
Technisch-Naturwissenschaftliche
Fakultät

Testing and Debugging of
Dynamically Composed Applications

DISSERTATION

zur Erlangung des akademischen Grades

Doktor
im Doktoratsstudium der

TECHNISCHEN WISSENSCHAFTEN

Eingereicht von:

Markus Löberbauer

Angefertigt am:

Institut für Systemsoftware

Beurteilung:

o. Univ.-Prof. Dr. Dr. h.c. Hanspeter Mössenböck
a. Univ.-Prof. Dr. Johannes Sametinger

Mitwirkung:

Dr. Reinhard Wolfinger

Linz, Oktober 2012

Sworn Declaration
I hereby declare under oath that the submitted thesis has been written solely by me
without any outside assistance, information other than provided sources or aids
have not been used and those used have been fully documented.

The thesis here present is identical to the electronically transmitted text document.

Linz, October 2012 Markus Löberbauer

Eidesstattliche Erklärung
Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel
nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche
kenntlich gemacht habe.

Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument
identisch.

Linz, Oktober 2012 Markus Löberbauer

Page i

Abstract

Dynamic software composition allows users to reconfigure a program on-the-fly by
adding, removing, or swapping sets of components. This requires that every com-
ponent is dynamically composable, i.e., that it can extend other components and
can be extended by other components at run time. To ensure that a component is
composable in all possible composition scenarios, testing is necessary, and if an er-
ror shows up in a program, developers need debugging support to identify the
causing component as well as information about what caused the error.

Current component systems only provide a test harness to host the component un-
der test and recommend test methods, which are usually limited to unit tests of the
business logic, whereas the composability of a component is neglected. This is in-
sufficient for dynamically composed programs where every component must work
in various composition scenarios.

In this thesis, we present a classification of the composition mechanisms used in
current component systems and their contributor provision characteristics (i.e., in
what way contributor components are provided to host components). Based on this
classification, we present a classification of composability faults that are typical for
the composition mechanisms. To find such faults in components, we present the
composability test method Act for the Plux composition infrastructure. Act gener-
ates test cases for all composition scenarios by varying the order of composition
operations, selects a representative subset of test cases so that they are executable
in reasonable time, and executes the test cases. Executing a test case means com-
posing the component under test using a given testbed, executing the functional
tests, and collecting the occurring composition errors and functional errors. Further-
more, we present the test tool Actor which automates this test method. To find the
causes of composability errors in components, we present the debugging method
Doc for Plux. Doc records the composition operations of running Plux programs into
composition traces, filters the composition traces for relevant components, splits
the composition traces into parts with related composition operations, and allows

Page ii

developers to compare traces in order to locate the cause of errors. Moreover, Doc
creates hints for possible causes of errors using reasoning and allows replaying the
composition from composition traces to visualize the composition state of the
program.

This work was funded by the Christian Doppler Research Association and BMD
Systemhaus GmbH.

Page iii

Kurzfassung

Mit dynamischer Komposition können Benutzer ein Programm durch Austausch von
Komponenten umkonfigurieren während es läuft. Dazu muss jede Komponente dy-
namisch komponierbar sein, d.h. sie muss damit umgehen können, dass die Kom-
ponente selbst oder andere Komponenten zur Laufzeit hinzugefügt oder entfernt
werden. Um sicherzustellen, dass eine Komponente in allen möglichen Komposi-
tionsszenarios komponierbar ist, muss getestet werden. Wenn ein Fehler gefunden
wird, soll der Entwickler beim Identifizieren der fehlerhaften Komponente und beim
Finden der Fehlerursache unterstützt werden.

Aktuelle Komponentensysteme bieten lediglich eine Testumgebung um die
getestete Komponente zu komponieren und empfehlen eine Testmethode, die
allerdings nur die Geschäftslogik umfasst, aber die Komponierbarkeit vernachläs-
sigt. Für dynamische Komposition ist das zu wenig, weil jede Komponente in unter-
schiedlichen Kompositionsszenarios funktionieren muss.

In dieser Arbeit zeigen wir eine Klassifikation von Kompositionsmechanismen und
deren Eigenschaften bei der Komponentenbereitstellung. Basierend darauf, zeigen
wir eine Klassifikation von typischen Komponierbarkeitsdefekten für die gezeigten
Kompositionsmechanismen. Um solche Defekte zu finden, zeigen wir die Testmeth-
ode Act für die Plux-Kompositionsinfrastruktur. Act erzeugt Testfälle für alle Kompo-
sitionsszenarios durch Variieren der Kompositionsreihenfolge, es wählt eine
repräsentative Teilmenge dieser Testfälle, damit diese in vernünftiger Zeit ausführbar
sind, und führt sie aus. Einen Testfall auszuführen bedeutet, dass die zu testende
Komponente in einer gegebenen Testumgebung komponiert wird, funktionale Tests
ausgeführt werden, und die auftretenden Kompositionsfehler sowie die funktionalen
Fehler protokolliert werden. Weiters zeigen wir das Testwerkzeug Actor, das die
Testmethode automatisiert. Um die Ursache von Komponierbarkeitsfehlern zu
lokalisieren, zeigen wir die Debuggingmethode Doc für Plux. Doc zeichnet die Kom-
positionsoperationen eines laufenden Plux-Programms in einem Protokoll auf, filtert
dieses nach relevanten Komponenten, teilt es in Teile zusammengehörender Kom-

Page iv

positionsoperationen und ermöglicht Entwicklern diese Protokollteile zu vergleichen
und damit die Fehlerursache einzugrenzen. Außerdem erzeugt Doc Hinweise auf
mögliche Fehlerursachen und ermöglicht das schrittweise Abspielen von Komposi-
tionsprotokollen, um den Kompositionszustand des Programms zu visualisieren.

Diese Arbeit wurde von der Christian Doppler Forschungsgesellschaft und von BMD
Systemhaus GmbH gefördert.

Page v

Table of contents
1 Introduction 1...

1.1 Research context 2..
1.2 Problem statement 3...
1.3 Research contributions 4...
1.4 Project history 5...
1.5 Structure of the thesis 6..

2 State of the art 8..
2.1 Historical overview 8..
2.2 Component terminology 9...
2.3 Testing terminology 12...
2.4 Testing approaches of component platforms 13.....................................

2.4.1 Component systems with static composition 13..........................
2.4.2 Component systems with dynamic composition 14.....................

2.5 Component testing in literature 15..
3 Composability faults in component-based programs 18...........................

3.1 Contributor provision characteristics 18..
3.1.1 Contributor identification 19...
3.1.2 Contributor instantiation 21..
3.1.3 Contributor availability 22...
3.1.4 Contributor registration 28..
3.1.5 Contributor cardinality 30...

3.2 Classification of composition mechanisms 32..
3.2.1 Compile-time binding 35..
3.2.2 Run-time binding 35...
3.2.3 Startup-time lookup 36...
3.2.4 Startup-time injection 37..
3.2.5 Run-time lookup 38..
3.2.6 Run-time lookup with notification 39..
3.2.7 Run-time injection 40..
3.2.8 Run-time injection with tracking 41..

3.3 Composability fault classification 42...
3.3.1 Contributor cardinality faults 43..
3.3.2 Contributor availability faults 46...
3.3.3 Contributor identification faults 55..
3.3.4 Contributor instantiation faults 56...
3.3.5 Contributor registration faults 59..
3.3.6 Contributor sharing faults 62..

4 Plux composition infrastructure 64..
4.1 Metadata 65...
4.2 Composition 67...
4.3 Composition state 67..
4.4 Composition events 69..
4.5 Composition infrastructure 69...

Page vi

4.6 Programmatic composition 70..
4.7 Behavior-guided composition 72...
4.8 Composition standard 73..

5 Finding composition errors 75..
5.1 The automated composability test method Act 75.................................

5.1.1 Composability test procedure 75..
5.1.2 Generating test cases 76..
5.1.3 Reducing the number of test cases 77...
5.1.4 Specifying test beds 80..
5.1.5 Executing test cases 82..
5.1.6 Detecting composition standard violations 85.............................

5.2 Finding errors in Plux components 85...
5.2.1 Contributor cardinality faults 85..
5.2.2 Contributor availability faults 88...
5.2.3 Contributor identification faults 103..
5.2.4 Contributor instantiation faults 104...
5.2.5 Contributor registration faults 108..
5.2.6 Contributor sharing faults 111..
5.2.7 Composition standard violations 113...

5.3 The automated composability test tool Actor 119..................................
5.4 Experimental evaluation 122..

5.4.1 Experiment definition 122...
5.4.2 Seeded faults 124...
5.4.3 Execution of the experiment 129..

6 Locating the cause of composition errors 131...
6.1 The composition debugging method Doc 131..

6.1.1 Recording composition operations 131..
6.1.2 Filtering composition operations 133...
6.1.3 Splitting composition traces 134..
6.1.4 Comparing composition traces 135...
6.1.5 Reasoning about the error causes 137...
6.1.6 Replaying composition traces 138...

6.2 Debugging Plux programs 140..
6.3 Composition debugging tool Doctor 146..

7 Summary 150..
7.1 Contributions 150..
7.2 Conclusions 151..
7.3 Future research 152...
7.4 Current state 153...

Appendix 154...
List of figures 157..
Bibliography 162..

Page vii

Chapter 1: Introduction

Dynamic composition allows users to reconfigure a program on the fly by adding,
removing, or swapping sets of components. Thus users can align a feature-rich
program with the working situation at hand. With plug-and-play components, this
can be done without configuration or programming effort. This flexibility requires
that every component is dynamically composable, i.e., that it can extend other
components and can be extended by other components at run time. To ensure
that a component is dynamically composable, additional testing is necessary.
Furthermore, if a program shows an error during dynamic composition, develop-
ers need debugging support to identify the causing component as well as infor-
mation about what caused the error.

In practice, developers use unit tests to test the functionality of isolated compo-
nents and they use integration tests to test whole programs. As these techniques
neglect composability, they are insufficient for dynamically composed programs.
A systematic composability test method is necessary. The number of variants in
which plug-and-play components can be assembled into a program is enormous.
Because testing all these variants manually is impractical, a tool is necessary to
automate this.

This thesis presents a method and a tool for composability testing. The method
shows how to generate test cases and how to reduce the vast number of gener-
ated test cases to a reasonable number that still finds most errors. The test tool
applies the test method by automatically generating test cases and applying them
to the components under test.

This thesis also presents a method and a tool for post-mortem composition de-
bugging. The method shows how to locate composability faults in dynamically
composed programs by analyzing recorded composition operations. The debug-
ging tool allows developers to record a program execution, replay the composi-
tion events later, and search for the causes of composition errors.

Section 1.1 presents the context of dynamically composed programs and relevant
questions that arise when such programs must be tested. Section 1.2 shows why
composability testing and composition debugging are necessary. Section 1.3
summarizes the research contributions of this thesis. Section 1.4 gives an

Page 1

overview of the project history and introduces the members of the Plux team with
their contributions. Section 1.5 outlines the remainder of this thesis.

1.1 Research context
This thesis was conducted as part of the industrial research project: Component
architectures for next-generation business computing systems. The goal of this
project is to design and implement a component model and a composition infra-
structure for extensible and customizable enterprise software. The project is con-
ducted in cooperation between the BMD Systemhaus GmbH and the Christian
Doppler Laboratory for Automated Software Engineering associated with the In-
stitute of System Software at the Johannes Kepler University Linz. BMD builds
enterprise resource planning software for small and medium-sized companies in
Austria, Germany, Hungary, Italy, Switzerland, Slovenia, Croatia, Poland, Slovakia,
and the Czech Republic.

In this project, we developed the Plux composition infrastructure [Wolfinger, 2010]
as the basis for the next-generation business application of our industrial partner
BMD. Programs developed with Plux comprise fine-grained components, which
are assembled by the composition infrastructure using a plug-and-play approach.
Users can adapt the program on the fly to align it with the working situation at
hand by swapping sets of components.

A Plux program is open and extensible, i.e., a seamless program can be built from
components of various manufacturers. To enable this, the manufacturers must
specify contracts, publish them, and all components must strictly adhere to them.
In dynamically composed programs, the composition is delayed from compile
time to run time. At compile time, manufacturers must not make any assumption
besides what is specified in the contracts, because the assumption is unlikely to
hold when the component is used in another environment. This leaves manufac-
turers with the following uncertainties:

• It is unknown which other components will be available at run time. Thus all
components must be self-contained and functional, independent of which oth-
er components are available. Components must not depend on the existence
of other components.

• It is unknown by which other components a component will be used. As a con-
tract defines the usage relation only in one direction, it is undefined which ser-
vices the using component provides. Thus, a used component must not rely on
its using component.

• During its lifetime, a component may be used by different other components. It
may be disconnected from one component and reconnected to another com-

Page 2

ponent, and it may even be connected to multiple components concurrently.
Thus a component must not rely on a specific usage scenario.

• The order in which components are connected can vary, i.e., if a component
uses multiple components (either with different contracts or with the same con-
tract) the order in which the components are connected is undefined. Thus, if a
component can use a component A only if a component B is available, it must
be able to handle the case that A is connected before B.

• The order in which components are disconnected can vary, i.e., if a component
uses multiple components (either with different contracts or with the same con-
tract) the order in which the components are disconnected is undefined. Thus,
if a component can use component A only if component B is available, it must
be able to handle the case that B is disconnected before A.

As these uncertainties cannot be resolved at development time, the component
manufacturer must consider all possible scenarios. To ensure the functionality of
a component in all scenarios, the manufacturer must do extensive testing and
debugging:

• Composability testing should perform functional tests of components within
generated composition scenarios. It tests if a component works independently
from other components it uses or to which it provides, and independently from
the order in which components are connected and disconnected.

• Composition debugging should help identifying the causes of the errors de-
tected during testing. It reveals the common characteristics of the composition
scenarios in which errors occur.

The next section discusses the problems that must be solved to support develop-
ers of dynamically composable components with composability testing and com-
position debugging.

1.2 Problem statement
This thesis discusses the problem of how to test and debug dynamically compos-
able components. Section 1.1 discussed which uncertainties and challenges the
manufacturers of dynamically composable components face. How such compo-
nents can be tested and debugged is an open research problem:

• Composability testing involves that a component is tested in all composition
scenarios that can occur. The open research question is how can a composi-
tion scenario be characterized and how can we determine relevant composition
scenarios?

Page 3

• The number of relevant composition scenarios for composability testing is usu-
ally vast. The open research question is how can we determine a subset of rel-
evant composition scenarios that can be efficiently executed and still effectively
reveals composability errors?

• A test suite which tests a faulty component with different composition scenar-
ios will produce a result which segments the composition scenarios into two
groups: one that shows the error and another which does not. The open re-
search question is how can we determine the significant differences between
those groups and thus the possible cause for the error?

The lack of systematic testing and debugging limits dynamically composed pro-
grams to academia, because the stability is not sufficient for its application in in-
dustry. If the research questions above can be answered, developers can test the
composability of their components systematically, similar to the way functional
class tests are done today. By this, the promise made by dynamic composition
infrastructures to enable developers to build extensible, customizable, and dy-
namically reconfigurable programs can be fulfilled also in industrial applications,
because systematic testing ensures the stability that is required there.

1.3 Research contributions
We claim the following contributions in this thesis: a classification of composition
mechanisms, a classification of composability faults, a method for composability
testing, and a method for post-mortem composition debugging. Furthermore, we
show the feasibility of the test method and the debugging method with tool im-
plementations for the Plux composition infrastructure.

• Classification of composition mechanisms. We examined the composition char-
acteristics of current component systems, deduced component mechanism
classes, and ordered these classes by their support for adaptable programs.
We use this classification to determine which composability faults can occur if
a specific composition mechanism used. In general, this classification can be
used to specify the adaptability in software requirements.

• Classification of composability faults. We identified the composability faults
that components can have if a specific composition mechanism is used. We
use this classification to name the appropriate test methods for each composi-
tion mechanism, to reveal possible composability faults in a component.

• Composability test method. We designed a method for composability testing. It
generates an adjustable number of test cases, with a trade-off between run
time and effectiveness: more test cases find more errors, but take longer to ex-

Page 4

ecute. However, even for small numbers of test cases, the test method is effec-
tive, because it selects test cases that are likely to reveal errors.

• Composition debugging method. We designed a method for post-mortem
composition debugging. It enables developers to locate composability faults,
by analyzing recorded composition operations. The method can record indi-
vidual program executions. During this process, it filters the composition oper-
ations that are likely to cause errors and marks the working and the failing
operation sequences. The method can also record a series of test cases exe-
cutions, which typically leads to vast amounts of recorded data. In order to an-
alyze the recordings in a feasible time, the method reduces the amount of data,
by grouping recordings where the same error occurred and by selecting repre-
sentative recordings from each group.

