schema upgrade, it updates this property.

MetadataVersion: The client agent uses this property to check whether it understands
all database metadata. This value only increases with a new release of the client
agent which changes the metadata table structure or adds new properties. Future
releases then must upgrade the metadata structure to their supported version
before working with the database.

Both DatabaseSchemaVersion and MetadataVersion employ the four-number .NET
version format (see [1]). Table 6.1 shows the contents of SYS DBProperties for a
Jornada client local database with database schema version 1.2.

Name Value

DatabaseSchema JornadaClient
DatabaseSchemaVersion 1.2.0.0

MetadataVersion 1.0.0.0

Table 6.1: The SYS DBProperties Metadata Table

57

6 Implementation Details

In contrast, azDeploy stores the history of database configuration changes in the
table DatabaseChangeLog of the server database. This separation has several advan-
tages:

• Information concerning the upgrade that should not be disclosed to the customer
administrators is stored in the server database.

• Higher performance: The client agent never queries the history of database con-
figuration changes. Instead, the server application often queries it.

• Whenever azDeploy restores a backup to a database, it only needs to record
the restore operation in the server database. The restored backup already carries
the database schema version in SYS DBProperties.

6.2 Application Management

azDeploy uses Microsoft Windows Installer to install, uninstall, and upgrade appli-
cations. Section 6.2.1 explains the basic concepts of Windows Installer. Section 6.2.2
shows how azDeploy integrates Windows Installer.

6.2.1 Windows Installer

This section introduces the features of Windows Installer, the structure of an installa-
tion package, and the installation process.

Windows Installer Features

Windows Installer is a software installation service that comes with Microsoft Win-
dows. As it supports transactions, it can rollback an installation if it fails. A software
product can be installed either for a specific user or for all users on a machine (instal-
lation context). Application developers can provide upgrades of their product as full
installation packages or as a patch. Within an installation, a user can select which
features of an application s/he wants to install, resulting in a set of components that
Windows Installer installs [28–30].
azDeploy can only deploy applications which comply with several restrictions:

Package Format: azDeploy only supports single-file full installation packages.

Installation Context: As azDeploy manages applications on a per-machine basis,
installation packages must install within the per-machine installation context [31].

Features: azDeploy manages applications as a whole. Thus, installation packages
must have exactly one feature referring to all components of the application [30].

Configuration: Developers must author installation packages which remove previous
installed versions of the product prior to upgrading. Also, the package should
refuse to install if a newer product version is already installed.

58

6 Implementation Details

To illustrate the concepts of Windows Installer, the remainder of this section refers to
the Jornada Client 1.0 installation package.

Installation Package

An installation package contains an installer database. This is a relational database
consisting of tables which steer the setup process. Columns can also be primary keys
or secondary keys which reference a row in another table [32].
azDeploy compatible installation packages employ several important installer database

tables [33]:

Component: It contains the application components. Microsoft Visual Studio 2008
authored packages treat each .NET assembly as a separate component.

CustomAction: It contains custom actions which allow developers to integrate custom
steps into the setup process [34].

File: It contains all files which can be installed and assigns each file to a component
by referencing the Component table [35].

InstallExecuteSequence: It controls the setup process [36].

Property: It contains property names and values (Table 6.2).

Upgrade: Windows Installer uses this table to upgrade an installed product [37].

Windows installer distinguishes application releases by their product code (GUID) and
by their product version. Both properties are stored in the Property table [29,40].

An installation package also contains a summary information stream that stores
several properties about the package. Among them, the package code uniquely identifies
an installation package [38,39].

Property Value

UpgradeCode {66BBB50A-5DAA-4E1B-BBD2-936B2F9C720F}
ProductName Jornada Client
ProductCode {5A8950DD-38AB-4033-B746-8BAD1B6F97EF}

ProductVersion 1.0.0
Manufacturer Rainer Pichler

ProductLanguage 1033
VSDVERSIONMSG Unable to install because a newer version of this

product is already installed.

Table 6.2: Property Table Content (shortened)

59

6 Implementation Details

Installation Process

The setup process is table-driven. Sequence tables determine Windows Installer’s ac-
tions and their order. They have three columns [41]:

Action: The name of the (custom) action to execute.

Condition: A condition determining whether Windows Installer executes the action.
An empty field equals true.

Sequence: A number determining the execution order of the action entries.

Depending on the installation mode, Windows Installer uses a different set of sequence
tables. Because azDeploy uses the Simple Installation mode and disables the Win-
dows Installer UI, it only processes the InstallExecuteSequence table [41,42].

Table 6.3 shows several basic action entries from the InstallExecuteSequence table of
the Jornada Client 1.0 installation package authored with Microsoft Visual Studio
2008 and the package tool. The actual table contains another 60 actions which execute
between the listed actions. The actions are already ordered by the Sequence column
and thus in the execution order.

How does installing, upgrading or removing a product work? The top-level action
INSTALL triggers the processing of the InstallExecuteSequence table. Windows In-
staller executes INSTALL for all installation tasks. Thus, Windows Installer processes
the InstallExecuteSequence table also when removing an installed product due to an
uninstallation or an upgrade [43].

The following paragraphs explain the fundamental actions Windows Installer exe-
cutes when processing the InstallExecuteSequence table of the Jornada Client 1.0
installation package.

Action Condition Sequence

FindRelatedProducts 200
ERRCA CANCELNEWERVERSION NEWERPRODUCTFOUND

AND NOT Installed
201

InstallInitialize 1500
ProcessComponents 1600

RemoveFiles 3500
InstallFiles 4000

RegisterProduct 6100
InstallExecute 6500

RemoveExistingProducts 6550
InstallFinalize 6600

LaunchExecutable NOT Installed 7600

Table 6.3: InstallExecuteSequence Table Content (shortened)

60

6 Implementation Details

1. Identifying Affected Products Only when installing a product, Windows Installer
executes the action FindRelatedProducts. In this context, the term installing also
includes upgrading an installed product. FindRelatedProducts uses the Upgrade table
(Table 6.4) to find out which installed products the installation affects [44].

FindRelatedProducts iterates through each row and evaluates whether an installed
product matches the row: This is the case whenever both the upgrade code and product
language match and the product version lies within the specified version range. If the
value of the field Language is null, all languages match. The fields VersionMin and
VersionMax define the version range. Per default, their values do not lie within the
range. The value of the field Attributes determines how Windows Installer interprets
the columns VersionMin, VersionMax and Language as well as what it does with the
detected products. Whenever an installed product matches a row, Windows Installer
appends its product code to the property specified in the column ActionProperty. Also,
it appends all features specified in the column Remove to the property REMOVE.
In azDeploy compatible packages, this field is always null meaning that Windows
Installer assigns the value ALL to the property REMOVE [37].

In the Jornada Client installation package, the Upgrade table contains two rows
which ignore the product language of installed products. The first row matches all
products with the stated upgrade code having a product version below 1.0.0. The
value 0 of the Attributes field implies that Windows Installer will remove the matching
products in a later step. Finally, Windows Installer appends their product codes to
the property PREVIOUSVERSIONSINSTALLED [37].

In contrast, the second row matches all products with the stated upgrade code having
a product version equal to or higher than 1.0.0. The value 258 of the Attributes field
defines both that the value of VersionMin is part of the version range and that Windows
Installer will not remove the detected products. Windows Installer appends the product
codes of the matching products to the NEWERPRODUCTFOUND property [37].

In both cases, the value of the property REMOVE is set to ALL [37].

UpgradeCode VersionMin VersionMax Attributes ActionProperty

{66BBB5. . . } 1.0.0 0 PREVIOUSVERSIONSINSTALLED

{66BBB5. . . } 1.0.0 258 NEWERPRODUCTFOUND

Table 6.4: Upgrade Table Content (empty columns Language and Remove omitted)

2. Preventing Downgrades If the property NEWERPRODUCTFOUND is set and
the product is not already installed, Windows Installer executes the custom action ER-
RCA CANCELNEWERVERSION. This custom action is defined in the table Custom-
Action (Table 6.5). It displays an error message and cancels the installation [34,45,46].
Note that the previous action FindRelatedProducts probably set the property NEWER-
PRODUCTFOUND through appending product codes to it. Hence, Windows Installer
refuses the installation of the package if a newer version of the product is already in-
stalled.