Chapter 3 presents the composition mechanism classification and the composa-
bility fault classification. Chapter 5 presents the composability test method.
Chapter 6 presents the composition debugging method.

1.4 Project history
Plux is a research project conducted by the Christian Doppler Laboratory for
Automated Software Engineering associated with the Institute for System Soft-
ware at the Johannes Kepler University Linz, in cooperation with the industry
partner BMD Systemhaus GmbH. Plux comprises an infrastructure for dynamical-
ly composed desktop and web applications, as well as an infrastructure to test
dynamically composable components.

At the time of this writing the Plux team comprises: the project manager Reinhard
Wolfinger; the Ph.D. student Markus Jahn, who works on dynamically compos-
able web applications; the Ph.D. student Markus Löberbauer and his master stu-
dent Philipp Lengauer, who work on testing and debugging; and the master stu-
dent Thomas Hribernig, who works on retrofitted security.

Our industry partner BMD Systemhaus initiated the project in an effort to build the
basis for their next-generation enterprise application. The new application should
be extensible with third-party plugins and reconfigurable at run time.

In 2006 we designed a component model based on the metaphor of slots and ex-
tensions [Wolfinger et al., 2006]. In 2007 we published a composition infrastruc-
ture and demonstrated novel applications, which can be reconfigured in a plug-
and-play manner. For the first time, users could add components to a program
and remove components from a program to adapt it to their working situation at
hand, without programming, configuring, or even restarting the program. A further
novelty was a visualizer that instantly showed the program’s architecture and its

Page 5

changes. Furthermore, we published integration models for the secure integration
of untrusted third-party plugins [Wolfinger and Prähofer, 2007].

From 2008 to 2010 Plux was redesigned to reduce the programming effort for
component developers. This has been accomplished with a richer composition
model [Jahn et al., 2011], composition behaviors [Jahn et al., 2010a], and compo-
nent templates [Wolfinger et al., 2010]. With the richer composition model, com-
ponents can share information in a standardized manner; with behaviors, compo-
sition logic can be reused to control complex composition scenarios
declaratively; and with component templates, custom components can be gener-
ated from generic component templates.

From 2010 to 2012 Plux was extended to support distributed multi-user web ap-
plications [Jahn et al., 2010b; Jahn et al., 2011]. We designed the method for
composability testing [Löberbauer et al., 2010] and composition debugging, and
implemented the corresponding tools [Lengauer, 2012]. We also created a model
for retrofitting security in component-based programs [Wolfinger et al., 2012] and
a security manager implementation for Plux [Hribernig, 2012].

During the whole project the following student projects were conducted based on
Plux: Stephan Reiter and Christian Mittermair componentized a customer rela-
tionship management application [Reiter and Wolfinger, 2007], [Mittermair, 2009],
Markus Jahn created a cross compiler infrastructure [Jahn, 2008], Mario Eder cre-
ated a web site monitor [Eder, 2008], Rainer Pichler created a tool to record run-
time statistics [Pichler, 2009], Zoltan Toth created a script interpreter for composi-
tion scripts, Andreas Gruber created a graphical composition tool for Plux pro-
grams [Gruber, 2010], Sabine Weiss created a highly extensible customer relation-
ship management application [Weiss, 2010], Thomas Hribernig created a security
add-on for license enforcement and retrofitted security [Hribernig, 2012], Philipp
Lengauer created a composition debugger [Lengauer, 2012], Patrick Hagmüller
ported the core elements of Plux from C# to Delphi [Hagmüller, 2012], Bernhard
Schenkermayr created a highly customizable calculator [Schenkermayr, 2012],
Thomas Reinthaler created an application builder [Reinthaler, 2012].

1.5 Structure of the thesis
This thesis is organized as follows: Chapter 2 discusses the state of the art test-
ing approaches for component platforms. A historical overview shows how test-
ing evolved in software engineering, and how componentization affected testing.
A section defines the component terminology and another section the testing ter-
minology used in this thesis. The final section introduces the testing approaches

Page 6

of current component platforms and analyzes the deficiencies of these
approaches.

Chapter 3 analyzes and classifies the composability faults that can occur in com-
ponent-based programs. It describes the different component provision charac-
teristics of component platforms, defines composition mechanisms, and classi-
fies the component platforms by their composition mechanism. Finally, the
chapter describes and classifies the composability faults that can occur depend-
ing on the used composition mechanism.

Chapter 4 introduces the Plux composition infrastructure and shows how Plux as-
sembles component-based programs. It describes how components specify their
provided and required services using metadata, how Plux uses these metadata to
connect required and provided services, and how Plux stores these connections
in the composition state. A further section describes the architecture of the Plux
composition infrastructure, and a concluding section derives the composition
standards that are required by Plux in order to enable dynamic composition.

Chapter 5 describes how the composability faults from Chapter 3 can be ad-
dressed with composability testing. It describes a composability test method and
how this method can be applied to find errors in Plux components. A further sec-
tion describes a composability testing tool, which automates the testing method.
The chapter concludes with the results of an experimental evaluation of the tool.

Chapter 6 describes how the cause of composition errors can be located with
composition debugging. It describes a composition debugging method and how
this method can be applied to locate the causes of composition errors on Plux
programs. The chapter concludes with a description of a composition debugger,
which supports the application of the debugging method.

Chapter 7 summarizes the contributions of this thesis, concludes how the contri-
butions address the problem statement, presents ideas for future research, and
closes with an overview of the current state.

Page 7

Chapter 2: State of the art

According to G. J. Myers [1979], software testing is a process, designed to en-
sure computer code does what it is designed to do and that it does not do any-
thing unintended. This process, though hard, is well researched for functional
testing of statically linked programs. In dynamically composed programs howev-
er, the process is even harder. The behavior of a component can change at run
time depending on the current composition, i.e., when other components are
added or removed while the program is running. This chapter shows that the sup-
port for testing the composability of components is inadequate in current testing
methods and that further research is necessary.

This chapter is structured as follows: Section 2.1 gives a historical overview on
how testing evolved in software engineering and how componentization affected
testing. Section 2.2 defines the component terminology, and Section 2.3 the test-
ing terminology relevant for this thesis. Section 2.4 analyzes the testing ap-
proaches of current component platforms and analyzes their deficiencies.

2.1 Historical overview
Gelperin and Hetzel [1988] divide the history of software testing into the following
periods. Until 1956, testing focused on finding faults in the hardware (debugging-
oriented period). This period had no systematic approach to detect faults in the
software.

In 1957, Baker distinguished debugging from testing. Debugging makes sure that
a program runs, whereas testing makes sure that a program solves the problem.
According to Baker, the goal was to demonstrate that a program has not faults
(demonstration-oriented period). Both debugging and testing meant efforts to de-
tect, locate, identify, and correct faults. These two activities were distinguished
based on their definition of success: debugging succeeds if a program runs; test-
ing succeeds if a program solves the problem [Baker, 1957].

In 1979, the destruction model redefined the meaning of debugging and testing.
Testing includes all efforts to detect a fault, whereas debugging includes all efforts
to locate, identify and correct a fault. Myers described the destruction testing as
"the process of executing a program with the intent of finding errors". This defini-

Page 8

tion shifts fault detection in the focus of testing. Myers argued that destructive
tests are more likely to find bugs [Myers, 1979]. Furthermore, Myers associated
testing with other fault detection activities such as analysis and review
techniques.

In 1983, a standardized guideline describes how to use software testing to evalu-
ate the quality of software during the software life-cycle (evaluation-oriented peri-
od). For each phase in the software life-cycle, a specifically chosen set of tech-
niques (e.g., testing, analysis, or review) ensures that the development and
maintenance of software meets specified quality requirements [NBS, 1984].

Since 1985, testing is planned early in the development cycle and performed in
parallel with development. Programmers are provided with the test plan before
they start the development (prevention-oriented period). Test cases are kept,
maintained, and performed repeatedly in the software life-cycle to prevent regres-
sion [ANSI, 1987].

After the observation of Gelperin and Hetzel further progress was made in the
field of software testing. In 1999, Beck describes test-driven development as part
of Extreme Programming. Test-driven development is a software development
process with short development cycles designed around automated test cases.
Before a developer implements a new function, he writes a test case for this func-
tion. This test case will fail, because the function is not yet implemented. To im-
plement the function, he writes code for the function, repeatedly reruns all test
cases and corrects his code until all test cases pass. The fact that automated
tests are available at any time, encourages developers to refactor their code, and
allows them to add new features without having to be afraid of breaking existing
features [Beck, 1999].

2.2 Component terminology
According to Heineman and Councill [2001], a component is a software element
that conforms to a component model. A component model defines standards for
composition and interaction. Composition is the process of combining compo-
nents to yield new behavior. The composition standard specifies the rules how
composition must be done, e.g., how a component can be replaced by another
component. Interaction is the communication between components to realize this
behavior. Components can provide functionality as well as request it. The interac-
tion standard specifies how components must declare their provisions and re-
quests using interfaces, so that other components can interact with them. An in-
terface is an abstraction that describes the behavior of a component. A
component can support multiple interfaces. Components, which adhere to the
same component model, i.e., they respect its composition and interaction

Page 9

standard, can be reused (without modification) to create new behavior by compo-
sition. To execute a component-based program a component model implementa-
tion is necessary. A component model implementation comprises software ele-
ments that support the execution of components that conform to the component
model. A software component infrastructure is a set of interacting software com-
ponents designed to ensure that a software system constructed using these com-
ponents will satisfy defined performance specifications.

According to Weinreich and Sametinger [2001], a component model defines
standards for contracts, naming, metadata, interoperability, customization, com-
position, evolution, as well as packaging and deployment. In this thesis, the fol-
lowing standards are significant: composition (terminology already defined
above), interfaces, metadata, packaging and deployment.

• Interfaces are specifications of component behavior. The purpose of using
component technology is black-box reuse: components reveal as little as pos-
sible about their inner mode of operation and clients of a component rely only
on its interfaces. An interface serves as the contract between a component
and its clients. By using interfaces, components may be modified or replaced,
as long as they still fulfill their contract. The interface standard in a component
model specifies how operations are specified. An operation is described by its
name and parameters.

• Metadata are used to specify information about interfaces, components, and
their relationships. Composition tools can retrieve the metadata to combine
components by matching requested and provided interfaces. The metadata
standard in a component model specifies how metadata are described and
how they can be retrieved. Component model implementations must provide a
dedicated service that allows retrieving metadata.

• Packaging is the means to assemble components that can be independently
installed and configured. Therefore a component must include its implementa-
tion and all resources needed for operation. Deployment means to install and
configure such a component in a component infrastructure. The packaging and
deployment standard in a component model specifies how components are
packaged and deployed.

Wolfinger [2010] adds the terms extension, host, and contributor. He also extends
the component model with a composition state, defines the composition infra-
structure as a subset of the component infrastructure, and distinguishes between
programmatic composition and automatic composition.

Page 10

• An extension is a component; it can be in the role of a host and a contributor. A
host is an extension that requests the service of other extensions, and a con-
tributor is an extension that provides such a service. The name extension goes
back to the Gamma’s extension object pattern, which can be used to add new
interfaces to existing classes without modifying them by adding extension ob-
jects [Gamma, 1996]. Referring to this pattern, Wolfinger calls components ex-
tensions to emphasize the fact that a contributor extends a host with additional
features (note: the host is functional without the contributor as well). Exten-
sions can be in the role of a host and a contributor at the same time.

• The composition state is an addition to the component model. It comprises the
instantiated extensions and their usage and provision relations. Accordingly,
the implementation of a component model must have a service to maintain the
composition state. This service can be used, for example, by the extensions to
retrieve their contributors, or by tools to save and restore program snapshots.

• The composition model is the part of the component model that is responsible
for discovering extensions, composing them, and maintaining the composition
state. Discovery means to detect extensions and extract their metadata.
Wolfinger [2010] recognized that existing component models lack support for
automatic composition and a composition state, which leads to an unneces-
sarily high programming effort for component developers. He proposed to sub-
stitute the composition support in existing component models by extending
them with a more capable composition model. A composition infrastructure is
the implementation of a composition model.

• Composition can be classified into programmatic composition and automatic
composition. Programmatic composition means that the host has to query a
component registry has to discover, create and connect its contributors itself.
Automatic composition means that components just declare their requests and
provisions using metadata. The composition infrastructure uses these metada-
ta to match requests and provisions and to discover, create, and connect
matching components automatically.

This thesis uses the terminology from Sametinger and Weinreich with the addi-
tions of Wolfinger. However, it should not go unmentioned that Szyperski [2002]
uses a different terminology and defines the following key terms:

• A component system architecture is a platform with a set of component frame-
works and an interoperation design for the component frameworks. The plat-
form is the base that allows installing components and component frame-
works, such that these can be instantiated and activated.

Page 11

• A component framework implements protocols to connect components and
enforces policies defined by the component framework.

• An interoperation design for component frameworks comprises the rules of in-
teroperation among all the frameworks joined by the component system
architecture.

• A component is a set of simultaneously deployed atomic components.

• An atomic component is a module, i.e., a set of classes and/or non-object-ori-
ented constructs, such as procedures or functions, and a set of resources.

2.3 Testing terminology
According to Beizer [1990] an error is an incorrect behavior (symptom) resulting
from a fault. A fault is an incorrect program or data object (bug). He distinguishes
two categories of fault detection methods: static analysis, which is done on the
source code without executing the program; and dynamic analysis, which is done
by executing the program and checking calculated values against expected
values.

According to Myers [1979] testing is the process of executing a program with the
intent of finding errors. As such it is a destructive process and thus most people
find it difficult. Therefore, a successful test is one that detects an undiscovered
error. Debugging is the process of determining the reason of the error in the pro-
gram as well as correcting the fault. Changes in the program can introduce new
faults. To detect such faults, regression testing is necessary. Regression testing
means to keep the test cases and to execute them after changes.

Myers distinguishes the testing strategies black-box and white-box testing.
Black-box testing means testing a program without any knowledge about its in-
ternal structure. It is input/output-driven. The tester derives the test input data
from the program’s specification. He tries to find input data for which the program
does not calculate the correct output data according to the program’s specifica-
tion. In contrast, white-box testing means testing a program with knowledge
about its internal structure. It is logic-driven. The tester examines the program’s
internal logic and chooses test input data, which satisfies a specified coverage
criterion. Beizer [1990] distinguishes the following coverage criteria: statement
coverage means that all statements of a program must be executed; branch
coverage means that every branch alternative must be taken, and path coverage
means that all possible control flow paths through the program must be
executed.

Page 12

Myers also distinguishes various test scopes, such as module tests and function
tests. Module tests (unit tests) find errors in individual modules of a program.
Function tests (integration tests) find errors in the whole program.

2.4 Testing approaches of component platforms
In practice, developers produce rather monolithic programs and their testing fo-
cuses on the program logic. Even if developers decide to use a componentized
software architecture, the testing still focuses only on the program logic, and ne-
glects the composability. When using a static composition mechanism (which is
most common), the composition is the same for every execution of the program,
so it is easy to test against this composition. With dynamic composition this is far
more critical, because many errors occur only when the user reconfigures a pro-
gram at run time. Furthermore, component-based programs are usually com-
posed programmatically, which limits the kinds of possible faults, because the de-
veloper controls the composition process, i.e., the time and the order in which
components are assembled. However, if programs are composed automatically,
the composition infrastructure (and not the programmer) controls the composition
process. Components must comply with this composition process, i.e., they must
be composable. Thus their composability must be thoroughly tested.

We examined the testing approaches for dynamic composition as well as for stat-
ic composition by means of typical representatives.

2.4.1 Component systems with static composition
We looked at the component platforms Spring [Johnson et al., 2011] and Pic-
oContainer [PicoContainer, 2012] as representatives of systems without dynamic
composition:

The Spring framework supports unit testing of programs [Johnson et al., 2011].
As Spring components are plain Java objects, unit tests can be conducted with
test frameworks like JUnit [2011] or TestNG [Beust and Suleiman, 2007]. To test
classes that depend on external libraries or databases, Spring provides mock and
utility classes. For enterprise applications, which require an application server,
Spring supports integration testing. It allows executing the application in a Spring
environment and allows checking if the components are wired correctly, without
the need to deploy the application to a server.

The PicoContainer project recommends the use of unit test frameworks to test
the components of a program, which are plain Java objects. To resolve depen-
dencies between objects, PicoContainer recommends the use of mock libraries
like JMock [2012] and EasyMock [2012].

Page 13

None of these component systems takes into account that components can be
used in compositions other than those which the developer tested. There is no
systematic approach to determine which compositions should be tested, thus er-
rors that occur only in specific compositions are not detected.