61

6 Implementation Details

3. Starting the Installation The action InstallInitialize starts the actual setup pro-
cess by beginning a transaction [48]. ProcessComponents updates the component con-
figuration [49]. RemoveFiles instructs Windows Installer to remove files belonging to
the removed components. It uses the File table to determine the files belonging to a
component [35, 50]. For azDeploy compatible packages, this action will always and
only remove all application files if an installed product is being removed.

InstallFiles installs all files belonging to the added components [35, 51]. Again, for
azDeploy compatible packages, this action will always and only install all application
files if a product is being installed.

RegisterProduct marks the product as installed and stores the installer database on
the appliance [52]. Hence, Windows Installer can cleanly remove the product installa-
tion at a later point in time.

InstallExecute then forces Windows Installer to actually execute all operations since
InstallInitialize [48].

4. Cleaning Up RemoveExistingProducts removes the products which FindRelated-
Products determined to be uninstalled. Like FindRelatedProducts, Windows Installer
also only runs RemoveExistingProducts when installing a product. To remove the prod-
ucts, it starts concurrent installations. Hence, Windows Installer removes no longer
needed files of old product installations after the installation of the new package [53].

5. Completing the Installation InstallFinalize forces Windows Installer to actually
execute all operations since InstallExecute. Thus, to run the operations of RemoveEx-
istingProducts. Also, InstallFinalize ends the installation transaction [54].

Finally, in case the product was installed, the Windows Installer runs the custom
action LaunchExecutable. The next paragraphs explain its behavior and the concept
of custom actions.

Custom Actions

Custom actions integrate custom steps into the installation process. The table Cus-
tomAction (Table 6.5) contains all custom actions. Its essential columns are [34]:

Action: The name sequence tables use to refer to the custom action.

Type: This column indicates the underlying custom action type and the flags specify-
ing its behavior.

Source and Target: These columns store the parameters of the custom action.

Launch Executable The package tool inserts the custom action LaunchExecutable
which starts an installed executable as the last step within the setup. Therefore,
Windows Installer does not end the installation process unless the executable termi-
nates [55]. Thus, developers can integrate an executable which runs exactly once after

62

6 Implementation Details

installing the package. This executable could for instance adapt configuration files
before launching the actual application after setup.

When inserting LaunchExecutable into the CustomAction table (Table 6.5), the pack-
age tool sets the Type field to 18, making it a custom action that launches an executable
installed by the package. To refer to the executable, it sets the Source field to a key
referencing an executable file in the file table [55].

Although the Type field value could be altered in a way that Windows Installer ends
the installation after launching the referenced executable, azDeploy does not use
LaunchExecutable to start the application after its installation [56]. This is because
azDeploy runs under a privileged service account session and invokes Windows In-
staller within this session too. But as the application must be launched within the
active desktop session, azDeploy takes another approach to start the application
(see Section 6.2.2).

Action Type Source Target

ERRCA CANCELNEWERVERSION 19 [VSDVERSIONMSG]
LaunchExecutable 18 02ADD...

Table 6.5: CustomAction Table Content (shortened)

Update Types

Windows Installer distinguishes three different update types. The update type depends
on whether the product code, the product version or both properties of an installed prod-
uct change when installing an upgrade. Each update type implies certain installation
methods [29].

Since azDeploy only supports full installation packages, this results in either a
reinstallation or a simple installation of the package. azDeploy treats the update
types Small Update and Minor Upgrade the same way, which is reinstalling the package
(Table 6.6).

However, for reinstallation, Windows Installer seems to access the original installa-
tion package of the installed product too. This is not possible as azDeploy removes
the installation package after the setup. Therefore, to apply a small update or a mi-
nor upgrade, azDeploy first uninstalls the installed product and in turn installs the
new package. This implies that Windows Installer cannot roll back to the previous
product installation, when it already uninstalled it, but installing the new package

Update Type Product Code Product Version Suggested Method

Small Update same same Reinstallation
Minor Upgrade same changed Reinstallation
Major Upgrade changed changed Installation

Table 6.6: Windows Installer Update Types (adapted from [29])

63

6 Implementation Details

failed. To circumvent this deficit, azDeploy resorts to the InstallProductControlFlow
(see Section 4.5.2 on page 31): In case Windows Installer could not install the new
package, InstallProductControlFlow installs the previously uninstalled product release
again. For this to work, installation packages using the Small Update or Minor Upgrade
update types should not remove their configuration files when being uninstalled.

6.2.2 Integrating Windows Installer within azDeploy

To interact with Windows Installer, azDeploy uses the automation interface which
exposes an Installer object via COM [57].

Accessing Package and Product Metadata azDeploy uses the Installer object to
access the installer database and the summary information stream (Listing 6.1). It
queries and updates the installer database via SQL statements. To access the relevant
fields of the summary information stream, it supplies the according property IDs (PIDs)
[38,58–61].

1 private const int PID_TITLE = 2; // PID for PackageTitle

2 private const int PID_REVNUMBER = 9; // PID for PackageCode

3

4 public static ProductPackageInfo GetProductPackageInfo(string fileName) {

5 var packageInfo = new ProductPackageInfo ();

6 var sum = Installer.get_SummaryInformation(fileName , 0);

7

8 packageInfo.PackageCode = new Guid((string)sum.get_Property(PID_REVNUMBER));

9 packageInfo.PackageTitle = (string)sum.get_Property(PID_TITLE);

10

11 WindowsInstaller.Database db = Installer.OpenDatabase(fileName ,

MsiOpenDatabaseMode.msiOpenDatabaseModeReadOnly);

12

13 var view = db.OpenView("SELECT Property , Value FROM Property");

14 view.Execute(null);

15

16 var propertyName = string.Empty;

17 try {

18 while (true) {

19 var record = view.Fetch();

20 if (record != null) {

21 propertyName = record.get_StringData (1);

22 var value = record.get_StringData (2);

23 ... // omitted: store value in respective packageInfo property

24 }

25 else break;

26 }

27 }

28 catch (Exception ex) { ... }

29 finally {

30 view.Close();

31 Marshal.FinalReleaseComObject(view);

32 Marshal.FinalReleaseComObject(db);

33 }

34 return packageInfo;

35 }

Listing 6.1: Reading Windows Installer Package Metadata

64

6 Implementation Details

Furthermore, some methods like OpenDatabase return handles which should be
closed via the MsiCloseHandle function. However, the affected objects do not expose
their handles nor does MsiCloseHandle exist on the .NET Installer object. Instead, az-
Deploy uses Marshal.FinalReleaseComObject to free these objects [59,62,63]. Omit-
ting this step led to problems on subsequent calls.

Additionally, the Installer object provides methods to fetch the list of installed prod-
ucts and to access their properties [59].

Installing, Upgrading and Uninstalling Products Windows Installer uses the Install
action both for installing and upgrading products. Furthermore, for reasons discussed
on page 63, azDeploy replaces the installation method reinstallation by an uninstal-
lation with subsequent installation.

Thus, azDeploy uses Installer.InstallProduct(filename, "ACTION=INSTALL") to install a prod-
uct and Installer.ConfigureProduct(productCode, 0, MsiInstallState.msiInstallStateAbsent) to unin-
stall a product entirely [64,65].

Launching Applications azDeploy launches an installed application within the ac-
tive desktop session as follows: When preparing the installation package, the package
tool adds an extra property table called AZProperty, which holds property and value
pairs, to the package. It inserts the property LaunchPath containing the path to the
executable of the application. When installing the package, the notification services
export all properties of this table as notification parameters with the prefix “AZProp-
erty.”. Also, the helper application application starter runs in the background of the
active desktop session and listens for completed application installations. Whenever
there exists the parameter AZProperty.LaunchPath, it runs the referenced executable.
Hence, applications only start automatically when they are installed via azDeploy.

65

6 Implementation Details

6.3 Windows Communication Foundation Custom
Behaviors

This section discusses how azDeploy uses WCF custom behaviors to separate the
code for cross-cutting concerns from the operation specific code.

Rationale

The server application enforces two general rules:

• The administration center instances and the gateway agents cannot supply non-
null parameter values to service methods unless specified otherwise.

• An operator cannot administer a customer site administered by another operator.

Both rules have in common that they do not only apply to a specific operation like
upgrading a database schema, but are a cross-cutting concern. However, to enforce
them nevertheless, the server application would need to take care of them in each
service method implementation. This would lead to code duplication and add code to
service method implementations that is unrelated to the method’s actual task.