2.4.2 Component systems with dynamic composition
Component systems such as OSGi [2011], Eclipse [2003], and NetBeans
[Boudreau et al., 2007] support dynamic reconfiguration. We looked at what they
recommend for testing their components.

Although the Eclipse platform supports dynamic composition, this feature is rarely
used in practice. The Eclipse IDE itself does not make use of it, and so do most
third-party plugins. Because dynamic composition is uncommon, the suggested
Eclipse test methods do not care about composability testing. Eclipse recom-
mends JUnit [2011] for functional testing and SWTBot [2012] for user interface
testing. In addition to that, the Eclipse Test & Performance Tools Platform Project
[2012] allows recording API calls for regression testing.

The OSGi Service Platform specification and the OSGi documentation [OSGi,
2011] do not address testing at all. The DA-Testing project [Abu-Eid, 2009] recog-
nizes the need for dynamic testing. It provides a framework, which listens to the
events of the OSGi service registry and runs unit tests when those events occur.
The assertion API for functional testing is kept intentionally similar to JUnit. The
DA-Testing project appears to have been discontinued in 2009 for reasons un-
known to us.

In NetBeans [Boudreau et al., 2007], dynamic reconfiguration is considered in the
API, but ignored by the majority of plugins. Thus programs built with NetBeans
usually need to be restarted in order to add or remove plugins. The NetBeans
project recommends testing the components with JUnit and provides helper
classes to run unit tests inside the NetBeans environment.

Like component systems with static composition, none of the component sys-
tems with dynamic composition provides means for testing different composi-
tions. Furthermore, they also do not take into account that the composition
process is dynamic, thus errors that occur only in specific composition se-
quences are not detected. Even if a composability error is found accidentally,
none of these component systems provides support for locating the cause of the
error.

Page 14

2.5 Component testing in literature
The need for component testing is widely recognized in the literature. Many pa-
pers give approaches to ensure that components work as expected when inte-
grated into a program. We figure that the following papers represent the state of
the art in component testing research.

Weyuker [1998] recognizes that testing a component in one project does not
guarantee that the same component will work in another project. Especially be-
cause testing is generally done by developers with knowledge about the compo-
nent under test and its use in the initial project. She thus suggests that compo-
nents should be re-tested for each new project. Weyuker discusses the use of
components in statically linked programs, while this thesis discusses component
usage in dynamically reconfigurable programs. In dynamically composed pro-
grams every possible configuration can be seen as a new project, thus we con-
clude that an automated systematic test method is necessary.

Liu and Dasiewicz [1999] describe an approach for testing the interaction be-
tween components in a program that is based on formal models of the program's
components. The approach can automatically create integration tests for a pro-
gram. As limitations of this approach, Liu and Dasiewicz recognize the high costs
for creating the formal models and the limited scalability of the used algorithms.

Gao [2000] defines the properties that a component must have in order to be
testable: a component must be observable during usage (i.e., its input and output
parameters must be visible), must be trace-controllable (i.e., provide functions to
monitor and check the component's behavior), and must be understandable (i.e.,
the vendor must provide information about how the component must be used).

Wu et al. [2001, 2003] specify test criteria for component-based software based
on a component interaction model. As component vendors usually do not provide
an interaction specification or the source code, the papers suggest to model the
desired interaction between the components in UML.

Kranzlmüller et al. [2002a, 2002b] describe an approach for testing nondetermin-
istic parallel programs. The approach records the nondeterministic receives dur-
ing a program execution, generates all possible receive orders, and replays the
program execution with deterministic receives in all possible orders. As the limita-
tion of the approach the authors recognize its scalability; the approach has so far
been applied to programs with up to 8 processes.

Bertolino and Polini [2003] suggest that component developers should include
test cases for the components they provide. By this, users can see what kind of
testing a component already underwent and adapt their integration tests to it.

Page 15

Furthermore, they present an approach to decouple integration tests from the
components by using adapters. The goal of the approach is to allow early writing
of test cases and using the test cases for alternative candidates of used
components.

Mariani et al. [2005, 2007] present an approach to reduce the number of test cas-
es which must be executed to ensure that a program still works after compo-
nents-of-the-shelf are updated or replaced with other interface-compatible com-
ponents. The approach is based on behavioral models that represent the
component interactions. The models are generated while a test suite executes the
program with the components that are subject to replacement. Later these mod-
els are used to select the test cases from the test suite that are relevant to test
the program with the new components. The goal is the reduce the necessary
number of test cases and thus the time needed to check if a new version of a
component or another interface-compatible component integrates well into the
program.

Zeng et al. [2007] recognize the need for re-testing parts of a program that are
built with components-of-the-shelf, when new releases of these components be-
come available. The paper presents an approach that allows selective re-testing
by analyzing: the binaries of the old version and the new version of the compo-
nents, the source code of the program, and the test suite of the program. The
result is a reduced test suite that covers the changes in the components. This
works with components written in C/C++ that are deployed in the common object
file format or as portable executables.

Hewett and Kijsanayothin [2009] present an approach for automatically generat-
ing the orders in which components must be tested to minimize the number of re-
quired test stubs, based on a given component test dependency graph. This ap-
proach incrementally tests and integrates components, i.e., it uses already tested
components as stubs to test other components and so forth.

Saglietti and Pinte [2010] recognize that integration tests must be performed
every time a component is used in a new context. Their approach is based on
communication state machines, which reflect the impact of component-internal
values on external invocations. Based on this state machines, their approach
generates test suites consisting of test cases. A test case is a set of message se-
quences that are sent to the interacting components, enabling the components to
cover the required interactions.

Besson et al. [2011] suggest the test-driven development of web services and
service oriented architectures (SOA). Web services as the smallest units of soft-

Page 16

ware in SOA should be tested with unit tests, web service choreographies with in-
tegration tests.

Da Silva and de Lemos [2011] present an approach to generate test plans for in-
tegration tests of self-adaptive software. These test plans are used to test new
components whether they operate as specified when they are integrated into the
self-adaptive system. This approach requires the following artifacts: test cases for
the components, mechanisms for calculating the integration order of the compo-
nents, and all stubs necessary for testing.

The approaches proposed by these papers cover functional testing and integra-
tion testing of components, mostly for components that are integrated into a pro-
gram at development time. However, they do not specifically cover the dynamic
composability of components, as is required to test plug-in components that are
added to and removed from programs at run time.

Page 17

Chapter 3: Composability faults in component-
based programs

In component-based programs contributor components provide services and
host components use them. The means of how a host and a contributor are
connected depend on the used composition mechanism. In this chapter, we de-
fine what a composition mechanism is, classify composition mechanisms by their
contributor provision characteristics, and classify component systems by the
composition mechanisms they offer. The provision characteristics of a certain
composition mechanism correspond to a specific set of possible faults. As this is
relevant for testing, we define which faults in hosts and contributors can occur if a
certain composition mechanism is used. [Löberbauer et al., 2012]

3.1 Contributor provision characteristics
In a component system, contributor provision is the process that connects a con-
tributor to a host. This process includes the following activities: the contributors
make their services available, the hosts identify contributors matching their re-
quested services, and the hosts instantiate their contributors. The means of how
this process works depends on the used component system. Each component
system has specific contributor provision characteristics: it can make the contrib-
utors available at different points in time; it can maintain or not maintain the re-
quested contributors in a registry, and if so, it can maintain them globally or in a
host-specific way, and with or without the requesting host's instance; and it can
connect a single contributor or multiple contributors to a host.

From the activities in the contributor provision process and from the contributor
provision characteristics of the component system we derive the following test-
relevant contributor provision aspects:

Identification .. how does a host identify the contributors it desires?
Instantiation .. how does a host get an instance of a contributor?
Availability .. when is a contributor available?
Registration .. what does the component system store about a contributor?
Cardinality .. with which number of contributors must a host work?

Page 18

The following sections explain the contributor provision aspects and their charac-
teristics by the means of an example program. The program is a library, com-
posed of a user interface host that lists books from contributors that store books.
The book store contributors contain a set of books, which is persisted when a
book store is deactivated and restored when activated. The library host retrieves
the books from its book store contributors and presents the books in its user in-
terface. Figure 1 shows the user interface of the library application and Figure 2
shows its components, i.e., the library host that shows the books stored in the lo-
cal and the offsite book store.

Library

Title Autor Year
A Midsummer Night's Dream Shakespeare, W. 1590
As you like it 1623
Much Ado About Nothing 1600
The Comedy of Errors 1623
The Winter's Tale 1623

Search in: Local Books Shakespeare Go

Shakespeare, W.

Shakespeare, W.
Shakespeare, W.

Shakespeare, W.

Figure 1: User interface of the library application

Library

LocalBooks

OffsiteBooks
Books

Figure 2: Components of the library application

3.1.1 Contributor identification
In order to request a contributor, a host must identify which contributor it wants to
use. A host can do so, either by identifying a specific component as its contribu-
tor, or by specifying a contract for which an arbitrary contributor can provide an
implementation. Let us look at a Java implementation for both scenarios.

3.1.1.1 By component
For this example we use Java classes to implement the components Library (cf.
Figure 3), LocalBooks, and OffsiteBooks. In the library host, we create the Local-
Books and OffsiteBooks contributors with new and statically link them to Library
at compile time.

Page 19

class	 Library	 {
	 	 LocalBooks	 local;
	 	 OffsiteBooks	 offsite;
	 	 Library()	 {
	 	 	 	 local	 =	 new	 LocalBooks();
	 	 	 	 offsite	 =	 new	 OffsiteBooks();
	 	 	 	 //	 ...	 create	 the	 user	 interface	 ...	
	 	 }
}

Figure 3: Host that identifies its contributors by component

3.1.1.2 By contract
For the provision by contract implementation, we use the same contributor com-
ponents as in Section 3.1.1.1. The components LocalBooks and OffsiteBooks (not
shown) fulfill the book contract as specified by the Books interface (cf. Figure 4).

//	 File:	 Books.java
interface	 Books	 {
	 	 //	 ...	 methods	 to	 access	 the	 book	 store	 ...	
}

//	 File:	 META-‐INF/services/Books
LocalBooks

//	 File:	 LocalBooks.java
class	 LocalBooks	 implements	 Books	 {
	 	 //	 ...	 methods	 to	 access	 the	 local	 book	 store	 ...	
}

Figure 4: Contract and implementation of a contributor

In the library host, we use the Books interface to identify all contributors for the
book contract. By using the Java service loader [Oracle, 2006] we iterate over the
contributors, create them, and store them for later use. The contributors are dy-
namically looked up at startup time. As the number of available contributors can
vary, we store them in dynamically growing list (cf. Figure 5). For this example to
work, we compile the Books interface to the Books.jar contract file, and reference
the contract when we compile the library, the local, and the offsite book
contributor.

Page 20

class	 Library	 {
	 	 List<Books>	 bookStores;
	 	 Library()	 {
	 	 	 	 bookStores	 =	 new	 ArrayList<Books>();
	 	 	 	 ServiceLoader<Books>	 bookServices	 =
	 	 	 	 	 	 	 	 ServiceLoader.load(Books.class);
	 	 	 	 for	 (Books	 b	 :	 bookServices)	 {
	 	 	 	 	 	 bookStores.add(b);
	 	 	 	 }
	 	 	 	 //	 ...	 create	 the	 user	 interface	 ...	
	 	 }
	 	 //	 ...	 main	 method,	 etc.	 ...
}

Figure 5: Host that identifies its contributors by contract

3.1.2 Contributor instantiation
In order to use a contributor, the host needs an instance of it. The host can create
the instance itself or the composition infrastructure can provide the instance. The
Java examples in Section 3.1.1 cover both scenarios: in Figure 3, the host creates
the local and offsite book store with the new statement; whereas in Figure 5 the
host retrieves the instantiated stores from the Java service loader [Oracle, 2006].

A composition infrastructure can create the contributor instances in a globally
uniform way or in a host-specific way. Globally uniform means that the contributor
instances for all hosts are provided in the same way, either one dedicated in-
stance that is shared among all hosts, or separate instances for each host. Host-
specific means that a shared instance is provided to some hosts, whereas sepa-
rate instances are provided to other hosts, depending on the desired composi-
tion. The Java service loader example in Figure 5, Section 3.1.1 covers the global-
ly uniform scenario. The service loader uniformly provides a new instance to every
host that requests a contributor.

The PicoContainer [PicoContainer, 2012] example in Figure 6 covers the host-
specific scenario. In this example, the contributors are injected into the construc-
tors of the hosts. We use separate pico containers to control whether a shared
contributor or unique contributors is injected. As the local library and the local
web library (not shown) are in the same container, they get a shared local book
store contributor. The other web library is in a separate pico container and thus
gets a different instance of the local book store contributor.

Page 21

class	 Application	 {
	 	 //	 ...
	 	 static	 void	 main(String[]	 args)	 {
	 	 	 	 DefaultPicoContainer	 picoLocal	 =	 new	 DefaultPicoContainer();
	 	 	 	 picoLocal.addComponent(Library.class);
	 	 	 	 picoLocal.addComponent(WebLibrary.class);
	 	 	 	 picoLocal.addComponent(LocalBooks.class);
	 	 	 	 picoLocal.start();
	 	 	 	 Library	 localLib	 =
	 	 	 	 	 	 	 	 (Library)	 picoLocal.getComponent(Library.class);
	 	 	 	 Library	 localWebLib	 =
	 	 	 	 	 	 	 	 (Library)	 picoLocal.getComponent(WebLibrary.class);
	 	 	 	 DefaultPicoContainer	 picoWeb	 =	 new	 DefaultPicoContainer();
	 	 	 	 picoWeb.addComponent(WebLibrary.class);
	 	 	 	 picoWeb.addComponent(LocalBooks.class);
	 	 	 	 picoWeb.start();
	 	 	 	 Library	 webLib	 =
	 	 	 	 	 	 	 	 (Library)	 picoWeb.getComponent(WebLibrary.class);
	 	 	 	 //	 ...	 use	 libraries	 ...
	 	 }
}
class	 Library	 {
	 	 List<Books>	 bookStores;
	 	 Library(Books[]	 bookStores)	 {
	 	 	 	 bookStores	 =	 Arrays.asList(bookStores);
	 	 	 	 //	 ...	 create	 the	 user	 interface	 ...	
	 	 }
}

Figure 6: Application with host-specific contributor instantiation

3.1.3 Contributor availability
The contributors used by a host can become available at different times, either
when the host is instantiated or later at run time. If a contributor becomes avail-
able at run time, the host can be notified by the composition infrastructure about
the change, or needs to poll for changes otherwise. The contributors can be per-
manently available to the host, or only temporarily if the composition infrastruc-
ture allows removing them at run time.

The composition infrastructure provides the contributors to the host in a certain
order. The contributors may be provided in a predictable order, i.e., in the same
order for each program execution, or in an unpredictable order. The contributors
may be provided all at once or continuously. The order in which contributors are
provided matters — both for contributors for the same contracts and for contribu-
tors for different contracts.

Let us look at some examples.