Furthermore, both rules actually do not need to know the details about the opera-
tions they apply to: The first rule only needs to check whether a supplied parameter is
null. Hence, it does neither need to know the parameter’s type nor its purpose. It must
only be told whether a parameter can be null. The second rule must know whether it
has to check if a specific operator can administer a specific customer site. To do so, it
only needs to know the operator and the site to administer.

Two steps are necessary to separate these two general rules from the service method
implementations:

1. Implementing each rule in an operation independent form.

2. Linking these rules with the actual service method implementations.

Custom Behaviors

To do so, the server application takes advantage of WCF custom behaviors. What are
these?

Clients send WCF messages to a WCF service in order to invoke service methods.
When a WCF message arrives, the WCF dispatcher component calls the corresponding
service method. Developers can hook into this process at various points, for instance
message deserialization or parameter inspection. To do so, they implement custom
behaviors and custom extensions. Analogous, developers also can hook into the reverse
process at the client side, when the WCF proxy component transforms method calls
into WCF messages [27].

66

6 Implementation Details

Custom Extensions Custom extensions implement the first step of separation. They
actually contain the logic of the respective rule. Both rules hook into WCF in the
parameter inspection stage to gain access to the parameters of interest when the WCF
dispatcher calls a service method [27].

To do so, they implement the interface IParameterInspector (Listing 6.2). The WCF
dispatcher calls the BeforeCall method of such parameter inspectors before invoking
a service method and the AfterCall method afterwards. Both parameter inspectors of
the server application are only interested in the BeforeCall method and therefore leave
the AfterCall method implementation empty. In the BeforeCall method, parameter
inspectors can access the service method’s name and all parameters. To cancel the
service method execution, they throw a fault exception [27].

Listing 6.3 shows the parameter inspector implementation ensuring that callers pro-
vide values for all non-nullable parameters. It is configured through its constructor
which takes an array indicating the nullable parameter positions and thus, considers
all positions not contained in the array to be non-nullable.

Listing 6.4 shows the parameter inspector implementation ensuring that only one
operator can administer a site at a time. It fetches the operator’s session via the
class AdminSessionManager, and the site. The parameter inspector can also access
the WCF operation context. The parameter position containing the site is configured
through the constructor. Because the site’s name may also be stored within a Host or
Database object, the method GetSite extracts it from these types.

1 public interface IParameterInspector {

2 void AfterCall(string operationName , object [] outputs , object returnValue ,

object correlationState);

3 object BeforeCall(string operationName , object [] inputs);

4 }

Listing 6.2: IParameterInspector Interface

1 public class CheckNullableParameterInspector : IParameterInspector {

2 private List <int > nullablePositions = new List <int >();

3

4 public CheckNullableParameterInspector(params int[] nullablePositions) { ... }

5

6 public object BeforeCall(string operationName , object [] inputs) {

7 for (int i = 0; i < inputs.Length;i++)

8 if (inputs[i] == null && !nullablePositions.Contains(i))

9 throw new FaultException(string.Format("Non -nullable parameter {0}

of operation ’{1}’ is null.",i,operationName));

10 return null;

11 }

12 ...

13 }

Listing 6.3: CheckNullableParameterInspector

67

6 Implementation Details

1 public class SiteLockParameterInspector : IParameterInspector {

2 private int index;

3

4 public SiteLockParameterInspector(int index) { this.index = index }

5

6 public object BeforeCall(string operationName , object [] inputs) {

7 try

8 {

9 if (index >= inputs.Length || inputs.Length == 0)

10 throw new Exception("Invalid index.");

11 var session = AdminSessionManager.GetUserSession(OperationContext.

Current.ServiceSecurityContext.PrimaryIdentity.Name);

12 var site = GetSite(inputs[index]);

13 AdminSessionManager.CheckLock(session , site);

14 }

15 catch (Exception ex)

16 {

17 if (ex is FaultException)

18 throw ex;

19 else throw new FaultException("Error when locking site: " + ex.Message)

;

20 }

21 return null;

22 }

23

24 // extracts the site from siteName , Host object or Database object

25 private string GetSite(object obj) { ... }

26 ...

27 }

Listing 6.4: SiteLockParameterInspector

Custom Behaviors To implement the second step of separation, that is linking the
parameter inspectors to the service methods, the server application uses custom be-
haviors. A custom behavior is a class that adds custom extensions to the WCF run-
time. Custom behaviors have different scopes: They can affect a whole service, an
endpoint, a service contract or a single service operation. The server application em-
ploys custom behaviors for all these scopes. Custom behavior classes implement the
behavior interface corresponding to their scope. All these interfaces contain several
method declarations, but the custom behaviors of the server application only use the
method ApplyDispatchBehavior and leave the others empty. Depending on the scope,
this method provides different parameters to access the WCF metadata for the corre-
sponding element type (for instance a service contract or a service operation) [27].

The server application uses both an operation-scoped and a service-contract-scoped
custom behavior to add the custom extension SiteLockParameterInspector. Listing 6.5
shows the operation-scoped custom behavior which adds the custom extension to each
operation the method is called for unless the DisableSiteLock flag is set. Its prop-
erties SiteParameterIndex and DisableSiteLock are specified through the constructor.
Listing 6.6 shows the service-contract-scoped custom behavior which adds the custom
extension to all operations of a service contract. The contract it applies to must be
specified externally. It only adds a new SiteLockOperationBehavior instance to an op-
eration as long as such an operation behavior type has not been added already. Two
similar custom behaviors exist for CheckNullableParameterInspector. But instead of

68

6 Implementation Details

the service-contract-scoped custom behavior, there exists a service-scoped custom be-
havior. This is because the server application wants to apply null-value checking to
all service methods independent of the service endpoint. In contrast, it wants to add
SiteLockParameterInspector only to the methods of the administration endpoint.

1 [AttributeUsage(AttributeTargets.Method)]

2 public class SiteLockOperationBehavior : Attribute , IOperationBehavior {

3 public int SiteParameterIndex { get; private set; }

4 public bool DisableSiteLock { get; set; }

5

6 public SiteLockOperationBehavior(int siteParameterIndex) { ... }

7 public SiteLockOperationBehavior(bool disableSiteLock) { ... }

8

9 public void ApplyDispatchBehavior(OperationDescription operationDescription ,

DispatchOperation dispatchOperation) {

10 if (! DisableSiteLock)

11 dispatchOperation.ParameterInspectors.Add(new

SiteLockParameterInspector(SiteParameterIndex));

12 }

13 ...

14 }

Listing 6.5: SiteLockOperationBehavior

1 [AttributeUsage(AttributeTargets.Class)]

2 public class SiteLockContractBehavior : Attribute , IContractBehavior {

3 public Type ContractType { get; private set; }

4

5 public SiteLockContractBehavior(Type contractType) { ... }

6

7 public void ApplyDispatchBehavior(ContractDescription contractDescription ,

ServiceEndpoint endpoint , DispatchRuntime dispatchRuntime) {

8 if (contractDescription.Name != ContractType.Name)

9 return;

10 foreach (var operation in contractDescription.Operations)

11 {

12 if (operation.Behaviors.Find <SiteLockOperationBehavior >() == null)

13 operation.Behaviors.Add(new SiteLockOperationBehavior (0)); //

default site parameter position = 0

14 }

15 }

16 ...

17 }

Listing 6.6: SiteLockContractBehavior

Applying Custom Behaviors How does the server application specify to which spe-
cific operations, service contracts, and services the WCF runtime should apply the
custom behaviors? Thus far, the custom behaviors only specified the type of element
they apply to, but not the specific elements themselves. Also remember that some
properties of the custom behaviors still need to be set through the constructor. To set
these properties and to specify the elements a custom behavior applies to, the server
application uses the custom behavior classes as attributes. Therefore the custom be-
havior classes also derive from the class Attribute. This way, the server application

69

6 Implementation Details

can state declaratively which behaviors should be applied to which operations, service
contracts or services through the WCF runtime [27].

Listing 6.7 shows how to apply custom behaviors declaratively. The CheckNul-
lableParameterInspector is added to every service method whereas the SiteLockPa-
rameterInspector is only added to the methods of the administration endpoint. Fur-
thermore, the server application can use the operation-scoped custom behavior classes
as method attributes to disable SiteLockParameterInspector for server-local operations
and to exclude method parameters from the non-null value checks. In the example,
each administration center instance can invoke the method GetSites at any time. Also,
the administration center has no duty to provide a value for backupPointDate when
calling the method DropDatabase.