Page 22

3.1.3.1 At host instantiation time
To show how a host can retrieve its contributors at instantiation time, we use the
library application in an implementation with constructor injection based on Pic-
oContainer [PicoContainer, 2012]. In this solution, PicoContainer provides all con-
tributing book stores to the library's constructor when the library is created (cf.
Figure 7).

class	 Library	 {
	 	 List<Books>	 bookStores;
	 	 Library(Books[]	 bookStores)	 {
	 	 	 	 bookStores	 =	 Arrays.asList(bookStores);
	 	 	 	 //	 ...	 create	 the	 user	 interface	 ...	
	 	 }
	 	 //	 ...	 main	 method,	 etc.	 ...
}

Figure 7: Host that retrieves its contributors at instantiation time

3.1.3.2 Later at run time
To integrate contributors later at run time, the library host needs to poll its contrib-
utors. We use the Java service loader [Oracle, 2006] to retrieve the available con-
tributors. When the library application refreshes its user interface, it queries the
service loader and updates the list of available contributors (cf. Figure 8). The ser-
vice loader will provide new contributors as they become available at run time.

class	 Library	 {
	 	 Set<Books>	 bookStores	 =	 new	 HashSet<Books>();
	 	 ServiceLoader<Books>	 bookServices;

	 	 Library()	 {
	 	 	 	 bookServices	 =	 ServiceLoader.load(Books.class);
	 	 	 	 //	 ...	 create	 the	 user	 interface	 ...	
	 	 }

	 	 void	 updateBookStores()	 {
	 	 	 	 bookServices.reload();
	 	 	 	 for	 (Books	 b	 :	 bookServices)	 {
	 	 	 	 	 	 bookStores.add(b);
	 	 	 	 }
	 	 }
	 	 //	 ...	 main	 method,	 etc.	 ...
}

Figure 8: Host that retrieves its contributors later at run time

3.1.3.3 With notification
To integrate contributors later at run time a host can poll its contributors a shown
in Section 3.1.3.2. However, if the composition infrastructure notifies the host
when new contributors are available, the host can react to the changes immedi-

Page 23

ately. To demonstrate this, we show an example using the OSGi service registry
[OSGi, 2011]. The service registry maintains all available contributors. Using a
tracker, a host can receive a notification (i.e., a call to its method addingService)
when a new contributor is added to the service registry (cf. Figure 9; note, the
code is simplified for the sake of shortness).

class	 Library	 {
	 	 List<Books>	 bookStores;
	 	 BooksTracker	 tracker;

	 	 class	 BooksTracker	 extends	 ServiceTracker	 {
	 	 	 	 BooksTracker(BundleContext	 context)	 {
	 	 	 	 	 	 super(context,	 Books.class.getName(),	 null);
	 	 	 	 }
	 	 	 	 Object	 addingService(ServiceReference	 ref)	 {
	 	 	 	 	 	 Books	 books	 =	 (Books)	 context.getService(ref);
	 	 	 	 	 	 bookStores.add(books);
	 	 	 	 	 	 return	 books;
	 	 	 	 }
	 	 }

	 	 Library(BundleContext	 context)	 {
	 	 	 	 bookStores	 =	 new	 CopyOnWriteArrayList<Books>();
	 	 	 	 //	 register	 tracker	 for	 contributors
	 	 	 	 tracker	 =	 new	 BooksTracker(context);
	 	 	 	 tracker.open();
	 	 	 	 //	 get	 current	 contributors
	 	 	 	 for	 (ServiceReference	 ref	 :	 tracker.getServiceReferences())	 {
	 	 	 	 	 	 Books	 b	 =	 (Books)	 tracker.getService(ref);
	 	 	 	 	 	 bookStores.add(b);
	 	 	 	 }
	 	 	 	 //	 ...	 create	 the	 user	 interface	 ...
	 	 }
	 	 //	 ...	 main	 method,	 etc.	 ...
}

Figure 9: Host that retrieves its contributors when it is notified

3.1.3.4 Permanently
A composition infrastructure can make the contributors to the hosts available per-
manently. This means that once a host has retrieved a contributor and stores a
reference to it, the contributor cannot be removed from the host, i.e., the host can
use it permanently. Figure 9 shows a host that uses its contributors permanently.

3.1.3.5 Temporarily
A composition infrastructure that supports run-time reconfiguration makes con-
tributors only temporarily available to hosts. This means that the hosts are notified
when contributors become available, as well as when contributors are removed.
Figure 10 shows the host implementation from Figure 9 with an extended service

Page 24

tracker that reacts to removal notifications by releasing the contributor via the
method ungetService.

class	 Library	 {
	 	 List<Books>	 bookStores;

	 	 class	 BooksTracker	 extends	 ServiceTracker	 {
	 	 	 	 //	 ...	 constructor	 and	 addingService	 shown	 in	 Figure	 9
	 	 	 	 void	 removedService(ServiceReference	 ref,	 Object	 service)	 {
	 	 	 	 	 	 Books	 books	 =	 (Books)	 service;
	 	 	 	 	 	 context.ungetService(ref);
	 	 	 	 	 	 bookStores.remove(books);
	 	 	 	 }
	 	 }
	 	 //	 ...	 constructor	 shown	 in	 Figure	 9
}

Figure 10: Host that uses its contributors temporarily

3.1.3.6 In predictable order (same contract)
Contributors for a contract can be provided to the host in predictable order, i.e.,
the host gets the contributors in the same order on every program run. To demon-
strate this, we refer to the example in Figure 3 where the host identifies the con-
tributors by component and instantiates them using the new statement in the de-
sired order:

	 	 local	 =	 new	 LocalBooks();
	 	 offsite	 =	 new	 OffsiteBooks();

3.1.3.7 In unpredictable order (same contract)
The order in which the composition infrastructure provides contributors to a host
can be unpredictable. For example, a composition infrastructure with this behav-
ior is the Java service loader. The order in which the service loader provides con-
tributors depends on the class path. If the host retrieves the contributors as
shown in Figure 11, the order of the contributors depends on the configured class
path.

ServiceLoader<Books>	 bookServices	 =	 ServiceLoader.load(Books.class);
for	 (Books	 b	 :	 bookServices)	 {
	 	 //	 ...	 use	 the	 books	 contributor	 ...
}

Figure 11: Host that retrieves its contributors in unpredictable order

3.1.3.8 All at once (same contract)
The host can retrieve all contributors for a contract at once. An example for this is
the constructor injection as used in PicoContainer [PicoContainer, 2011]. The host
shown in Figure 12 gets all contributors in an array, which is passed to its con-
structor when it is created.

Page 25

class	 Library	 {
	 	 List<Books>	 bookStores;
	 	 Library(Books[]	 bookStores)	 {
	 	 	 	 bookStores	 =	 Arrays.asList(bookStores);
	 	 	 	 //	 ...	 create	 the	 user	 interface	 ...	
	 	 }
	 	 //	 ...	 main	 method,	 etc.	 ...
}

Figure 12: Host that retrieves all its contributors at once

3.1.3.9 Continuously (same contract)
A composition infrastructure that supports dynamic discovery can provide the
contributors to the host continuously as soon as they become available. In Fig-
ure 13, the Plux [Wolfinger, 2010] composition infrastructure sends a notification
to the host for each available contributor, i.e., it calls the method AddBookStore
for every Books contributor that becomes available.

[Extension]
[Slot("Books",	 OnPlugged="AddBookStore")]
class	 Library	 {
	 	 List<Books>	 bookStores	 =	 new	 List<Books>();
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStores.Add((Books)	 args.Plug.Extension.Object);
	 	 }
}

Figure 13: Host that receives its contributors continuously

3.1.3.10 In predictable order (different contracts)
A host that uses multiple contracts can retrieve the contributors for these con-
tracts in predictable order, i.e., it retrieves all contributors for one contract before
it retrieves all contributors for the next contract, and so forth. To demonstrate this
behavior, we extend our library example (cf. Figure 2 on page 19) with a logger
contract. The library uses the logger to print the name of each book store contrib-
utor when it is added. Creating the contributors for the different contracts in pre-
dictable order, i.e., creating the logger with the new statement before calling the
add method, ensures that the logger is ready when needed (cf. Figure 14).

Page 26

class	 Library	 {
	 	 List<Books>	 bookStores	 =	 new	 ArrayList<Books>();
	 	 Logger	 logger;

	 	 Library()	 {
	 	 	 	 logger	 =	 new	 Logger();
	 	 	 	 add(new	 LocalBooks());
	 	 	 	 add(new	 OffsiteBooks());
	 	 }

	 	 void	 add(Books	 b)	 {
	 	 	 	 bookStores.add(b);
	 	 	 	 logger.print("Book	 store	 added:	 "	 +	 b.getName());
	 	 }

	 	 //	 ...	 main	 method,	 etc.	 ...
}

Figure 14: Host that retrieves its contributors for different contracts in predictable order

3.1.3.11 In unpredictable order (different contracts)
A composition infrastructure that supports dynamic discovery can provide the
contributors for different contracts in unpredictable order. In Figure 15, the Plux
[Wolfinger, 2010] composition infrastructure sends notifications when a Books
contributor or a Logger contributor is available. The order in which Plux provides
the contributors for these contracts is undefined, i.e., the book store could be
provided before the logger is ready. The method AddBookStore cannot rely on an
initialized logger and must therefore use an if-statement to avoid potential errors.

[Extension]
[Slot("Books",	 OnPlugged="AddBookStore")]
[Slot("Logger",	 OnPlugged="SetLogger")]
class	 Library	 {
	 	 List<Books>	 bookStores	 =	 new	 List<Books>();
	 	 Logger	 logger;

	 	 void	 SetLogger(CompositionEventArgs	 args)	 {
	 	 	 	 logger	 =	 (Logger)	 args.Plug.Extension.Object;
	 	 }

	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 Books	 books	 =	 (Books)	 args.Plug.Extension.Object;
	 	 	 	 if	 (logger	 !=	 null)	 {
	 	 	 	 	 	 logger.print("Book	 store	 added:	 "	 +	 b.getName());
	 	 	 	 }
	 	 	 	 bookStores.Add(books);
	 	 }
}

Figure 15: Host that retrieves its contributors for different contracts in unpredictable order

Page 27

3.1.3.12 All at once (different contracts)
A host that uses multiple contracts can retrieve the contributors for all contracts
at once. Figure 16 uses constructor injection based on PicoContainer [PicoCon-
tainer, 2011]. The constructor of the library gets all contributors passed as argu-
ments at once, i.e., it gets the contributor for the Logger contract, as well as the
contributors for the Books contract.

class	 Library	 {
	 	 Logger	 logger;
	 	 List<Books>	 bookStores;
	 	 Library(Logger	 logger,	 Books[]	 bookStores)	 {
	 	 	 	 this.logger	 =	 logger;
	 	 	 	 bookStores	 =	 Arrays.asList(bookStores);
	 	 	 	 //	 ...	 create	 the	 user	 interface	 ...	
	 	 }
	 	 //	 ...	 main	 method,	 etc.	 ...
}

Figure 16: Host that retrieves contributors for all contracts at once

3.1.3.13 Continuously (different contracts)
A composition infrastructure that supports dynamic discovery can provide the
contributors for different contracts continuously, i.e., a contributor for one con-
tract can be followed by a contributor for another contract, again followed by a
contributor for the first contract, and so on. In the Plux-based host implementa-
tion shown in Figure 15, Plux provides the contributors not only in unpredictable
order, but also continuously, i.e., a book store can be followed by a logger, which
is again followed by further book stores.

3.1.4 Contributor registration
A composition infrastructure can store in a registry which contributors are avail-
able, which of them have already been provided to hosts, and which are currently
in use. Such a registry can be used by the hosts of an application to retrieve con-
tributors or by tools to keep track, which contributors are in use by which hosts.
We classify composition infrastructures into those, which maintain the registry
globally and those which maintain it in a host-specific way.

3.1.4.1 Global availability
In order to provide a contributor to a host, the composition infrastructure must
know which contributors are available. To do so, it can store a global set of com-
ponents commonly available to every host. Whenever a host requests a contribu-
tor, the composition infrastructure provides it. For example the Java service
loader maintains such a global registry. Figure 17 shows how hosts can query the

Page 28

service loader for contributors. As the registry is global, every host retrieves the
same set of contributors.

ServiceLoader<Books>	 bookServices	 =
	 	 	 	 ServiceLoader.load(Books.class);
for	 (Books	 b	 :	 bookServices)	 {
	 	 //	 ...	 use	 the	 books	 contributor	 ...
}

Figure 17: Host that retrieves its contributors from a global registry

3.1.4.2 Global usage
A composition infrastructure can store if an available contributor is in use. As
composition infrastructures that support run-time reconfiguration need to remove
contributors during reconfiguration, they use such a registry to keep track of
which contributors are in use. An example for such a system is OSGi. Using a
tracker, a host can detect when a contributor is added and start to use it. A host
can also detect when a contributor is removed and stop to use it (cf. Figure 18).
OSGi keeps track of the used contributors by counting the getService (a host
starts using a contributor) and ungetService (a host stops using a contributor)
calls.

class	 Library	 {
	 	 class	 BooksTracker	 extends	 ServiceTracker	 {
	 	 	 	 Object	 addingService(ServiceReference	 ref)	 {
	 	 	 	 	 	 Books	 books	 =	 (Books)	 context.getService(ref);
	 	 	 	 	 	 //	 ...	 store	 books	 contributor	 for	 later	 use	 ...
	 	 	 	 	 	 return	 books;
	 	 	 	 }
	 	 	 	 void	 removedService(ServiceReference	 ref,	 Object	 service)	 {
	 	 	 	 	 	 Books	 books	 =	 (Books)	 service;
	 	 	 	 	 	 context.ungetService(ref);
	 	 	 	 	 	 //	 ...	 remove	 books	 contributor	 ...
	 	 	 	 }
	 	 }
}

Figure 18: Host that retrieves its contributors from a registry which stores global contributor usage

3.1.4.3 Host-specific availability
Composition infrastructures can store per host which contributors are available to
them. The composition infrastructure can retrieve this information, e.g., from a
configuration file. Figure 19 shows such a configuration file for Spring [Johnson et
al., 2011] and our library application. The Library host is configured to get the
contributors LocalBooks and OffsiteBooks. When Library is instantiated, Spring
injects the configured contributors into the Library’s constructor. Other hosts can
be configured with a different set of contributors (not shown).

Page 29

<beans>
	 	 <bean	 class="Library">
	 	 	 	 <constructor-‐arg>
	 	 	 	 	 	 <list>
	 	 	 	 	 	 	 	 <bean	 class="LocalBooks"	 />
	 	 	 	 	 	 	 	 <bean	 class="OffsiteBooks"	 />
	 	 	 	 	 	 </list>
	 	 	 	 </constructor-‐arg>
	 	 </bean>
</beans>

Figure 19: Host that retrieves its contributors from a registry which stores host-specific contributor
availability

3.1.4.4 Host-specific usage
Composition infrastructures that support dynamic reconfiguration can keep track
of which contributor instances are used by which specific hosts. Hosts can use
this information to share contributors; tools can use it to, for example, to visualize
the composition of the program, to store a snapshot of the composition, or to re-
configure the program. To demonstrate this, we show a composition state visual-
izer based on Plux [Wolfinger, 2010]. Plux maintains the composition state in the
instance store, i.e., it stores the extensions and their connections. The visualizer
component retrieves the composition state from the instance store and draws a
graph with the extensions and their connections (cf. Figure 20).

[Extension]
class	 Visualizer	 {
	 	 Extension	 self;
	 	 Visualizer(Extension	 self)	 {
	 	 	 	 this.self	 =	 self;
	 	 }
	 	 void	 DrawCompositionGraph()	 {
	 	 	 	 InstanceStore	 store	 =	 self.Runtime.InstanceStore;
	 	 	 	 foreach	 (Extension	 e	 in	 store.Extensions)	 {
	 	 	 	 	 	 var	 connectionsToHosts	 =	 e.Plugs;
	 	 	 	 	 	 var	 connectionsToContributors	 =	 e.Slots;
	 	 	 	 	 	 //	 ...	 draw	 extension	 and	 connections	 ...
	 	 	 	 }
	 	 }
	 	 //	 ...	 user	 interface,	 etc.	 ...
}

Figure 20: Component that retrieves the composition from a registry which stores host-specific
contributor usage

3.1.5 Contributor cardinality
Hosts can request contributors in different cardinalities. A host can request a sin-
gle mandatory contributor, a single optional contributor, or multiple contributors.
Let us look at an example for each scenario.

Page 30

3.1.5.1 Single mandatory contributor
A host that requests a single mandatory contributor depends on this contributor
and cannot be used without it. We demonstrate this scenario with a C [Kernighan
and Ritchie, 1988] implementation of the library host. In this example, the library
host depends on the local book store and therefore statically binds the local
books contributor, i.e., it includes the corresponding header file and initializes the
contributor (cf. Figure 21).

#include	 "LocalBooks.h"
int	 main(int	 argc,	 char	 **argv)	 {
	 	 LocalBooksInit();
	 	 //	 ...	 use	 the	 local	 book	 store	 ...
}

Figure 21: Host that depends on a single mandatory contributor

3.1.5.2 Single optional contributor
A host that requests a single optional contributor can be used with or without this
contributor. We demonstrate this scenario with a C [Kernighan and Ritchie, 1988]
implementation of the library host using a Windows dynamic link library [Petzold,
1998]. The library host uses the optional offsite book store if it is available, i.e., if
the LoadLibrary call succeeds. Otherwise, it falls back to the local book store (cf.
Figure 22).

#include	 <Windows.h>
#include	 "LocalBooks.h"
#include	 "OffsiteBooks.h"
int	 main(int	 argc,	 char	 **argv)	 {
	 	 HINSTANCE	 offsite	 =	 LoadLibrary("OffsiteBooks.dll");
	 	 if	 (offsite	 !=	 NULL)	 {
	 	 	 	 OffsiteBooksInit	 *init	 =	 (OffsiteBooksInit)
	 	 	 	 	 	 	 	 GetProcAddress(offsite,	 "OffsiteBooksInit");
	 	 	 	 (*init)();
	 	 	 	 //	 ...	 use	 the	 offsite	 book	 store	 ...
	 	 }	 else	 {
	 	 	 	 LocalBooksInit();
	 	 	 	 //	 ...	 use	 the	 local	 book	 store	 ...
	 	 }
}

Figure 22: Host that can be extended with a single optional contributor

3.1.5.3 Multiple contributors
A host that requests multiple contributors can be used without any contributor,
with a single contributor, or with multiple contributors. We demonstrate this
scenario with a PicoContainer [PicoContainer, 2012] implementation of the library
host. In this example, the library host uses the contributors which are injected into

Page 31

its constructor. If no contributors are injected it falls back to the local book store
(cf. Figure 23).

class	 Library	 {
	 	 Library(Books[]	 bookStores)	 {
	 	 	 	 if	 (bookStores.length	 >	 0)	 {
	 	 	 	 	 	 //	 ...	 work	 with	 the	 book	 stores	 ...
	 	 	 	 }	 else	 {
	 	 	 	 	 	 //	 ...	 fall	 back	 to	 local	 book	 store	 ...
	 	 	 	 }
	 	 }
}

Figure 23: Host that retrieves multiple contributors

3.2 Classification of composition mechanisms
The composition mechanism of a composition infrastructure determines how
hosts and contributors are connected. A composition mechanism is defined by
the contributor provision characteristics described in Section 3.1. In this section,
we define the following classes of composition mechanisms:

Compile-time binding .. The components are bound at compile time and de-
ployed as a single entity.

Run-time binding .. The components are deployed in multiple entities.
The hosts bind their contributors at run time.

Startup-time lookup .. The contributors register their provided contracts.
When a host is instantiated, it retrieves the contribu-
tors for its requested contracts from the registry.

Startup-time injection .. The hosts register their requested contracts and the
contributors register their provided contracts. When
a host is instantiated, the composition infrastructure
injects the contributors, which fulfill the requested
contracts into the host.

Run-time lookup .. Similar to startup-time lookup, but further contribu-
tors can become available while the host is running.

Run-time lookup with
notification

.. Similar to run-time lookup, but contributors can be
removed at run time and the composition infrastruc-
ture notifies the hosts upon changes in contributor
availability.

Run-time injection .. Similar to startup-time injection, but further contribu-
tors can be injected at run time. Also similar to run-
time lookup with notification, but the composition in-
frastructure can inject a different set of contributors
into each host.

Page 32

Run-time injection with
tracking

.. Similar to run-time injection, but the composition in-
frastructure keeps track of which contributors are
used by each host.

Figure 24 shows an overview of the composition mechanisms with their contribu-
tor provision characteristics. The following subsections explain the composition
mechanisms in detail with their specific contributor provision characteristics.

Page 33

1. C
om

pile-tim
e binding

2. Run-tim
e binding

4. Startup-tim
e injection

3. Startup-tim
e lookup

Contributor identification
by component
by contract

6. Run-tim
e lookup w

ith notification
7. Run-tim

e injection
8. Run-tim

e injection w
ith tracking

Contributor instantiation
by host
by infrastructure

Contributor availability
at host instantiation
later at run time

permanent
temporary

Contributor registration
global availability

5. Run-tim
e lookup

Contributor cardinality
single mandatory
single optional
multiple

in predictable order
in unpredictable order
all at once
continuously
in predictable order
in unpredictable order
all at once
continuously

Composition mechanism

C
ontributor provision characteristics

host-specific availability

with notification

globally uniform
host-specific

global usage

host-specific usage

sam
e

contract
different
contracts

Figure 24: Composition mechanisms classified by their contributor provision characteristics

Page 34

3.2.1 Compile-time binding
The compile-time binding composition mechanism composes a program at com-
pile time. The composed program has a monolithic architecture and is deployed
as a single entity. After such a program is built and deployed, it cannot be extend-
ed with further components nor can anything be removed from it. On every run,
exactly the same code is executed. Typical representatives of compile-time bind-
ing systems are C/C++, Java, and .Net.

Figure 25 shows the Java implementation of the library example. The local books
and offsite books contributors are identified by component name and instantiated
by the library host. The new operator always creates a new instance and thus is a
globally uniform instantiation mechanism. The contributors are referenced in the
source code, linked at compile time, and thus available to the host at any time,
i.e., the host can use the contributors starting from host instantiation time and it
can do so permanently until the program quits. As the source code of the host
determines the order in which the contributors are created, the host can rely on
this order and can access all contributors at once. As one new statement always
corresponds to one contributor, the cardinality is single and mandatory. When the
program is built using the javac and jar commands, the contributors are statically
linked to the library host.

//	 Build	 program	 with:
//	 	 	 java	 Library.java	 LocalBooks.java	 OffsiteBooks.java
//	 	 	 jar	 -‐cf	 Library.jar	 Library.class	 LocalBooks.class
//	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 OffsiteBooks.class
class	 Library	 {
	 	 LocalBooks	 local;
	 	 OffsiteBooks	 offsite;
	 	 Library()	 {
	 	 	 	 local	 =	 new	 LocalBooks();
	 	 	 	 offsite	 =	 new	 OffsiteBooks();
	 	 	 	 //	 ...	 create	 the	 user	 interface	 ...	
	 	 }
}

Figure 25: Library application composed with compile-time binding

3.2.2 Run-time binding
The run-time binding composition mechanism composes a program in two steps.
The set of contributors comprising the program is chosen at compile time; how-
ever the actual composition is done at startup time. The program can have optio-
nal contributors if it has fallback implementations for contributors which are un-
available at startup time. Similar to compile-time binding, the composed program
is monolithic and cannot be extended beyond the set of contributors chosen at
compile time. In contrast to compile-time binding, the program is deployed in

Page 35

multiple files and a contributor file can be removed from the program. Typical rep-
resentatives of run-time binding systems are Windows dynamic link libraries [Pet-
zold, 1998] and Unix shared objects [Committee, 1995].

Figure 26 shows the C implementation of a host that uses dynamic link libraries.
The local books library is a mandatory contributor, thus the host fails if it is un-
available. In contrast, the offsite books library is optional, i.e., the host uses it if it
is available; if it is unavailable the host works with the local books library only.

#include	 <Windows.h>
#include	 "LocalBooks.h"
#include	 "OffsiteBooks.h"
int	 main(int	 argc,	 char	 **argv)	 {
	 	 HINSTANCE	 local,	 offset;
	 	 local	 =	 LoadLibrary("LocalBooks.dll");
	 	 if	 (local	 ==	 NULL)	 {
	 	 	 	 return	 1;
	 	 }
	 	 //	 ...	 use	 the	 local	 book	 store	 ...
	 	 offsite	 =	 LoadLibrary("OffsiteBooks.dll");
	 	 if	 (offsite	 !=	 NULL)	 {
	 	 	 	 //	 ...	 use	 the	 offsite	 book	 store	 ...
	 	 }
}

Figure 26: Library application using one mandatory and one optional contributor, composed with
the run-time binding composition mechanism

3.2.3 Startup-time lookup
In programs that use the startup-time lookup composition mechanism hosts
identify their contributors by contract. The deployed program comprises the hosts
and the contributors as well as a configuration that assigns contributors to each
contract. At startup time, the hosts look up the available contributors for their
contracts that were assigned to these contracts in the configuration. The configu-
ration is global, i.e., for a requested contract every host retrieves the same set of
contributors. The configuration supports different cardinalities by specifying a sin-
gle contributor or multiple contributors for a contract in the configuration. If a host
provides a fallback when no contributor is configured the contributor is optional,
otherwise it is mandatory. A technique to compose programs with startup-time
lookup is described by Fröhlich and Schwarzinger [2005, 2006].

Figure 27 shows the C# implementation of a library host which uses startup-time
lookup to request a book store contributor by contract. The Books class is the
contract for book store contributors as well as the factory for them. Fröhlich and
Schwarzinger call this combination of contract and factory a connector. When the
Books connector is loaded it looks up the contributor in the configuration file (cf.
Figure 27c), i.e., it retrieves the assembly and the type of the configured contribu-

Page 36

tor and instantiates it. In our example, this is the LocalBooks contributor (cf. Fig-
ure 27b). The library host (cf. Figure 27d) retrieves the contributor from the static
method Get in the class Books (cf. Figure 27a).

a)

class	 Books	 {
	 	 static	 Books	 books;
	 	 static	 Books()	 {
	 	 	 	 try	 {
	 	 	 	 	 	 string	 assemblyName	 =
	 	 	 	 	 	 	 	 	 	 ConfigurationManager.AppSettings["BooksProvider"];
	 	 	 	 	 	 string	 booksName	 =
	 	 	 	 	 	 	 	 	 	 ConfigurationManager.AppSettings["BooksClass"];
	 	 	 	 	 	 Assembly	 booksAssembly	 =	 Assembly.LoadFrom(assemblyName);
	 	 	 	 	 	 Type	 type	 =	 booksAssembly.GetType(booksName);
	 	 	 	 	 	 books	 =	 (Books)	 Activator.CreateInstance(type);
	 	 	 	 }	 catch	 (Exception)	 {
	 	 	 	 	 	 //	 ...	 load	 a	 default	 implementation	 ...
	 	 	 	 }
	 	 }
	 	 public	 static	 Books	 Get()	 {
	 	 	 	 	 	 return	 books;
	 	 }
	 	 //	 ...	 abstract	 book	 store	 methods	 ...
}

b)
class	 LocalBooks	 :	 Books	 {
	 	 //	 ...	 book	 store	 method	 implementations	 ...
}

c)

<?xml	 version="1.0"	 encoding="utf-‐8"?>
<configuration>
	 	 <appSettings>
	 	 	 	 <add	 key	 =	 "BooksProvider"	 value	 =	 "LocalBooks.dll"	 />
	 	 	 	 <add	 key	 =	 "BooksClass"	 value	 =	 "LocalBooks"	 />
	 	 </appSettings>
</configuration>

d)

class	 Library	 {
	 	 static	 void	 Main(string[]	 args)	 {
	 	 	 	 Books	 books	 =	 Books.Get();
	 	 	 	 //	 ...	 use	 the	 book	 store	 ...
	 	 }
}

Figure 27: Library host retrieving the contributors as specified in a configuration file, using the
startup-time lookup composition mechanism

3.2.4 Startup-time injection
In programs that use the startup-time injection composition mechanism the hosts
just declare which contracts they request. The composition infrastructure instanti-
ates the contributors and injects them into the hosts. The deployed program
comprises hosts, contributors, and a configuration. The configuration determines
which contributors are injected into which hosts, thus the contributors can be
provided in a host-specific way. The contributors can be injected into the con-

Page 37

structor of a host, into the fields of the host object, or via method calls. Represen-
tatives of startup-time injection systems are dependency injection containers
such as PicoContainer [PicoContainer, 2012], Spring [Johnson et al., 2011], and
Microsoft Unity [Microsoft, 2010a].

Figure 28 shows a Spring implementation of the library host which gets its con-
tributors by constructor injection. The Spring infrastructure reads the desired
composition from the configuration file (cf. Figure 28a), instantiates the Local-
Books contributor and injects it into the Library host via the constructor (cf. Fig-
ure 28b). Please note, that other hosts which request the same contract can be
injected with a different set of contributors.

a)

<beans>
	 	 <bean	 class="Library">
	 	 	 	 <constructor-‐arg>
	 	 	 	 	 	 <bean	 class="LocalBooks"	 />
	 	 	 	 </constructor-‐arg>
	 	 </bean>
</beans>

b)

class	 Library	 {
	 	 Books	 bookStore;
	 	 Library(Books	 bookStore)	 {
	 	 	 	 this.bookStore	 =	 bookStore;
	 	 	 	 //	 ...	 create	 the	 user	 interface	 ...	
	 	 }
	 	 //	 ...	 main	 method,	 etc.	 ...
}

Figure 28: Library host that uses startup-time injection to obtain its contributors as specified in a
configuration file

3.2.5 Run-time lookup
In programs that use the run-time lookup composition mechanism the hosts re-
trieve the contributors for a contract from the composition infrastructure. As the
composition infrastructure can add contributors at run time, the retrievable set of
contributors can be different between two retrievals. By this, run-time lookup sup-
ports dynamic additions. However, whether a specific host supports dynamic ad-
ditions depends on its implementation. A host that retrieves contributors at sever-
al points in time supports dynamic addition, whereas a host that retrieves the
contributors only once (e.g., at startup time) does not. Typical representatives for
run-time lookup are the Java service loader [Oracle, 2006] and the Microsoft
Component Object Model [Microsoft, 1995].

Figure 29 shows the Java service loader implementation of the library host. When
the library is instantiated, it retrieves the initial set of contributors for the Books
contract from the service loader. Later during operation, it continually asks the
service loader to retrieve an updated set of contributors. Thus contributors that

Page 38

have been added to the class path in the meantime will appear in the contributor
set.

class	 Library	 {
	 	 Set<Books>	 bookStores	 =	 new	 HashSet<Books>();
	 	 ServiceLoader<Books>	 bookServices;

	 	 Library()	 {
	 	 	 	 bookServices	 =	 ServiceLoader.load(Books.class);
	 	 	 	 updateBookStores();
	 	 	 	 //	 ...	 create	 the	 user	 interface	 ...	
	 	 }

	 	 void	 updateBookStores()	 {
	 	 	 	 bookServices.reload();
	 	 	 	 for	 (Books	 b	 :	 bookServices)	 {
	 	 	 	 	 	 bookStores.add(b);
	 	 	 	 }
	 	 }
	 	 //	 ...	 main	 method,	 etc.	 ...
}

Figure 29: Library host supporting dynamic additions by continually looking up the contributors
using the run-time lookup composition mechanism

3.2.6 Run-time lookup with notification
In programs that use the run-time lookup with notification composition mecha-
nism the hosts retrieve the contributors for a contract from the composition infra-
structure. The composition infrastructure can add and remove contributors at run
time. On such changes, it notifies the hosts. A host that reacts to these notifica-
tions by retrieving the updated set of contributors supports dynamic additions.
Typical representatives for run-time lookup with notification are the OSGi frame-
work [2011], Eclipse [2003], and NetBeans [Boudreau et al., 2007].

Figure 30 shows the OSGi implementation of the library host. In the constructor,
the library host retrieves the initial set of contributors from the service tracker.
During operation, the host uses the service tracker to listen to the change notifi-
cations of the composition infrastructure. On an addition notification, the host re-
trieves the added contributor and starts using it. Vice-versa, on a removal notifi-
cation, the host stops using the contributor and gives it back.

Page 39

class	 Library	 {
	 	 List<Books>	 bookStores;
	 	 BooksTracker	 tracker;

	 	 class	 BooksTracker	 extends	 ServiceTracker	 {
	 	 	 	 BooksTracker(BundleContext	 context)	 {
	 	 	 	 	 	 super(context,	 Books.class.getName(),	 null);
	 	 	 	 }
	 	 	 	 Object	 addingService(ServiceReference	 ref)	 {
	 	 	 	 	 	 Books	 books	 =	 (Books)	 context.getService(ref);
	 	 	 	 	 	 bookStores.add(books);
	 	 	 	 	 	 return	 books;
	 	 	 	 }
	 	 	 	 void	 removedService(ServiceReference	 ref,	 Object	 service)	 {
	 	 	 	 	 	 Books	 books	 =	 (Books)	 service;
	 	 	 	 	 	 bookStores.remove(books);
	 	 	 	 	 	 context.ungetService(ref);
	 	 	 	 }
	 	 }

	 	 Library(BundleContext	 context)	 {
	 	 	 	 bookStores	 =	 new	 CopyOnWriteArrayList<Books>();
	 	 	 	 tracker	 =	 new	 BooksTracker(context);
	 	 	 	 tracker.open();
	 	 	 	 for	 (ServiceReference	 ref	 :	 tracker.getServiceReferences())	 {
	 	 	 	 	 	 Books	 b	 =	 (Books)	 tracker.getService(ref);
	 	 	 	 	 	 bookStores.add(b);
	 	 	 	 }
	 	 }
	 	 //	 ...	 main	 method,	 etc.	 ...
}

Figure 30: Library host that updates its contributors at run time using the run-time lookup with no-
tification composition mechanism

3.2.7 Run-time injection
Composition infrastructures with the run-time injection composition mechanism
inject the contributors into the host in the same way as startup-time injection
does. However, run-time injection does so continuously while the host is running.
The host can get contributors via method calls and through constructor or field
injection. In the case of constructor and field injection, the host usually uses an
observable collection of contributors and monitors it for changes. Typical repre-
sentatives for run-time injection are the Microsoft Managed Extensibility Frame-
work (MEF, [Microsoft, 2010b]) and the Plux composition infrastructure [Wolfinger,
2010].