1 [SiteLockContractBehavior(typeof(IAdminService))]

2 [CheckNullableParameterServiceBehavior]

3 public class MainService : IAdminService , IControlService {

4 [SiteLockOperationBehavior(DisableSiteLock = true)]

5 public string [] GetSites () { ... }

6

7 [CheckNullableParameterOperationBehavior (1)]

8 public DropDatabaseTask DropDatabase(Database database , DateTime?

backupPointDate) { ... }

9 ...

10 }

Listing 6.7: Applying Custom Behaviors

6.4 Windows Communication Foundation Security

azDeploy uses WCF to implement the following security concepts [21]:

Authentication: Various applications of azDeploy verify the identity of each other.
azDeploy implements the concept of authentication for the server application,
the gateway agent, and the administration center bidirectionally. This means
that both the administration center and the gateway agents make sure that they
communicate with the server application. Also, the server application asks the
administration center and the gateway agents for evidence of their identity when
they connect to it.
In contrast, azDeploy does not implement authentication within the customer
sites. Thus, neither the client agents know whether they really communicate
with the gateway agent of the site nor does the gateway agent know if the peers
connecting to it are genuine client agents.
However, azDeploy omits customer site security because the customer site is
a trusted network. Therefore, azDeploy supposes that malicious gateway or
client agents cannot be installed on the machines. In a real world application,
developers could extend azDeploy’s security mechanisms to include the cus-
tomer site with a small effort.

70

6 Implementation Details

Authorization: The server application ensures that gateway agents and administration
center instances can only call service methods they are entitled to call. Hence, a
gateway agent is not allowed to call service methods of the administration service
endpoint whereas an administration center instance is not allowed to call service
methods of the control service endpoint. The administration center and gateway
agent themselves employ no authorization as there is only one instance of the
server application which is entitled to call all operations. They ensure that they
are connected to the genuine instance of the server application at the vendor site
through authentication as described above.
Once again, azDeploy does not employ authorization within customer sites.

Integrity and Confidentiality: azDeploy ensures that communication between its
applications that runs over the Internet is secure: A third party cannot tamper
with messages undetected and encryption guarantees that a third party cannot
eavesdrop communications.
Once again, azDeploy does not employ these concepts within customer sites.

6.4.1 Authentication, Integrity and Confidentiality

To fulfill the requirements integrity and confidentiality, the server application encrypts
all communication with the administration center instances and the gateway agents.

Transport and Message Security WCF offers both transport security and message
security for securing communication. When using transport security, WCF encrypts
the whole communication channel and therefore offers point-to-point security. Also,
the underlying transport protocol determines the available authentication modes. In
contrast, when using message security, WCF encrypts each message separately. Also,
each message carries the authentication credentials. Thus, message security offers more
authentication modes as security does not depend on the underlying transport protocol
transmitting the messages [26, p. 124-131].

Communication with the Administration Center The server application uses a
WSHTTPBinding with transport security, but without reliable session support, to
secure communications with the administration center. This is the only secure binding
configuration possible for communicating with the administration center that operates
under partial trust (see Section 5.4 on page 54).

The binding (Listing 6.8) uses HTTP Basic Authentication (see [24]) to authen-
ticate the administration center. To specify this client authentication mode, it sets
clientCredentialType to Basic [21,23].

For HTTP transports, the server certificate for SSL is assigned externally. To do
so, the server machine administrator uses the httpcfg tool to bind the certificate to the
administration service endpoint port [22].

71

6 Implementation Details

1 <wsHttpBinding >

2 <binding name="AdministrationBinding" allowCookies="false">

3 <reliableSession enabled="false" />

4 <security mode="Transport">

5 <transport clientCredentialType="Basic" />

6 </security >

7 </binding >

8 </wsHttpBinding >

Listing 6.8: Binding Configuration for the Administration Service Endpoint

Communication with the Gateway Agents To secure the communications with the
gateway agents, the server application uses a netTCPBinding with transport security.
However, it transmits credentials at the message level.

Again, the binding configuration (Listing 6.9) states that it uses username and pass-
word as authentication credentials at the message layer. Note, that it sets clientCre-
dentialType to None for the transport layer. This configuration allows to use transport
security for integrity, confidentiality and server authentication, and to use message se-
curity for client authentication. This means that WCF encrypts communication over
the Internet with SSL over TCP and at the same time transmits username and pass-
word credentials within this communication channel’s messages. Authentication via
username and password is not possible at the transport layer with netTCP if both
hosts do not share the same Windows domain [23] [26, p. 99f].

For netTCP transports, the server certificate is assigned through WCF configura-
tion. The certificate is specified in the service behavior (Listing 6.10), which uses the
certificate’s thumbprint to look it up in the machine’s certificate store [25].

1 <netTcpBinding >

2 <binding name="ControlBinding" portSharingEnabled="true">

3 <security mode="TransportWithMessageCredential">

4 <transport clientCredentialType="None" protectionLevel="EncryptAndSign"

/>

5 <message clientCredentialType="UserName" />

6 </security >

7 </binding >

8 </netTcpBinding >

Listing 6.9: Binding Configuration for the Control Service Endpoint

1 <behavior name="ServerBehavior">

2 <serviceMetadata />

3 <serviceCredentials >

4 <serviceCertificate findValue="c340ddf98d51d3224e9d212157fe81f94a5ddda4"

x509FindType="FindByThumbprint" />

5 <userNameAuthentication userNamePasswordValidationMode="Windows" />

6 </serviceCredentials >

7 <serviceAuthorization principalPermissionMode="UseWindowsGroups" />

8 </behavior >

Listing 6.10: Behavior of the Server Application WCF services

72

6 Implementation Details

6.4.2 Role-based Authorization

The server application uses role-based authorization to both authenticate and autho-
rize the gateway agents and the administration center instances which connect to its
services. Both the gateway agents and the administration center instances prove their
identity through username and password. This fulfills the concept of authentication as
the vendor only discloses these credentials to the respective gateway agent or operator.
Also, the server application uses these credentials to determine the service methods a
gateway agent or an administration center instance may call.

User Account Mapping azDeploy maps these credentials to Windows user ac-
counts on the server machine. These user accounts do not need to exist on the ma-
chines where the gateway agents or the administration center instances run. Thus, the
administrator of the server machine can manage them via the Microsoft Management
Console. Gateway agent users must be members of the Windows group az gateways
whereas operators must be members of the Windows group az operators. Each gateway
agent installation stores its username and password in its application configuration file
on the gateway machine. Each operator enters his/her username and password when
s/he logs onto the administration center.

Implementation To implement role-based authorization with Windows user accounts,
each WCF service exposing an endpoint to a network must be configured accord-
ingly: The service behavior (Listing 6.10) specifies how to conduct authentication
and authorization. Firstly, to map supplied credentials to Windows user accounts,
usernamePasswordValidationMode is set to Windows. Therefore, only clients provid-
ing valid Windows user account credentials (authentication) can call service methods.
Secondly, the WCF services are configured to employ authorization based on Win-
dows groups, by setting principalPermissionMode to UseWindowsGroups. In turn,
each service method can state to which Windows groups it is available through using
the PrincipalPermission attribute [21]. Listing 6.11 demonstrates how the GetHosts
service method makes itself only available to operators.

1 [PrincipalPermission(SecurityAction.Demand , Role = "az_operators")]

2 public Host[] GetHosts(string siteName) {

3 return clientManager.GetCallback(siteName).GetSiteHosts ();

4 }

Listing 6.11: Securing a Service Method with Role-based Authorization

73

7 Setup

This chapter is a guide for setting up azDeploy. In the described scenario, the
server application and both the gateway and client agents run as applications and
not as background services. It is also possible to run these three applications on
the same machine. The server application, the gateway agent, the client agent, and
all setup operations must be run under a user account with administrator privileges.
The following sections will discuss setting up the server machine, gateway machines,
appliances and operators’ workstations.

Server Machine

Setting up the server machine consists of six steps:

1. Creating and Installing Test Certificates Create a temporary root certificate
with the makecert tool (Listing 7.1, line 1). Enter a password used to protect the
certificate’s private key. The makecert tool is part of Windows SDK 6.0A. Then add
the temporary root certificate into the Trusted Root Certification Authorities store.
Next, create the service certificate (Listing 7.1, line 2). Replace DEV by the server
machine’s hostname. This command also adds the service certificate to the machine’s
certificate store. Then, use the Microsoft Management Console to find out the service
certificate’s thumbprint [26, p. 485-489] [67].