Figure 31 shows an implementation of the library host, which uses MEF to get its
contributors. Hosts and contributors (both are called parts) declare their provided
(called exports) and required (called imports) contracts using attributes. The
Books contract is exported by the local books contributor (cf. Figure 31a) and im-
ported by the library host (cf. Figure 31b). The library host declares the import in a

Page 40

way so that it requests multiple books contributors and allows recomposition. The
main method of the program (cf. Figure 31c) initiates the composition. It creates a
composition container and composes the parts Library and LocalBooks. During
composition, MEF fills the Books import of the library host with the matching
Books export of the LocalBooks contributor. When new parts are added to the
container later at run time, the composition infrastructure recomposes the pro-
gram, i.e., it injects the new contributors into the BookStores property.

a)

interface	 Books	 {
	 	 //	 ...	 book	 store	 methods	 ...
}

[Export(typeof(Books))]
class	 LocalBooks	 :	 Books	 {
	 	 //	 ...	 book	 store	 method	 implementations	 ...
}

b)

class	 Library	 {
	 	 [ImportMany(AllowRecomposition=true)]
	 	 IEnumerable<Books>	 BookStores	 {	 get;	 set;	 }
	 	 void	 UseBookStores()	 {
	 	 	 	 foreach	 (Books	 bookStore	 in	 BookStores)	 {
	 	 	 	 	 	 //	 ...	 use	 book	 store	 ...
	 	 	 	 }
	 	 }
}

c)

class	 Application	 {
	 	 static	 void	 Main(string[]	 args)	 {
	 	 	 	 var	 library	 =	 new	 Library();
	 	 	 	 var	 container	 =	 new	 CompositionContainer();
	 	 	 	 container.ComposeParts(library,	 new	 LocalBooks());
	 	 	 	 //	 ...	 use	 the	 library	 ...
	 	 }
}

Figure 31: Library host that gets its contributors from the composition infrastructure using the run-
time injection composition mechanism

3.2.8 Run-time injection with tracking
Composition infrastructures with the run-time injection with tracking composition
mechanism maintain the connections between the hosts and their contributors in
the program, i.e., they keep track of which hosts use which contributors. This af-
fects the host implementation: with run-time injection with tracking, the hosts do
not need to store their contributors themselves, instead they can retrieve them
from the composition infrastructure on demand. When the composition infrastruc-
ture changes the contributors at run time, the hosts automatically have the new
contributors, because they retrieve their contributors on every access instead of
maintaining a copy internally. A representative for run-time injection with tracking
is the Plux composition infrastructure [Wolfinger, 2010].

Page 41

Figure 32 shows a Plux implementation of the library host. Hosts and contributors
declare their provided and requested contracts using attributes. The library host
(cf. Figure 32a) uses a slot to specify that it requests contributors for the contract
Books (cf. Figure 32b). The local book store (cf. Figure 32c) uses a plug of kind
Books to specify that it is such a contributor. The Plux default is that slots request
multiple contributors and allow recomposition. At startup Plux performs the initial
composition as follows: it starts a core extension, which has an Application slot; it
fills the Application slot with the library (which has an Application plug); it fills the
Books slot of the library with the Books plug of the LocalBooks extension. When
Plux detects that contributors are added or removed at run time, it updates the
composition state accordingly. These composition changes are reflected in the
hosts immediately.

a)

[Extension]
[Plug("Application")]
[Slot("Books")]
class	 Library	 :	 IApplication	 {
	 	 Slot	 booksSlot;
	 	 Library(Extension	 self)	 {
	 	 	 	 booksSlot	 =	 self.Slots["Books"];
	 	 }
	 	 void	 UseBookStores()	 {
	 	 	 	 foreach	 (Plug	 p	 in	 booksSlot.PluggedPlugs)	 {
	 	 	 	 	 	 Books	 bookStore	 =	 (Books)	 p.Extension.Object;
	 	 	 	 	 	 //	 ...	 use	 book	 store	 ...
	 	 	 	 }
	 	 }
}

b)
[SlotDefinition("Books")]
interface	 Books	 {
	 	 //	 ...	 book	 store	 methods	 ...
}

c)

[Extension]
[Plug("Books")]
class	 LocalBooks	 :	 Books	 {
	 	 //	 ...	 book	 store	 method	 implementations	 ...
}

Figure 32: Library host that gets its contributors from the composition infrastructure using the run-
time injection composition mechanism

3.3 Composability fault classification
Every composition mechanism (cf. Section 3.2) has specific contributor provision
characteristics (cf. Section 3.1). These characteristics may lead to a specific set
composability faults, which fall into the following classes:

Page 42

Host faults .. Are faults that cause errors in hosts because the host im-
plementation does not comply with the contributor provi-
sion characteristics of the used composition mechanism
(cf. Sections 3.3.1 - 3.3.5).

Contributor faults .. Are faults in contributors that cause errors in correctly im-
plemented hosts, because the contributor implementation
does not correspond to the composition standard of the
composition infrastructure (cf. Section 3.3.6).

Composition
standard
violations

.. Are faults that cause errors in components, because the
component implementation violates the composition
standard. Such a fault can cause an error in the faulty
component itself or in other components. Since examples
for composition standard violations can only be given in
the context of a specific composition standard, we refer to
Chapters 4 and 5: Chapter 4 presents the Plux composi-
tion standard. Chapter 5 presents faults in the Plux con-
text, including composition standard violations.

3.3.1 Contributor cardinality faults
A contributor cardinality fault is a mismatch between the cardinality supported by
a host (host cardinality) and the cardinality composed by a composition mecha-
nism (composed cardinality). Ordered from least to most flexible, the contributor
cardinalities are: single mandatory, single optional, and multiple. A contributor
cardinality mismatch causes an error, if the host cardinality is less flexible than the
composed cardinality, otherwise the mismatch does not cause errors. For exam-
ple, a host cardinality of single mandatory can cause an error with a composed
cardinality of single optional, namely if the composition mechanism cannot pro-
vide a contributor. In contrast, the reverse scenario does not cause errors, be-
cause the single optional host works flawlessly with an always provided
contributor.

The following subsections show examples for the possible mismatch scenarios.

3.3.1.1 Single mandatory vs. single optional
A host with single mandatory cardinality causes errors if it is composed without a
contributor. This can happen with the composition mechanisms that use single
optional or multiple cardinality (cf. composition mechanisms 2 to 8 in Figure 24 on
page 34).

Page 43

Figure 33 shows a C implementation of the library host with single mandatory car-
dinality for the offsite book store contributor. The host treats the contributor as
mandatory, by using the contributor without checking the result of the load library
call. If the composition mechanism does not provide a contributor, this host fails.

This host is composed with the run-time binding composition mechanism, which
composes with single mandatory cardinality if the OffsiteBooks.dll is available and
with single optional otherwise. Thus if the dll is unavailable the host fails, because
the load library call does not provide the contributor.

#include	 <Windows.h>
#include	 "OffsiteBooks.h"
int	 main(int	 argc,	 char	 **argv)	 {
	 	 HINSTANCE	 offsite	 =	 LoadLibrary("OffsiteBooks.dll");
	 	 OffsiteBooksInit	 *init	 =	 (OffsiteBooksInit)
	 	 	 	 	 	 GetProcAddress(offsite,	 "OffsiteBooksInit");
	 	 (*init)();
	 	 //	 ...	 use	 the	 book	 store	 ...
}

Figure 33: Library host with single mandatory cardinality that fails if composed with a single optio-
nal cardinality composition mechanism

3.3.1.2 Single mandatory vs. multiple
A host with single mandatory cardinality also causes errors if it is composed with-
out a contributor (cf. Section 3.3.1.1), as well as if it is composed with more than
one contributors. More than one contributor can be provided by composition
mechanisms that use multiple cardinality (cf. composition mechanisms 3 to 8 in
Figure 24 on page 34).

Figure 34 shows a Plux implementation of the library host with single mandatory
cardinality for the book store contributor. The host treats the contributor as
mandatory by using it in the methods GetBook and Dispose without a prior null
reference check. Furthermore, as the host stores the contributor in a field, it sup-
ports only a single contributor. If the composition mechanism composes the host
with more than one contributor, the host overwrites the field and uses only the
last contributor composed. Moreover, it handles the book stores incorrectly, be-
cause it opens each book store when the contributor is connected, but closes
only the last one, when the host itself is disposed. As the other book stores re-
main open, their system resources stay improperly allocated.

Plux uses run-time injection with tracking composition, which composes with
multiple cardinality, i.e., it will provide all available book store contributors to the
host. Thus, if more than one contributor for the books contract is available at run
time, the fault in the host will result in an error, i.e., in unclosed book stores.

Page 44

Plux composes the host with multiple cardinality, i.e., it connects all available
book store contributors to the host by calling SetBookStore repeatedly. Thus, if
more than one contributor is available for the books contract, the fault in the host
causes erroneously unclosed book stores.

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "SetBookStore")]
class	 Library	 :	 IApplication,	 IDisposable	 {
	 	 Books	 bookStore;
	 	 void	 SetBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStore	 =	 (Books)	 args.Plug.Extension.Object;
	 	 	 	 bookStore.Open();
	 	 }
	 	 void	 Dispose()	 {
	 	 	 	 bookStore.Close();
	 	 }
	 	 Book	 GetBook(int	 bookId)	 {
	 	 	 	 return	 bookStore.GetBook(bookId);
	 	 }
}

Figure 34: Library host with single mandatory cardinality that fails if a multiple cardinality composi-
tion mechanism composes with zero or with more than one contributors

3.3.1.3 Single optional vs. multiple
A host with single optional cardinality works without a contributor, but causes er-
rors if it is composed with more than one contributor. With composition mecha-
nisms that use multiple cardinality, both scenarios can occur (cf. composition
mechanism 3 to 8 in Figure 24 on page 34).

Figure 35 shows a modified Plux implementation of the library host from Fig-
ure 34. In contrast to the host in the previous example, this host uses a statically
linked fallback book store if no contributor is connected. Thus the host works also
if no book store is connected; however, it still causes the same errors as de-
scribed in Section 3.3.1.2 if multiple contributors are connected.

Page 45

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "SetBookStore")]
class	 Library	 :	 IApplication,	 IDisposable	 {
	 	 Books	 fallback	 =	 new	 ...
	 	 Books	 bookStore;
	 	 void	 SetBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStore	 =	 (Books)	 args.Plug.Extension.Object;
	 	 	 	 bookStore.Open();
	 	 }
	 	 void	 Dispose()	 {
	 	 	 	 if	 (bookStore	 !=	 null)	 {
	 	 	 	 	 	 bookStore.Close();
	 	 	 	 }	 else	 {
	 	 	 	 	 	 fallback.Close();
	 	 	 	 }
	 	 }
	 	 Book	 GetBook(int	 bookId)	 {
	 	 	 	 if	 (bookStore	 !=	 null)	 {
	 	 	 	 	 	 return	 bookStore.GetBook(bookId);
	 	 	 	 }	 else	 {
	 	 	 	 	 	 return	 fallback.GetBook(bookId);
	 	 	 	 }
	 	 }
}

Figure 35: Library host with single optional cardinality that fails if a multiple cardinality composition
mechanism composes more than one contributor

3.3.2 Contributor availability faults
A contributor availability fault is a mismatch in terms of time, order, and duration
of contributor availability between how a host expects contributors and how a
composition mechanism provides contributors. Time means that contributors be-
come available at host instantiation time or later at run time. Order means that
contributors become available in predictable or unpredictable order, as well as
that they become available all at once or continuously. Duration means that con-
tributors are available permanently or temporarily. These categories imply the fol-
lowing faults:

Time fault .. A contributor availability time fault causes an error, if a host
expects the contributors to be available at host instantiation
time whereas the composition mechanism provides them only
later at run time.

Order fault .. A contributor availability order fault causes an error, if a host
expects the contributors in a predictable order whereas the
composition mechanism provides them in an unpredictable or-
der. Order also causes an error, if a host expects all contribu-
tors to become available at once whereas the composition
mechanism provides them continuously at run time.

Page 46

Duration fault .. A contributor availability duration fault causes an error, if a
host expects contributors to be available permanently where-
as the composition mechanism provides the contributors only
temporarily.

The following subsections show examples for the mismatch scenarios grouped
by time, order, and duration faults.

3.3.2.1 Time faults
A host that expects the contributors to be available at host instantiation time
causes errors if its contributors are not available at this time. These errors can oc-
cur with mandatory contributors as well as with optional contributors: in the
mandatory case, the host fails, because it tries to access a contributor which was
unavailable at instantiation time, even if it becomes available later. In the optional
case, the host fails, because it uses only the contributors that are available at in-
stantiation time and faultily neglects the contributors that become available later.

The following subsections show examples for the possible scenarios with a mis-
match between the time a host expects the contributors and the time a composi-
tion mechanism provides them.

3.3.2.1.1 Availability at host instantiation time vs. later at run time
Figure 36 shows an OSGi implementation of the library host that expects a book
store contributor to be available when the constructor is executed. In the con-
structor, the host requests the book store from the service tracker. If the book
store is unavailable at this time, the tracker returns a null reference and the host
fails when the method getBook is executed.

OSGi uses two composition mechanisms, run-time lookup and run-time lookup
with notification. This host implementation is incomplete, because it looks up the
contributors only at instantiation time. Neither does it update the contributors at
run time, nor does it react to the notifications from OSGi. Thus the host fails, if
OSGi provides the contributor later at run time.

Page 47

class	 Library	 {
	 	 Books	 bookStore;
	 	 Library(BundleContext	 context)	 {
	 	 	 	 ServiceTracker	 tracker	 =	 new	 ServiceTracker(context,
	 	 	 	 	 	 	 	 Books.class.getName(),	 null);
	 	 	 	 tracker.open();
	 	 	 	 bookStore	 =	 (Books)	 tracker.getService();
	 	 }
	 	 Book	 getBook(int	 bookId)	 {
	 	 	 	 return	 bookStore.getBook(bookId);
	 	 }
}

Figure 36: Library host with time fault that fails if the composition mechanism makes the contribu-
tor available only later at run time

3.3.2.1.2 Availability at host instantiation time vs. on notification
Figure 37 shows a modified OSGi implementation of the library host from Fig-
ure 36, which retrieves multiple book stores from the service tracker. Like the pre-
vious host, this host fails if the contributors are unavailable at instantiation time.
This host has a second time fault, because it neglects the contributors that be-
come available later at run time.

class	 Library	 {
	 	 Books[]	 bookStores;
	 	 Library(BundleContext	 context)	 {
	 	 	 	 ServiceTracker	 tracker	 =	 new	 ServiceTracker(context,
	 	 	 	 	 	 	 	 Books.class.getName(),	 null);
	 	 	 	 tracker.open();
	 	 	 	 Object[]	 services	 =	 tracker.getServices();
	 	 	 	 bookStores	 =	 Arrays.copyOf(services,	 services.length,
	 	 	 	 	 	 	 	 Books[].class);
	 	 }
	 	 Book	 getBook(int	 bookId,	 int	 storeIndex)	 {
	 	 	 	 return	 bookStore[storeIndex].getBook(bookId);
	 	 }
}

Figure 37: Library host with time fault that neglects the contributors that the composition mecha-
nism makes available later at run time

3.3.2.2 Order faults
A host with order faults causes errors if the host expects the contributors to be-
come available in a specific order, but the composition mechanism composes
them in a different order. A host also has an order fault if it expects the contribu-
tors in an arbitrary but fixed order on every run, but the composition mechanism
composes them in a different order for each run. Furthermore, a host has an order
fault if it expects the contributors to become available all at once, but the compo-
sition mechanism composes them continuously. A host can have order faults

Page 48

when handling contributors for the same contract as well as when handling con-
tributors for multiple contracts.

The following subsections show examples for the possible scenarios with a mis-
match between the order a host expects the contributors to be composed and
the order a composition mechanism provides them.

3.3.2.2.1 Predictable order vs. unpredictable order (same contract)
Figure 38 shows an implementation of the library host, which uses the Java ser-
vice loader to request its book store contributors in the constructor. The host re-
quests the local book store first and then the offsite book store. If the book stores
are not provided in this order, the library mixes up the book stores and thus be-
haves unexpectedly.

The Java service loader uses the run-time lookup composition mechanism, which
does not guarantee a specific contributor order for a contract. A correct imple-
mentation of this host would identify the local and offsite contributors by their
metadata and assign them to the according fields.

class	 Library	 {
	 	 Books	 localBooks,	 offsiteBooks;
	 	 Library()	 {
	 	 	 	 ServiceLoader<Books>	 bookServices	 =
	 	 	 	 	 	 	 	 ServiceLoader.load(Books.class);
	 	 	 	 Iterator<Books>	 iterator	 =	 bookServices.iterator();
	 	 	 	 if	 (iterator.hasNext())	 localBooks	 =	 iterator.next();
	 	 	 	 if	 (iterator.hasNext())	 offsiteBooks	 =	 iterator.next();
	 	 }
}

Figure 38: Library host with order fault that expects the contributors in a specifc order (same
contract)

3.3.2.2.2 Predictable order vs. unpredictable order (different
contracts)
Figure 39 shows a Plux implementation of the library host, which uses two con-
tracts, one for book stores and another one for a statistics tool. It expects the sta-
tistics contributor to be connected before the book store contributors.

The host starts using the statistics contributor in the AddBookStore method as
soon as the first book store is connected, without a prior null reference check. If
the composition mechanism composes a book store before the statistics tool,
this host fails. This fault is similar to the contributor cardinality fault of expecting a
contributor to be mandatory when it is optional (cf. example in Section 3.3.1.1 on
page 43). However, in contrast to the cardinality fault, where a host only fails if no
contributor is available, a host with the order fault fails already if the contracts are
composed in an unexpected order. In other words, even if a statistics contributor

Page 49

is available, the host will fail nonetheless if a book store contributor is composed
before the statistics contributor.

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "AddBookStore")]
[Slot("Statistics",	 OnPlugged	 =	 "SetStatistics")]
class	 Library	 :	 IApplication	 {
	 	 List<Books>	 bookStores	 =	 new	 List<Books>();
	 	 Statistics	 statistics;
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 Books	 b	 =	 (Books)	 args.Plug.Extension.Object;
	 	 	 	 bookStores.Add(b);
	 	 	 	 statistics.addBookStore(b);
	 	 }
	 	 void	 SetStatistics(CompositionEventArgs	 args)	 {
	 	 	 	 statistics	 =	 (Statistics)	 args.Plug.Extension.Object;
	 	 }
}

Figure 39: Library host with order fault that expects the contributors for different contracts in a
specific order

3.3.2.2.3 Same order on every run vs. unpredictable order (same
contract)
Figure 40 shows an implementation of the library host, which uses the Java ser-
vice loader to request its book store contributors in the constructor, similar to the
implementation in Figure 38. But in contrast to there, this library host stores the
book stores in a list, instead of storing them in separate fields for the local and
offsite book store. As the host does not expect a specific order in which its con-
tributors are composed, it can work with any order. However, the import/export
feature expects that on every run the contributors are composed in the same or-
der. Let us look the following scenario: on one run, the export feature of the host
writes all books from all book stores to a file. On the next run, the import feature
of the host reads the books from that file and restores them into the book stores.
This feature will only work correctly, i.e., restore the right books into the right book
stores, if the contributors are composed in the same order on the import run as
well as on the export run.

The Java service loader uses the run-time lookup composition mechanism, which
does not guarantee the same contributor order on every run. A correct implemen-
tation of this host would export the books together with the information to which
book store they belong, so that it could use this information during import in order
to assign the books to the corresponding book store.

Page 50

class	 Library	 {
	 	 List<Books>	 bookStores;
	 	 Library()	 {
	 	 	 	 bookStores	 =	 new	 ArrayList<Books>();
	 	 	 	 ServiceLoader<Books>	 bookServices	 =
	 	 	 	 	 	 	 	 ServiceLoader.load(Books.class);
	 	 	 	 for	 (Books	 b	 :	 bookServices)	 {
	 	 	 	 	 	 bookStores.add(b);
	 	 	 	 }
	 	 }
	 	 void	 exportBooks(ObjectOutputStream	 out)	 {
	 	 	 	 int	 size	 =	 bookStores.size();
	 	 	 	 out.writeInt(size);
	 	 	 	 for	 (int	 store	 =	 0;	 store	 <	 size;	 ++store)	 {
	 	 	 	 	 	 Books	 b	 =	 bookStores.get(store);
	 	 	 	 	 	 //	 ...	 export	 the	 books	 of	 the	 store	 ...
	 	 	 	 }
	 	 }
	 	 void	 importBooks(ObjectInputStream	 in)	 {
	 	 	 	 int	 size	 =	 in.readInt();
	 	 	 	 for	 (int	 store	 =	 0;	 store	 <	 size;	 ++store)	 {
	 	 	 	 	 	 Books	 b	 =	 bookStores.get(store);
	 	 	 	 	 	 //	 ...	 import	 the	 books	 of	 the	 store	 ...
	 	 	 	 }
	 	 }
}

Figure 40: Library host with order fault that expects the contributors in the same order on every
run (same contract)

3.3.2.2.4 Same order on every run vs. unpredictable order (different
contracts)
Figure 41 shows a Plux implementation of the library host, which uses two con-
tracts, one for book stores and another one for a statistics tool. It expects the
contributors for the different contracts to be composed in the same order on
every run. This host works if the statistics contract is composed before the book
contract on every run, as well as if the contracts are composed vice-versa. How-
ever, the host fails with a null reference error if the statistics contract is composed
first on one run, and composed second on a subsequent run. On the first run, the
statistics tool is available and the UseStatistics setting in the dictionary is set to
true. On subsequent runs, the dictionary returns true for the UseStatistics setting,
which bypasses the null reference check. The fault in this host is that the null ref-
erence check for the statistics tool is logically combined using an incorrect ||
operator instead of the right && operator. Furthermore, a correct host would only
read the UseStatistics setting instead of setting it to true.

Page 51

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "SetBookStore")]
[Slot("Statistics",	 OnPlugged	 =	 "SetStatistics",
	 	 	 	 	 	 OnUnplugging	 =	 "RemoveStatistics")]
class	 Library	 :	 IApplication,	 IDisposable	 {
	 	 Dictionary<String,	 bool>	 settings	 =	 LoadSettingsFromFile();
	 	 Books	 bookStore;
	 	 Statistics	 statistics;
	 	 void	 LoadSettingsFromFile()	 {	 settings	 =	 ...	 }
	 	 void	 SaveSettingsToFile()	 {	 ...	 }
	 	 void	 SetBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStore	 =	 (Books)	 args.Plug.Extension.Object;
	 	 	 	 if	 (settings.ContainsKey("UseStatistics")
	 	 	 	 	 	 	 	 &&	 settings["UseStatistics"]	 ||	 statistics	 !=	 null)	 {
	 	 	 	 	 	 settings["UseStatistics"]	 =	 true;
	 	 	 	 	 	 statistics.UpdateBookCount(bookStore.Count);
	 	 	 	 }	 else	 {
	 	 	 	 	 	 settings["UseStatistics"]	 =	 false;
	 	 	 	 }
	 	 }
	 	 void	 SetStatistics(CompositionEventArgs	 args)	 {
	 	 	 	 statistics	 =	 (Statistics)	 args.Plug.Extension.Object;
	 	 }
	 	 void	 RemoveStatistics(CompositionEventArgs	 args)	 {
	 	 	 	 statistics	 =	 null;
	 	 }
	 	 void	 Dispose()	 {
	 	 	 	 SaveSettingsToFile();
	 	 }
}

Figure 41: Library host with order fault that expects the contributors in the same order on every
run (different contracts)

3.3.2.2.5 All at once vs. continuously (same contract)
Figure 42 shows a Java service loader implementation of the library host, which
collects the number of ordered books from all book store contributors. The host
works with any number of book stores, as long as they are available all at once.

On the first call of the updateBooksOrdered method, the host initializes the
counter array where it stores individual counts of the book stores. Then it updates
the counters with the number of books ordered in the contributors. This imple-
mentation has the following flaws: if the number of contributors increases before
the next call of updateBooksOrdered, the host fails, because the array is too
short; if the number of contributors decreases, the calculation is incorrect, be-
cause the array still contains values from removed contributors. By coincidence, if
the set of contributors changes but the number of contributors remains the same,
the host works correctly.

Page 52

class	 Library	 {
	 	 int[]	 booksOrdered;
	 	 ServiceLoader<Books>	 bookServices;
	 	 void	 init()	 {
	 	 	 	 bookServices	 =	 ServiceLoader.load(Books.class);
	 	 	 	 int	 count	 =	 0;
	 	 	 	 for	 (Books	 b	 :	 bookServices)	 {
	 	 	 	 	 	 count++;
	 	 	 	 }
	 	 	 	 booksOrdered	 =	 new	 int[count];
	 	 }
	 	 void	 updateBooksOrdered()	 {
	 	 	 	 if	 (booksOrdered	 ==	 null)	 {
	 	 	 	 	 	 init();
	 	 	 	 }
	 	 	 	 booksServices.reload();
	 	 	 	 int	 index	 =	 0;
	 	 	 	 for	 (Books	 books	 :	 booksServices)	 {
	 	 	 	 	 	 int	 nrBooksOrdered	 =	 0;
	 	 	 	 	 	 for	 (Book	 b	 :	 books.getBooks())	 {
	 	 	 	 	 	 	 	 if	 (b.isOrdered())	 {
	 	 	 	 	 	 	 	 	 	 nrBooksOrdered++;
	 	 	 	 	 	 	 	 }
	 	 	 	 	 	 }
	 	 	 	 	 	 booksOrdered[index++]	 =	 nrBooksOrdered;
	 	 	 	 }
	 	 }
}

Figure 42: Library host with order fault that expects the contributors to be available all at once
(same contract)

3.3.2.2.6 All at once vs. continuously (different contracts)
Figure 43 shows a Plux implementation of the library host, which uses a statistics
tools to determine the value of the books for each book store. The host works
with any number of book store contributors, as well as with any number of statis-
tics contributors, if all book stores and statistics tools are composed at once.
However, if the book stores and the statistics tools are composed continuously
the host fails.

When Plux finishes the composition, i.e., when it has composed all available con-
tributors, the host initializes a two-dimensional array in order to store values. For
this purpose, the constructor of the host registers the callback method Init that is
called by Plux when composition is done. On user request, the host executes the
Update method, which retrieves the book values from the stores and stores them
into the array. This works, as long as the number of contributors remains the
same. If Plux adds another contributor, the host fails, because the Update
method writes beyond the array’s boundaries. If Plux removes contributors, the
host fails, because the Update method does not shrink the array and keeps out-

Page 53

dated values. A correct implementation of this host, would update the array’s
dimensions on composition changes.

[Extension]
[Plug("Application")]
[Slot("Books")]
[Slot("Statistics")]
class	 Library	 :	 IApplication	 {
	 	 int[,]	 booksValue;
	 	 Library(Extension	 self)	 {
	 	 	 	 self.Runtime.Composer.InvokeOnCompositionDone(Init);
	 	 }
	 	 void	 Init()	 {
	 	 	 	 int	 stores	 =	 Slot["Books"].PluggedPlugs.Count;
	 	 	 	 int	 statistics	 =	 Slot["Statistics"].PluggedPlugs.Count;
	 	 	 	 booksValue	 =	 new	 int[stores,	 statistics];
	 	 	 	 Update();
	 	 }
	 	 void	 Update()	 {
	 	 	 	 int	 stores	 =	 Slot["Books"].PluggedPlugs.Count;
	 	 	 	 int	 statistics	 =	 Slot["Statistics"].PluggedPlugs.Count;
	 	 	 	 for	 (int	 b	 =	 0;	 b	 <	 stores;	 ++b)	 {
	 	 	 	 	 	 Books	 bookStore	 =	 (Books)	 Slot["Books"]
	 	 	 	 	 	 	 	 	 	 .PluggedPlugs[b].Extension.Object;
	 	 	 	 	 	 for	 (int	 s	 =	 0;	 s	 <	 statistics;	 ++s)	 {
	 	 	 	 	 	 	 	 Statistics	 statistics	 =	 (Statistics)	 Slot["Statistics"]
	 	 	 	 	 	 	 	 	 	 	 	 .PluggedPlugs[s].Extension.Object;
	 	 	 	 	 	 	 	 booksValue[b,	 s]	 =	 statistics
	 	 	 	 	 	 	 	 	 	 	 	 .calculateBooksValue(bookStore);
	 	 	 	 	 	 }
	 	 	 	 }
	 	 }
}

Figure 43: Library host with order fault that expects the contributors to be available all at once (dif-
ferent contracts)

3.3.2.3 Duration faults
A host with duration faults causes errors if it expects the contributors to be avail-
able permanently after provision, but the composition mechanism composes
them only for temporary use. Such a host fails if the composition mechanism
removes a contributor. Please note, that the inverse scenario is not error-prone,
because a host that expects temporary contributors also works with permanent
contributors.

Figure 44 shows a Plux implementation of the contributor LocalBooks and the li-
brary host, which expects the book store contributor to be available permanently
after its provision. The host stores its book store contributor in a field when it is
composed. For this purpose, it registers the SetBookStore callback method for
the Plugged event of Plux. On user request, the host executes the GetBook
method, which uses the contributor stored in the field. When Plux removes the

Page 54

book store contributor and the host accesses it thereafter, the host causes a run-
time error, because Plux already disposed LocalBooks after unplugging it from the
library. A correct implementation of the host would register a callback for the Un-
plugged event, which sets the field bookStore to null and thus causes the host to
stop using the removed contributor.

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "SetBookStore")]
class	 Library	 :	 IApplication	 {
	 	 Books	 bookStore;
	 	 void	 SetBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStore	 =	 (Books)	 args.Plug.Extension.Object;
	 	 }
	 	 Book	 GetBook(int	 bookId)	 {
	 	 	 	 if	 (bookStore	 !=	 null)	 {
	 	 	 	 	 	 return	 bookStore.GetBook(bookId);
	 	 	 	 }
	 	 	 	 return	 null;
	 	 }
}
[Extension]
[Plug("Books")]
class	 LocalBooks	 :	 Books,	 IDisposable	 {	 ...	 }

Figure 44: Library host with duration fault, which expects the contributors to be available perma-
nently after provision and thus fails if a temporary contributor is removed

3.3.3 Contributor identification faults
A contributor identification fault is a mismatch between how a host identifies its
contributors, and how the composition mechanism identifies them. Possible ways
of identification are by component and by contract. A host with an identification
fault identifies contributors by contract, but expects specific contributors. Such a
host causes an error if the composition mechanism composes other than the ex-
pected contributors.

Figure 45 shows an implementation of the library host, which uses the Java ser-
vice loader to request its book store contributor in the constructor. It uses the
Books interface to identify the contributor by contract. When it retrieves the con-
tributor instance, it expects the specific LocalBooks component by casting the in-
stance to the component’s class. However, if the Java service loader provides a
different component for the Books contract, the host fails with a type cast excep-
tion. A correct implementation of this host would use the contributor as a general
Books component and not as a specific LocalBooks component.

Page 55

class	 Library	 {
	 	 LocalBooks	 bookStore;
	 	 Library()	 {
	 	 	 	 ServiceLoader<Books>	 bookServices	 =
	 	 	 	 	 	 	 	 ServiceLoader.load(Books.class);
	 	 	 	 Iterator<Books>	 iterator	 =	 bookServices.iterator();
	 	 	 	 localBooks	 =	 (LocalBooks)	 iterator.next();
	 	 }
}

Figure 45: Library host with identification fault, which expects a specific contributor and thus fails
if a different contributor is provided

3.3.4 Contributor instantiation faults
A contributor instantiation fault is a mismatch in terms of who creates a contribu-
tor (i.e., the host itself or the composition mechanism), or how contributors are
created (i.e., uniformly for every host or in a host-specific way). The following sub-
sections show examples for both mismatch scenarios.

3.3.4.1 By host vs. by infrastructure
Depending on the used composition mechanism, either the host or the composi-
tion infrastructure is responsible for creating contributor instances. This makes
the following fault scenarios possible: a host wrongly creates the contributors it-
self, whereas it should use the contributors provided by the composition infra-
structure (overeager host); or the host should create the contributors itself, but
omits to do so (lazy host). This section shows an example for an overeager host.
It does not show a lazy host example, because lazy hosts are not found in prac-
tice for two reasons: since lazy hosts never work, regardless of the composition
scenario, developers unavoidably detect the fault; furthermore, committing the
fault is hard in the first place, because if a composition infrastructure does not
provide contributors, developers obviously realize that the host must create them
itself.

Figure 46 shows a Plux implementation of the contributor LocalBooks and an
overeager library host, which instantiates its contributors itself when they are
composed. For this purpose, it registers the AddBookStore callback method for
the Plugged event of Plux. In this method it retrieves the type name of the con-
tributor and uses reflection to instantiate the contributor. By doing so, the host
creates a new instance instead of using the instance provided by Plux. As the Lo-
calBooks has no default constructor, the host fails when it calls CreateInstance. A
correct implementation of the host would retrieve the instance created by Plux
(instead of the type name) from the arguments.