Finally, use the httpcfg tool to assign the certificate to the port of the administration
service endpoint (Listing 7.1, line 3). Set the last parameter to the service certificate’s
thumbprint. The httpcfg tool is part of Windows Support Tools [22].

1 makecert -n "CN=TempCA" -r -sv TempCA.pvk TempCA.cer

2 makecert -sk azdeploy -iv TempCA.pvk -n "CN=DEV" -ic TempCA.cer -sr localmachine -

ss my -sky exchange -pe

3 httpcfg set ssl -i 0.0.0.0:8002 -h c340ddf98d51d3224e9d212157fe81f94a5ddda4

Listing 7.1: SSL Setup

2. Setting Up the Repository To create the repository, firstly create a new directory
in the file system. The path of this directory is called repository path. Then create the
sub-directories agent, database and software within the repository. Next, put the setup
packages for the agents called GatewaySetup.msi and ClientSetup.msi in the agent
directory. For each supported database schema, create a directory with the schema’s

74

7 Setup

name in the database directory. Put the upgrade script for the respective schema into
the newly created directory. Then, put the application installation packages directly
into the software directory. Listing 7.2 shows the directory structure of a minimal
repository with the repository path C:\repository.

1 C:\ repository\agent\GatewaySetup.msi

2 C:\ repository\agent\ClientSetup.msi

3 C:\ repository\database\JornadaClient\JornadaClient -1.0. sql

4 C:\ repository\software\JornadaClient1 .0.msi

Listing 7.2: A Minimal Repository

3. Creating the Server Database To establish the server database, create an empty
SQL Server 2008 database on the server machine and execute the serverdb.sql script.

4. Configuring the Server Application The server application is configured through
the application configuration file Server.exe.config (Listing 7.3). Within this file, re-
place all occurrences of DEV with the hostname of the server machine. Within the
server behavior configuration, change the value of the serviceCertificate element’s find-
Value attribute to the thumbprint of the created certificate. Finally, adapt the proper-
ties RepositoryPath and ServerDatabaseConnectionString within the application set-
tings section.

1 <configuration >

2 [...]

3 <serviceCertificate findValue="c340ddf98d51d3224e9d212157fe81f94a5ddda4"

x509FindType="FindByThumbprint" />

4 [...]

5 <applicationSettings >

6 <Server.Properties.Settings >

7 <setting name="ServerDatabaseConnectionString" serializeAs="String">

8 <value >Data Source=localhost\sqlexpress;Integrated Security=SSPI;Initial

Catalog=ServerDB </value >

9 </setting >

10 <setting name="RepositoryPath" serializeAs="String">

11 <value >C:\ repository \</value >

12 </setting >

13 </Server.Properties.Settings >

14 </applicationSettings >

15 </configuration >

Listing 7.3: Server Application Configuration File

5. Hosting the Administration Center Replace DEV by the server machine’s host-
name in the application configuration file of the administration center. Then create
an Internet Information Services website and publish the administration center to it
with Microsoft Visual Studio 2008. Note that the administration center must be signed
with the service certificate too.

75

7 Setup

6. Creating Groups and Users Create two Windows Groups called az gateways
and az operators. Then create a Windows user account for each gateway and add it
to the az gateways group. Then, add the operators’ Windows user accounts to the
az operators group. Finally, start the server application.

Other Machines

Gateway Machines Add the temporary root certificate to the machine’s certificate
store. Within the gateway agent application configuration file, set the ServiceHostname
property to the hostname of the server machine. Set the UserName and Password
properties according to the gateway user account on the server machine. Finally, start
the gateway agent.

Appliances Create an empty directory in the file system for the database backups.
Within the client agent application configuration file, set the DatabaseBackupPath
property to this directory’s path. Set the GatewayHostname property to the gate-
way machine’s hostname. Create the file connection strings.xml in the directories
settings/XmlConnectionStringProvider within the client agent directory. Insert the
configuration shown in Listing 7.4 and adapt the configuration string accordingly. Fi-
nally, start the client agent and the application starter.

Operators’ Workstations On operators’ workstations, it suffices to add the tempo-
rary root certificate to the machine’s certificate store. To launch the administration
center, navigate to the URL hosting it.

1 <?xml version="1.0"?>

2 <ConnectionStringStore xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance" xmlns:

xsd="http ://www.w3.org /2001/ XMLSchema">

3 <ConnectionStrings >

4 <ConnectionStringEntry >

5 <Identifier >JornadaLocal </Identifier >

6 <ConnectionString >Data Source=DEV\sqlexpress;Integrated Security=SSPI;</

ConnectionString >

7 </ConnectionStringEntry >

8 </ConnectionStrings >

9 </ConnectionStringStore >

Listing 7.4: Connection String Configuration

76

8 Usage

Section 8.1 shows how operators control azDeploy via the administration center web
application. Section 8.2 shows how developers prepare installation packages.

8.1 Deploying Applications and Database Schemas

This section uses three consecutive scenarios to show how to deploy applications and
database schemas. It assumes a customer site with two appliances. The controls in
the screenshots were resized to take up less space.

1. Initial Deployment The Jornada Client and the databases are set up in the
following way:

1. Log onto the administration center with your username and password.

2. Select the target site in the navigation pane (Figure 8.1).

3. Click Install Product to navigate to the Install Product page (Figure 8.2). Select
the Jornada Client 1.0 package, mark all appliances, and enter a descriptive
comment. Click the Install Package button. azDeploy installs the Jornada
Client on both appliances. azDeploy starts the Jornada Client on the ap-
pliances and the administration center displays the text Completed. Since the
appliances’ local databases do not exist yet, the Jornada Client cannot operate
and thus locks its user interface (Figure 8.3).

4. Click Create Databases in the navigation pane (Figure 8.1). On the Create
Databases page (Figure 8.4), mark all appliances, enter the name JornadaLo-
calDB for the databases, and click the Create Databases button. azDeploy
creates the empty databases.

5. Click Databases on the navigation pane to navigate to the Databases page (Figure
8.5). Mark all databases and click Initialize Databases in the context menu. On
the Initialize Databases page (Figure 8.6), select the database schema Jornada-
Client, enter a descriptive comment, and click the Initialize Databases button.
azDeploy only assigns the schema to the databases, but does not install a spe-
cific version. Thus, operators can also put legacy databases with an existing
schema under version control.

77

8 Usage

6. To actually install a specific version of the schema, navigate again to the Databases
page and mark all databases. Click Upgrade Databases in the context menu to
navigate to the Upgrade Databases page (Figure 8.7). Select the schema version
1.0, enter a descriptive comment and click the Upgrade Databases button. az-
Deploy installs the schema on the databases. The Jornada Client instances
unlock their user interface and are ready to use (The deployment without further
configuration is possible since the Jornada Client assumes a specific database
name and uses Integrated Security to connect to the local database).

Figure 8.1: Navigation Pane

Figure 8.2: Installing Jornada Client 1.0

78

8 Usage

Figure 8.3: Jornada Client Waiting For Database

Figure 8.4: Creating Databases

Figure 8.5: Databases Page

79

8 Usage

Figure 8.6: Initializing Databases

Figure 8.7: Installing Database Schema 1.0

80

8 Usage

2. Application Upgrade with Errors This scenario shows how the Jornada Client
can be upgraded and how one appliance denies the upgrade:

1. To simulate a busy appliance, the Jornada Client’s Appliance in Use checkbox
is ticked.

2. Click Products in the navigation pane (Figure 8.1) to navigate to the Products
page (Figure 8.8). Mark the Jornada Client entry and select the upgrade
to version 1.1. Click Install Product in the upgrade entry’s context menu to
navigate to the Install Product page (Figure 8.9). Enter a descriptive comment
and click the Install Product button. Since one appliance is in use, azDeploy
can only upgrade and restart the Jornada Client on the idle appliance. Thus,
the administration center shows an error for the appliance in use in the error list.
This is also the general error handling behavior: If the actual operation fails,
azDeploy leaves the affected appliance in a consistent state by rolling back the
changes it made. In turn, it shows an error in the administration center’s error
list so that the operator can resolve the problem. Nevertheless, it does not roll
back the operations that already were applied successfully to other appliances.
Thus, azDeploy does not implement site-wide consistency (see Chapter 9).

3. The Jornada Client’s Appliance in Use checkbox is unticked again.

4. Repeat step 2 for the now idle appliance to also upgrade it’s Jornada Client.

Figure 8.8: Products Page

3. Application and Database Upgrade This scenario shows how both the Jornada
Client and the databases can be upgraded:

1. Let azDeploy upgrade all appliances’ databases to the schema version 1.2 (anal-
ogous to Figure 8.7). Since the new schema version is incompatible to the Jor-
nada Client 1.1 (Table 8.1), the Jornada Client instances lock their user in-
terface.

2. Let azDeploy upgrade the Jornada Client to version 1.5 on both appliances.
Since the newly installed Jornada Client is compatible with the schema version
1.2 (Table 8.1), the appliance can be used again.

81

8 Usage

Figure 8.9: Upgrading to Jornada Client 1.1

Jornada Client Database Schema

1.0, 1.1 1.0.x
1.5 1.2.x

Table 8.1: Application and Database Compatibility

3. Mark one database on the Databases page (analogous to Figure 8.5) and click
Show Database Details in the context menu. On the Database Details page
(Figure 8.10), the database’s upgrade history can be inspected. It shows that
the last upgrade consisted of two upgrade scripts. Also, the Jornada Client’s
log entries can be inspected since such a view has been defined on the server.
Custom queries can be run and saved by clicking Execute Query in the database’s
context menu on the Databases page (Figure 8.5).

Figure 8.10: Database Details

82

8 Usage

8.2 Preparing Application Packages

Application setup packages are prepared for deployment via the package tool (Figure
8.11) in the following way: Click Select File to select the package file. To run an
executable of the package under administrative privileges as a part of the installation
process, for instance to migrate configuration files, tick the checkbox Launch during
setup via Windows Installer and select the executable in the listbox control. To run
the application within the desktop session after the setup, tick the checkbox Launch on
desktop session via Application Starter and enter the executable’s absolute installation
path. Finally, click the button Apply.

Figure 8.11: The Package Tool

83

9 Discussion

This thesis introduced azDeploy which can deploy application upgrades and database
schema upgrades to multiple appliances in a remote network. Although the implemen-
tation covers the presented requirements and features, it is considered a prototype.

More Testing To mature, azDeploy needs more testing. Firstly, azDeploy must
be tested with large networks to test how well it scales. This was not possible through-
out the development due to a lack of that many machines. Testing with two ma-
chines only revealed that the parallelism approach works and the server application
and gateway agents are not blocked while client agents execute long-running opera-
tions. Running multiple instances of the client agent to simulate a larger network is
a cumbersome task and promises little insight due to its nature as a system tool: For
instance, it would not be possible to install the same application to multiple such “ap-
pliances” at once. Also, the vendor applications would not know with which instance
of the notification service they should interact.

Secondly, azDeploy needs to prove that it fulfills the requirements of a real-world
scenario and yields the advantages over other approaches as discussed in Chapter 1.
Such testing also provides insight whether the notification services suffice to integrate
vendor applications seamlessly into the deployment process.

Bottom Line Designing and developing azDeploy posed several challenges: Win-
dows Communication Foundation and Windows Installer were new topics for the au-
thor. Also, the decision to run the administration center under partial trust and the
need for the gateway agent imposed restrictions on the whole architecture. Finally,
keeping azDeploy generic required to design flexible yet useful interfaces.

All in all, this work yielded two outcomes: Firstly, the author gained deeper knowl-
edge in Windows Communication Foundation and Windows Installer. Secondly, it
resulted in a generic system concept and in a prototype. Because this thesis’ topic is a
complex one, there are still worthwhile features to implement. Thus, the final section
of the thesis gives suggestions for improving azDeploy through leveraging existing
functionality.

Further Work

Throughout writing the thesis and implementing the prototype, several ideas for further
work emerged. The first four suggestions aim to improve the performance whereas the
last two suggestions concern the architecture of azDeploy:

84

9 Discussion

File Transfers Switching to streamed transfers (see [68]) instead of transmitting
chunks of data may speed up file transfers. Additionally, caching files on the gate-
way machine can be implemented with a small effort (see Chapter 4.7).

Message Pass-through For most operations, the gateway agent merely acts as a
proxy between the server application and the client agent. Thus, it may pay off for
it to not transform the underlying messages into operations which in turn create new
messages, but pass them on unmodified to the client agents.

Parallel Notifications The notification services contact all appliances and vendor
applications sequentially. For productive use, they should use asynchronous operations
to notify all appliances in parallel. Then, for instance, each vendor application can try
to lock itself for users due to a configuration change within a longer time span without
blocking the notification services which wait for an approval of the configuration change
request.

Service Instancing The server application may turn out to be the bottleneck of az-
Deploy as it only processes one message from either the administration or the control
endpoint at any time. Because an operator administers exactly one site at a time and
sites do not interact with each other, it is possible to create a separate per-session
MainService instance for each connected site. This way, MainService could commu-
nicate with several gateway agents in parallel without concurrency problems as each
instance does yet process messages sequentially. However, still a single MainService in-
stance would serve the administration endpoint unless this endpoint supports sessions
too. This central instance must then be able to contact and receive remote events from
all other instances.

Tasks and Notifications The interaction between the task system and the notifi-
cation services should be refined. The task system is designed to be simple but yet
flexible: The server application transforms composite tasks into a set of simple sub-
tasks through control flows (see Section 4.5.2 on page 31). In turn, the client agent
executes these sub-tasks. Therefore, some sub-task implementations can be reused in
various complex tasks and at the same time, the client agent does not (need to) know
about the composite task at all.

However, the latter constrains the notification services to work on the level of sub-
tasks. Therefore, when upgrading a database schema with making a backup first, the
vendor applications cannot realize that the preceding backup is part of conducting the
database schema upgrade. In turn, it may happen that the client agent backs up the
database and receives the upgrade scripts successfully, but upgrading the database fails
because the application is in use and refuses the upgrade.

This problem can be solved through notifying the vendor applications about the
composite tasks: A solution is to trigger notifications via separate sub-tasks instead
of handling them within the sub-tasks running the actual operation steps. Therefore,

85

9 Discussion

a composite task’s sequence of sub-tasks would be enclosed by sub-tasks triggering
the notifications for the operation as a whole. In the database schema upgrade ex-
ample, the sub-task order would be: NotifyRequestTask, NotifyActivityTask, Trans-
ferFilesTask, BackupDatabaseTask, UpgradeDatabaseTask and NotifyCompletionTask.
Thus, upgrading the database schema would appear as a single operation to the vendor
applications.

Extended Consistency Finally, consistency may be extended: azDeploy applies
application and database schema upgrades within transactions. Thus, when applying
an application upgrade to several appliances, it may be that it only works for some
appliances and the rest of the appliances rolls back to the previous configuration. Es-
pecially if also the database schema was upgraded to a version breaking compatibility
before, the appliances still using the old application release would switch to an out of
service state. To make these appliances work again, the operators need to try to up-
grade them again via azDeploy, as long as the previous upgrade attempt failed only
temporarily. If the upgrade fails permanently, they must manually upgrade the appli-
cation. All in all, azDeploy guarantees only that the appliances stay in a consistent
configuration, but not the customer site as a whole.

However, ensuring site-wide consistency can be achieved through splitting the up-
grade operations into two parts: The first part begins a transaction and runs the
whole operation, whereas the second part either commits or rolls back the transac-
tion. This way, when upgrading an application on multiple appliances, azDeploy
starts the transaction and the upgrade on all appliances. If the upgrade was successful
on all appliances, azDeploy commits the transaction on all appliances. In contrast,
if it failed on a single appliance, azDeploy rolls back the transaction on all appli-
ances. The same applies to database schema upgrades. This way, even application
and database schema upgrades dependent on each other could be applied within one
site-wide transaction.

This principle can be implemented via the task system: Existing tasks like Upgrade-
DatabaseTask would implement the first part of the operation. Additionally, a new
EndTransactionTask either commits or rolls back the transaction. Finally, a server-
side control flow (see Section 4.5.2 on page 31) coordinates the upgrade across multiple
appliances or databases as described in the previous paragraph.

While working with database transactions is a straightforward task, splitting appli-
cation upgrades into the two parts discussed earlier may require some effort: It should
be investigated whether azDeploy can control Windows Installer transactions via the
automation interface. If not, custom actions (see Section 6.2.1 on page 58) could inte-
grate .NET code into the installation sequence. In turn, this code could communicate
with the client agent and influence the installation process.

86

Bibliography

[1] Version Class, MSDN Library, http://msdn.microsoft.com/en-us/library/

system.version%28v=VS.90%29.aspx

[2] Windows Communication Foundation Endpoints: Addresses, Bindings, and
Contracts, MSDN Library, http://msdn.microsoft.com/en-us/library/

ms733107%28v=VS.90%29.aspx

[3] Designing Service Contracts, MSDN Library, http://msdn.microsoft.com/

en-us/library/ms733070%28v=VS.90%29.aspx

[4] System-Provided Bindings, MSDN Library, http://msdn.microsoft.com/

en-us/library/ms730879%28v=VS.90%29.aspx

[5] Publishing Metadata, MSDN Library, http://msdn.microsoft.com/en-us/

library/aa751951%28v=VS.90%29.aspx

[6] Skonnard, A.: WCF Bindings In Depth, MSDN Magazine (Jul 2007), http://
msdn.microsoft.com/en-us/magazine/cc163394.aspx

[7] Using Data Contracts, MSDN Library, http://msdn.microsoft.com/en-us/

library/ms733127%28v=VS.90%29.aspx

[8] Specifying and Handling Faults in Contracts and Services, MSDN Library, http:
//msdn.microsoft.com/en-us/library/ms733721%28v=VS.90%29.aspx

[9] Sending and Receiving Faults, MSDN Library, http://msdn.microsoft.com/

en-us/library/ms732013%28v=VS.90%29.aspx

[10] Lowy, J.: What You Need To Know About One-Way Calls, Callbacks, And Events,
MSDN Magazine (Oct 2006), http://msdn.microsoft.com/en-us/magazine/

cc163537.aspx

[11] Using Sessions, MSDN Library, http://msdn.microsoft.com/en-us/library/
ms733040%28v=VS.90%29.aspx

[12] Sessions, Instancing, and Concurrency in Windows Communication Foundation,
MSDN Library, http://msdn.microsoft.com/en-us/library/ms731193%28v=

VS.90%29.aspx

[13] Configuring HTTP and HTTPS, MSDN Library, 2009, http://msdn.microsoft.
com/en-us/library/ms733768%28v=VS.90%29.aspx

87

http://msdn.microsoft.com/en-us/library/system.version%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/system.version%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733107%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733107%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733070%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733070%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms730879%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms730879%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/aa751951%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/aa751951%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/magazine/cc163394.aspx
http://msdn.microsoft.com/en-us/magazine/cc163394.aspx
http://msdn.microsoft.com/en-us/library/ms733127%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733127%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733721%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733721%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms732013%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms732013%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/magazine/cc163537.aspx
http://msdn.microsoft.com/en-us/magazine/cc163537.aspx
http://msdn.microsoft.com/en-us/library/ms733040%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733040%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms731193%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms731193%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733768%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733768%28v=VS.90%29.aspx

Bibliography

[14] Windows Presentation Foundation Partial Trust Security, MSDN Library, 2009,
http://msdn.microsoft.com/en-us/library/aa970910%28v=VS.90%29.aspx

[15] Securing ClickOnce Applications, MSDN Library, http://msdn.microsoft.com/
en-us/library/76e4d2xw.aspx

[16] Lowy, J.: Code Access Security in WCF, Part 1, MSDN Magazine (Apr 2008),
http://msdn.microsoft.com/en-us/magazine/cc500644.aspx

[17] How to: Host a WCF Service in IIS, MSDN Library, 2010, http://msdn.

microsoft.com/en-us/library/ms733766.aspx

[18] Vasters, C.: Introduction to Reliable Messaging with the Windows Communi-
cation Foundation, MSDN Library, 2006, http://msdn.microsoft.com/en-us/
library/aa480191.aspx

[19] DispatcherTimer Class, MSDN Library, http://msdn.microsoft.com/en-us/

library/system.windows.threading.dispatchertimer%28v=VS.90%29.aspx

[20] Dispatcher Class, MSDN Library, 2008, http://msdn.microsoft.com/en-us/

library/system.windows.threading.dispatcher%28v=VS.90%29.aspx

[21] Bustamante, M.: Fundamentals of WCF Security, CODE Magazine (Nov/Dec
2006), http://www.code-magazine.com/article.aspx?quickid=0611051

[22] How to: Configure a Port with an SSL Certificate, MSDN Library, 2010, http:
//msdn.microsoft.com/en-us/library/ms733791%28v=VS.90%29.aspx

[23] Selecting a Credential Type, MSDN Library, http://msdn.microsoft.com/

en-us/library/ms733836%28v=VS.90%29.aspx

[24] Franks, J. et al.: HTTP Authentication: Basic and Digest Access Authentica-
tion, Network Working Group, 1999, ftp://ftp.rfc-editor.org/in-notes/

rfc2617.txt

[25] How to: Use Transport Security and Message Credentials, MSDN Library, 2010,
http://msdn.microsoft.com/en-us/library/ms789011%28v=VS.90%29.aspx

[26] Meier, J.D. et al.: Improving Web Services Security, Microsoft patterns & prac-
tices, 2008, http://wcfsecurityguide.codeplex.com/releases/view/15892

[27] Skonnard, A.: Service Station: Extending WCF with Custom Behaviors,
MSDN Magazine (Dec 2007), http://msdn.microsoft.com/en-us/magazine/

cc163302.aspx

[28] Windows Installer, MSDN Library, 2010, http://msdn.microsoft.com/en-us/
library/cc185688.aspx

88

http://msdn.microsoft.com/en-us/library/aa970910%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/76e4d2xw.aspx
http://msdn.microsoft.com/en-us/library/76e4d2xw.aspx
http://msdn.microsoft.com/en-us/magazine/cc500644.aspx
http://msdn.microsoft.com/en-us/library/ms733766.aspx
http://msdn.microsoft.com/en-us/library/ms733766.aspx
http://msdn.microsoft.com/en-us/library/aa480191.aspx
http://msdn.microsoft.com/en-us/library/aa480191.aspx
http://msdn.microsoft.com/en-us/library/system.windows.threading.dispatchertimer%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/system.windows.threading.dispatchertimer%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/system.windows.threading.dispatcher%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/system.windows.threading.dispatcher%28v=VS.90%29.aspx
http://www.code-magazine.com/article.aspx?quickid=0611051
http://msdn.microsoft.com/en-us/library/ms733791%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733791%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733836%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733836%28v=VS.90%29.aspx
ftp://ftp.rfc-editor.org/in-notes/rfc2617.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2617.txt
http://msdn.microsoft.com/en-us/library/ms789011%28v=VS.90%29.aspx
http://wcfsecurityguide.codeplex.com/releases/view/15892
http://msdn.microsoft.com/en-us/magazine/cc163302.aspx
http://msdn.microsoft.com/en-us/magazine/cc163302.aspx
http://msdn.microsoft.com/en-us/library/cc185688.aspx
http://msdn.microsoft.com/en-us/library/cc185688.aspx

Bibliography

[29] Patching and Upgrades, MSDN Library, 2010, http://msdn.microsoft.com/

en-us/library/aa370579%28v=VS.85%29.aspx

[30] Windows Installer Features, MSDN Library, 2010, http://msdn.microsoft.com/
en-us/library/aa372840%28v=vs.85%29.aspx

[31] Installation Context, MSDN Library, 2010, http://msdn.microsoft.com/

en-us/library/dd765197%28v=VS.85%29.aspx

[32] About the Installer Database, MSDN Library, 2010, http://msdn.microsoft.
com/en-us/library/aa367441%28v=VS.85%29.aspx

[33] Database Tables, MSDN Library, 2010, http://msdn.microsoft.com/en-us/

library/aa368259%28v=VS.85%29.aspx

[34] CustomAction Table, MSDN Library, 2010, http://msdn.microsoft.com/

en-us/library/aa368062%28v=VS.85%29.aspx

[35] File Table, MSDN Library, 2010, http://msdn.microsoft.com/en-us/library/
aa368596%28v=VS.85%29.aspx

[36] InstallExecuteSequence Table, MSDN Library, 2010, http://msdn.microsoft.

com/en-us/library/aa369500%28v=VS.85%29.aspx

[37] Upgrade Table, MSDN Library, 2010, http://msdn.microsoft.com/en-us/

library/aa372379%28v=VS.85%29.aspx

[38] Summary Property Descriptions, MSDN Library, 2010, http://msdn.

microsoft.com/en-us/library/aa372049%28v=VS.85%29.aspx

[39] Package Codes, MSDN Library, 2010, http://msdn.microsoft.com/en-us/

library/aa370568%28v=VS.85%29.aspx

[40] Property Reference, MSDN Library, 2010, http://msdn.microsoft.com/en-us/
library/aa370905%28v=VS.85%29.aspx

[41] Using a Sequence Table, MSDN Library, 2010, http://msdn.microsoft.com/

en-us/library/aa372404%28v=VS.85%29.aspx

[42] InstallUISequence Table, MSDN Library, 2010, http://msdn.microsoft.com/

en-us/library/aa369543%28v=VS.85%29.aspx

[43] INSTALL Action, MSDN Library, 2010, http://msdn.microsoft.com/en-us/

library/aa369547%28v=VS.85%29.aspx

[44] FindRelatedProducts Action, MSDN Library, 2010, http://msdn.microsoft.

com/en-us/library/aa368600%28v=VS.85%29.aspx

89

http://msdn.microsoft.com/en-us/library/aa370579%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370579%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372840%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372840%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/dd765197%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/dd765197%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa367441%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa367441%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368259%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368259%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368062%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368062%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368596%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368596%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369500%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369500%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372379%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372379%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372049%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372049%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370568%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370568%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370905%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370905%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372404%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372404%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369543%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369543%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369547%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369547%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368600%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368600%28v=VS.85%29.aspx

Bibliography

[45] Using Properties in Conditional Statements, MSDN Library, 2010, http://msdn.
microsoft.com/en-us/library/aa372435%28v=VS.85%29.aspx

[46] Installed Property, MSDN Library, 2010, http://msdn.microsoft.com/en-us/
library/aa369297%28v=vs.85%29.aspx

[47] Custom Action Types, MSDN Library, 2010, http://msdn.microsoft.com/

en-us/library/aa372048%28v=VS.85%29.aspx

[48] Standard Action Reference, MSDN Library, 2010, http://msdn.microsoft.com/
en-us/library/aa372023%28v=VS.85%29.aspx

[49] ProcessComponents Action, MSDN Library, 2010, http://msdn.microsoft.

com/en-us/library/aa370853%28v=VS.85%29.aspx

[50] RemoveFiles Action, MSDN Library, 2010, http://msdn.microsoft.com/

en-us/library/aa371199%28v=VS.85%29.aspx

[51] InstallFiles Action, MSDN Library, 2010, http://msdn.microsoft.com/en-us/
library/aa369503%28v=VS.85%29.aspx

[52] RegisterProduct Action, MSDN Library, 2010, http://msdn.microsoft.com/

en-us/library/aa371162%28v=VS.85%29.aspx

[53] RemoveExistingProducts Action, MSDN Library, 2010, http://msdn.

microsoft.com/en-us/library/aa371197%28v=VS.85%29.aspx

[54] InstallFinalize Action, MSDN Library, 2010, http://msdn.microsoft.com/

en-us/library/aa369505%28v=VS.85%29.aspx

[55] Custom Action Type 18, MSDN Library, 2010, http://msdn.microsoft.com/

en-us/library/aa368077%28v=VS.85%29.aspx

[56] Custom Action Return Processing Options, MSDN Library, 2010, http://msdn.
microsoft.com/en-us/library/aa368071%28v=VS.85%29.aspx

[57] About the Automation Interface, MSDN Library, 2010, http://msdn.

microsoft.com/en-us/library/aa367439%28v=VS.85%29.aspx

[58] Database Object, MSDN Library, 2010, http://msdn.microsoft.com/en-us/

library/aa368254%28v=VS.85%29.aspx

[59] Installer Object, MSDN Library, 2010, http://msdn.microsoft.com/en-us/

library/aa369432%28v=VS.85%29.aspx

[60] Summary Information Stream Property Set, MSDN Library, 2010, http://msdn.
microsoft.com/en-us/library/aa372045%28v=VS.85%29.aspx

90

http://msdn.microsoft.com/en-us/library/aa372435%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372435%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369297%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369297%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372048%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372048%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372023%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372023%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370853%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370853%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa371199%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa371199%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369503%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369503%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa371162%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa371162%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa371197%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa371197%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369505%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369505%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368077%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368077%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368071%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368071%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa367439%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa367439%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368254%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368254%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369432%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369432%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372045%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372045%28v=VS.85%29.aspx

Bibliography

[61] Working with Queries, MSDN Library, 2010, http://msdn.microsoft.com/

en-us/library/aa372879%28v=VS.85%29.aspx

[62] MsiCloseHandle Function, MSDN Library, http://msdn.microsoft.com/en-us/
library/aa370067%28VS.85%29.aspx

[63] Marshal.ReleaseComObject Method, MSDN Library, 2010, http://msdn.

microsoft.com/en-us/library/system.runtime.interopservices.marshal.

releasecomobject%28v=VS.90%29.aspx

[64] MsiInstallProduct Function, MSDN Library, 2010, http://msdn.microsoft.

com/en-us/library/aa370315%28v=VS.85%29.aspx

[65] MsiConfigureProduct Function, MSDN Library, 2010, http://msdn.microsoft.
com/en-us/library/aa370070%28v=VS.85%29.aspx

[66] How to: Create Temporary Certificates for Use During Development, MSDN Li-
brary, 2010, http://msdn.microsoft.com/en-us/library/ms733813%28v=VS.

90%29.aspx

[67] Working with Certificates, MSDN Library, http://msdn.microsoft.com/en-us/
library/ms731899%28v=VS.90%29.aspx

[68] Streaming Message Transfer, MSDN Library, http://msdn.microsoft.com/

en-us/library/ms731913.aspx

The MSDN references without publication year date to 04.09.2011.

91

http://msdn.microsoft.com/en-us/library/aa372879%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372879%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370067%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370067%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.marshal.releasecomobject%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.marshal.releasecomobject%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.marshal.releasecomobject%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/aa370315%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370315%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370070%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa370070%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms733813%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms733813%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms731899%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms731899%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms731913.aspx
http://msdn.microsoft.com/en-us/library/ms731913.aspx

List of Abbreviations

CAS Code Access Security

COM Component Object Model

GUID Globally Unique Identifier

HTTP Hypertext Transfer Protocol

IIS Internet Information Services

MSI Microsoft Windows Installer

SSL Secure Sockets Layer

URL Uniform Resource Locator

WCF Windows Communication Foundation

WPF Windows Presentation Foundation

XAML Extensible Application Markup Language

XBAP XAML Browser Application

92

Lebenslauf

Name: Rainer Pichler
Geburtsjahr: 1986
Geburtsort: Linz, Österreich

Nationalität: Österreich

Bildung

seit 2006 Magisterstudium Wirtschaftswissenschaften mit Spezialisierung
Organisation an der JKU Linz

2009-2012 Masterstudium Software Engineering mit Nebenfach Netzwerke
und Sicherheit an der JKU Linz

2005-2009 Bakkalaureatsstudium Informatik an der JKU Linz

2000-2005 HTBLA Leonding Expositur Perg für EDV und Organisation
mit Schwerpunkt “Kommerzielle Datenverarbeitung”,
Matura mit ausgezeichnetem Erfolg bestanden

1996-2000 BG/BRG Freistadt

93

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht
habe.

Linz, am 30.12.2011

Rainer Pichler

94

	Aufgabenstellung
	Introduction
	Application Scenario
	Requirements
	Thesis Structure

	Specification
	Actors and Use Cases
	Database Management
	Application Management

	Architecture
	System Overview
	Design Considerations

	Communication
	Windows Communication Foundation
	Identifiers
	Agent Upgrade Services
	Operation Control Services
	Main Service
	Gateway Service
	Remote Events

	Tasks
	External View of the Task System
	Inner Workings of the Task System

	Notification Services
	Application Interface
	Integration within azDeploy

	File Transfer Services

	Project Structure and Applications
	Project Structure
	Server Application
	Gateway and Client Agents
	Administration Center

	Implementation Details
	Database Management
	Application Management
	Windows Installer
	Integrating Windows Installer within azDeploy

	Windows Communication Foundation Custom Behaviors
	Windows Communication Foundation Security
	Authentication, Integrity and Confidentiality
	Role-based Authorization

	Setup
	Usage
	Deploying Applications and Database Schemas
	Preparing Application Packages

	Discussion
	Bibliography
	List of Abbreviations
	Lebenslauf
	Eidesstattliche Erklärung