Page 56

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "AddBookStore")]
class	 Library	 :	 IApplication	 {
	 	 List<Books>	 bookStores	 =	 new	 List<Books>();
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 Type	 type	 =	 Type.GetType(
	 	 	 	 	 	 	 	 args.Plug.Extension.ExtensionType.TypeName);
	 	 	 	 Books	 b	 =	 (Books)	 Activator.CreateInstance(type);
	 	 	 	 bookStores.Add(b);
	 	 }
}
[Extension]
[Plug("Books")]
class	 LocalBooks	 :	 Books	 {
	 	 LocalBooks(Extension	 self)	 {	 ...	 }
	 	 ...
}

Figure 46: Library host with instantiation fault, which fails because it creates a contributor itself in-
stead of using the contributor connected to it

3.3.4.2 Globally uniform vs. host-specific
Globally uniform instantiation means that all contributors are instantiated in the
same way (e.g., the same shared instance is provided for every host, or a sepa-
rate instance is instantiated for each host). In contrast to that, host-specific in-
stantiation means that the contributors can be instantiated differently for each
host (e.g., some hosts share contributors, others do not). Since host-specific in-
stantiation is more flexible than globally uniform instantiation, faults can only oc-
cur, if a host assumes globally uniform instantiation, but is composed with host-
specific instantiation.

In composition mechanisms with host-specific instantiation, one way of instantia-
tion is usually the default (shared or non-shared). If a host expects that sharing or
non-sharing is the globally uniform instantiation mechanism, whereas it is only the
default for a host specific instantiation, this host will work as long as it is only
composed with hosts that use the default, but will fail if it is composed with hosts
that use the non-default way of instantiation.

Figure 47 shows a Plux implementation of an offsite book store, a local book
store, and a statistics tool. Each book store uses a statistics tool to accumulate
the total price of its books. The offsite book store relies on the default instantia-
tion mechanism of Plux, which composes a non-shared statistics contributor. As-
suming that the offsite book store is the only host that uses the statistics contrib-
utor, everything works fine. The OffsiteBooks.GetTotalPrice method adds the
individual book prices to the statistics tool and retrieves the total price by calling
the parameterless StatisticsTool.GetTotalPrice method. The offsite book store can
coexist with other book stores and will work flawlessly, as long as these other

Page 57

book stores also use a separate instance of the statistics contributor. However,
the offsite book store fails if it coexists with local book store, because LocalBooks
shares the statistics tool of OffsiteBooks. Plux supports host-specific instantiation
using composition behaviors (see Section 4.7). The local book store uses such a
composition behavior to intercept the composition and to retrieve the same in-
stance of the statistics tool as the offsite book store. The local book store also
adds the prices of its books to the statistics tool, which modifies the total price
retrieved by the offsite book store. As the local book store is aware that the statis-
tics tool is shared, it uses the StatisticsTool.GetTotalPrice method with the storeId
parameter (passing the unique id that Plux issues for all extensions) in order to re-
trieve only its own prices. The fault in the offsite book store is the use of the para-
meterless StatisticsTool.GetTotalPrice method. Please note, that the fault only
causes an error when the offsite book store coexists with the local book store.

Page 58

[Extension]
[Plug("Books")]
[Slot("Statistics")]
class	 OffsiteBooks	 :	 Books	 {
	 	 Extension	 self;
	 	 OffsiteBooks(Extension	 e)	 {
	 	 	 	 self	 =	 e;
	 	 }
	 	 int	 GetTotalPrice()	 {
	 	 	 	 var	 stat	 =	 (Statistics)	 self.Slot("Statistics").PluggedPlugs[0]
	 	 	 	 	 	 	 	 .Extension.Object;
	 	 	 	 foreach	 (Book	 book	 in	 ...)	 {
	 	 	 	 	 	 stat.Add(self.Id,	 book.price);
	 	 	 	 }
	 	 	 	 return	 stat.GetTotalPrice();
	 	 }
}

[Extension]
[Plug("Books")]
[Slot("Statistics")]
class	 LocalBooks	 :	 Books	 {
	 	 LocalBooks(Extension	 e)	 {
	 	 	 	 ...
	 	 	 	 e.Slots["Statistics"].Behaviors.Add(new	 ...);
	 	 }
	 	 ...
	 	 int	 GetTotalPrice()	 {
	 	 	 	 ...
	 	 	 	 return	 stat.GetTotalPrice(self.Id);
	 	 }
}

[Extension]
[Plug("Statistics")]
class	 StatisticsTool	 :	 Statistics	 {
	 	 void	 Add(int	 bookStoreId,	 int	 price)	 {	 ...	 }
	 	 int	 GetTotalPrice(int	 bookStoreId)	 {	 ...	 }
	 	 int	 GetTotalPrice()	 {	 ...	 }
}

Figure 47: Library host with instantiation fault, which expects that contributors are instantiated in a
globally uniform way, and thus fails if contributors are instantiated in a host-specific way

3.3.5 Contributor registration faults
A contributor registration fault is a mismatch in terms of where a composition
mechanism makes contributors available (i.e., globally to all hosts or specifically
to individual hosts) or how a composition mechanism tracks contributor usage
(i.e., by storing just a global usage counter per contributor or by keeping track of
which hosts are connected to which contributors). The following subsections
show examples for both mismatch scenarios.

Page 59

3.3.5.1 Global availability vs. host-specific availability
Different composition mechanisms offer different flexibility on how they make
contributors available. Some can make contributors only available globally to all
hosts (less flexible), whereas others can make them available only to specific
hosts (more flexible). A host that expects the more flexible availability also works
with the less flexible availability. However, a host that expects less flexibility than
what the composition mechanism provides can fail.

Figure 48 shows a Plux implementation of the library host and a statistics tool
contributor. The library host uses the statistics tool and the available book store
contributors to calculate the average price of a book. The statistics tool uses the
available book stores to sum up the total price of all books. The library host di-
vides this total price by the number of books, which are stored in the book stores
composed with it. Assuming that the book store contributors are made globally
available, i.e., the same set of book stores is connected to the library host and to
the statistics tool, the correct average price is calculated. However, if the compo-
sition mechanism composes the library host and the statistics tool with different
book store sets, the calculated average is incorrect. A correct implementation of
the host would use the GetTotalPrice method with the storeId parameter to calcu-
late the average for each book store individually and exclude book stores unavail-
able to the statistics tool.

Page 60

[Extension]
[Plug("Application")]
[Slot("Books")]
[Slot("Statistics")]
class	 Library	 :	 IApplication	 {
	 	 int	 CalculateAverageValue()	 {
	 	 	 	 Slot	 s	 =	 self.Slot("Books");
	 	 	 	 int	 count	 =	 0;
	 	 	 	 foreach	 (Plug	 p	 in	 s.PluggedPlugs)	 {
	 	 	 	 	 	 var	 books	 =	 (Books)	 p.Extension.Object;
	 	 	 	 	 	 count	 +=	 books.Count;
	 	 	 	 }
	 	 	 	 var	 stat	 =	 (Statistics)	 self.Slots["Statistics"]
	 	 	 	 	 	 	 	 .PluggedPlugs[0].Extension.Object;
	 	 	 	 return	 stat.GetTotalPrice()	 /	 count;
	 	 }
}
[Extension]
[Plug("Statistics")]
[Slot("Books")]
class	 StatisticsTool	 :	 Statistics	 {
	 	 int	 GetTotalPrice(int	 bookStoreId)	 {
	 	 	 	 int	 total	 =	 0;
	 	 	 	 foreach	 (Plug	 p	 in	 self.Slots["Books"].PluggedPlugs)	 {
	 	 	 	 	 	 var	 b	 =	 (Books)	 p.Extension.Object;
	 	 	 	 	 	 if	 (bookStoreId	 ==	 -‐1	 ||	 p.Extension.Id	 ==	 bookStoreId)	 {
	 	 	 	 	 	 	 	 foreach	 (Book	 b	 in	 books.GetBooks())	 {
	 	 	 	 	 	 	 	 	 	 total	 +=	 b.Price;
	 	 	 	 	 	 	 	 }
	 	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 return	 total;
	 	 }
	 	 int	 GetTotalPrice()	 {	 return	 GetTotalPrice(-‐1);	 }
}

Figure 48: Library host with registration fault, which expects that contributors are made available
globally, and thus fails if contributors are made available only to specific hosts

3.3.5.2 Global usage vs. host-specific usage
Host-specific usage causes the same hosts to fail as host-specific availability
does. Usage and availability are insofar similar, as the result (the host is not using
the contributor) is the same. Regardless of if the host could but does not use the
contributor (usage) or the host cannot use the contributor, because it is not avail-
able (availability). Usage and availability differ only in the way the causing compo-
sition is reached: host-specific availability hides contributors from the host,
whereas host-specific usage just omits to connect or disconnects contributors.
Therefore, the example from Figure 48 also applies here.

Page 61

3.3.6 Contributor sharing faults
A sharing fault in a contributor causes errors in a correctly implemented host, if a
contributor that does not support sharing is shared among hosts by the composi-
tion mechanism. Figure 49 shows a Plux implementation of a book store contribu-
tor, which expects that the composition mechanism creates dedicated instances
for each host. If the composition mechanism shares an instance of this contribu-
tor among hosts, this contributor fails and thus also its hosts fail. When the book
store contributor is composed, it opens a database connection and stores it in a
field. When the contributor is removed, it closes the database connection and
sets the field to null. Assuming that the contributor is only connected to a single
host the contributor works correctly. However, if the composition mechanism
shares the contributor between two hosts, the OpenDatabase callback method is
called twice: on the second call, the contributor overwrites the value in the
connection field with the second connection. Opening a second database
connection can already cause an error, depending on whether the database man-
agement system allows multiple connections or not. Similarly, when the composi-
tion mechanism disconnects the contributor from the sharing hosts, the
CloseDatabase method is also called twice: on the first call, the (secondly
opened) connection is closed and the field is nulled; on the second call, the con-
tributor causes a null pointer error. Furthermore, after the composition mechanism
removed the contributor from one host, the other host can no longer use the book
store, because calling the GetBooks method also raises a null pointer error. A
correct implementation of the contributor would check the value of the connec-
tion field and open the connection only once; and it would only close the connec-
tion when it is removed from the last host.

Page 62

[Extension]
[Plug("Books",	 OnPlugged="OpenDatabase",	 OnUnplugging="CloseData-‐
base")]
class	 LocalBooks	 :	 Books	 {
	 	 SqlConnection	 connection;
	 	 void	 OpenDatabase(CompositionEventArgs	 args)	 {
	 	 	 	 connection	 =	 new	 SqlConnection(...);
	 	 	 	 connection.Open();
	 	 }
	 	 void	 CloseDatabase(CompositionEventArgs	 args)	 {
	 	 	 	 connection.Close();
	 	 	 	 connection	 =	 null;
	 	 }
	 	 Book[]	 GetBooks(String	 author)	 {
	 	 	 	 SqlCommand	 command	 =	 new	 SqlCommand("SELECT	 *	 ...",	 connection);
	 	 	 	 SqlDataReader	 reader	 =	 command.ExecuteReader();
	 	 	 	 ...
	 	 }
}

Figure 49: Book store contributor with sharing fault, which expects that dedicated contributor in-
stances are created for each host, and thus fails if instances are shared among hosts

Page 63

Chapter 4: Plux composition infrastructure

We implemented our testing and debugging methods based on the Plux compo-
sition infrastructure. As Plux uses the most flexible composition mechanism,
namely run-time injection with tracking, Plux programs are well suited to demon-
strate the possible composability faults and the application of the testing and de-
bugging methods.

Plux is a composition infrastructure for extensible and customizable plugin-based
programs [Wolfinger, 2010]. It supports plug-and-play composition, allowing pro-
grams to be automatically assembled from components without programming or
configuration. Plux also supports dynamic composition, allowing programs to be
dynamically reconfigured by adding, removing, or swapping sets of components
at run time. An implementation of Plux is currently available for .Net [Plux, 2012],
but its concepts can be ported to other platforms such as Java as well.

Plux differs from other plugin systems [Birsan, 2005] such as OSGi [OSGi, 2011]
or Eclipse [Eclipse, 2003]: it provides a composer, which maintains a global com-
position state; it uses an event-based programming model; and it provides an ex-
changeable component discovery mechanism. The composer replaces program-
matic composition with automatic composition. Programmatic composition, as
for example in Eclipse, means that the host has to query a contributor registry
and to create and integrate its contributors itself. Automatic composition, as in
Plux, means that the contributors just declare their requests and provisions using
metadata; the composer uses these metadata to match requests and provisions
and connects matching components. Plux maintains all components an their
connections in a global composition state, i.e., it keeps track of which hosts use
which contributors. Hosts retrieve their contributors from the composition state.
Optionally, components can react to events sent by the composer, e.g., if they
want to reflect composition changes in the user interface immediately. Compo-
nent discovery is the process of detecting components and extracting their meta-
data. The discovery mechanism is not an integral part of Plux, but a plugin itself,
which makes it replaceable. The following subsections cover the characteristics
of Plux in detail.

Page 64

4.1 Metadata
Plux uses the metaphor of extensions, slots and plugs (cf. Figure 50). An exten-
sion is a component that provides services to other extensions and uses services
provided by other extensions. If an extension wants to use a service of another
extension, it declares a slot. Such an extension is called a host. If an extension
wants to provide a service to other extensions, it declares a plug. Such an exten-
sion is called a contributor. Several related extensions can be packaged as a plu-
gin, which is a dll file that can be deployed and loaded separately.

Extension
SlotPlug

Host Contributors

uses

provides ExtensionPlug
ExtensionPlug

Figure 50: Metadata for Plux extensions with slots and plugs

Slots and plugs are identified by names. A plug matches a slot, if they have the
same name. If so, the plug can be connected to the slot. A slot represents an in-
terface, which has to be implemented by a matching plug (more specifically, by its
corresponding class). The interface is specified in a slot definition. A slot definition
has a unique name as well as optional parameters that are provided by the con-
tributors and retrieved by the hosts. The names of slots and plugs refer to their re-
spective slot definitions (cf. Figure 51).

Slot Definition
"X"

Interface
Param1
Param2

Interface

Param1

Param2

Class

Value1

Value2

Slot "X" Plug "X"

ContributorHost

Figure 51: Metadata of a slot and plug named "X"

The means to provide metadata is customizable in Plux. The default mechanism
extracts metadata from .Net attributes in dll files. Attributes are pieces of informa-
tion, which can be attached to .Net constructs, such as classes, interfaces, meth-
ods, or fields. At run time, the attributes can be retrieves using reflection [ECMA,
2006].

Plux has the following custom attributes: The SlotDefinition attribute to tag an in-
terface as a slot definition, the Extension attribute to tag a class that implements
a component, the Slot attribute to declare requests in hosts, the Plug attribute to

Page 65

declare provisions in contributors, the ParamDefinition attribute to declare re-
quired parameters in a slot definition, and the Param attribute to specify provided
parameter values in contributors.

Let us now look at the source code of the library example from Section 3.2.8 as it
is implemented in Plux. Assume that the library works with books, which it re-
trieves from book stores. The book store is implemented as a contributor, which
plugs into the library. The slot for the book store is defined in Figure 52. A book
comprises, e.g., a title, an author, and a price. The book store provides, for exam-
ple, a collection of books and a method to calculate the total price of all books in
the book store. Furthermore, the slot has a parameter Kind, to specify if it holds
local books or offsite books.

[SlotDefinition("Books")]
[ParamDefinition("Kind",	 typeof(StoreKind))]
interface	 Books	 {
	 	 Book[]	 Books	 {	 get;	 }
	 	 int	 GetTotalPrice()	 {	 ...	 }
	 	 ...
}
interface	 Book	 {
	 	 string	 Title	 {	 get;	 }
	 	 ...
}
enum	 StoreKind	 {	 Local,	 Offsite	 }

Figure 52: Interface and metadata for Plux slot definition

Figure 53 shows the implementation of the local book store contributor, which is a
book provider. Since LocalBooks has a Books plug, it has to implement the inter-
face specified in the slot definition Books and to provide a value for the parameter
Kind.

[Extension]
[Plug("Books")]
[Param("Kind",	 StoreKind.Local)]
class	 LocalBooks	 :	 Books	 {	 ...	 }

Figure 53: Implementation and metadata for the contributor extension

Figure 54 shows the implementation of the library host. In order to be able to use
a data source, the host has a Books slot. It also has an Application plug that fits
into the Application slot of the Plux core. At startup, Plux creates an instance of
Library and connects it to the core. It also creates an instance of LocalBooks and
connects it to Library.

[Extension]
[Plug("Application")]
[Slot("Books")]
class	 Library	 :	 IApplication	 {	 ...	 }

Figure 54: Implementation and metadata for the host extension

Page 66

4.2 Composition
Composition is the process that matches the requests of hosts with the provi-
sions of contributors. In Plux, this is done by the composer. The composer as-
sembles programs from extensions available in a plugin repository (a folder in the
file system), by connecting the plugs of the contributors with the slots of the
hosts.

When the user adds a new extension to the plugin repository, the composer inte-
grates it into the program on-the-fly. Similarly, if an extension is removed from the
repository, the composer removes it from the program.

Integrating an extension as contributor means that the composer instantiates it
and connects its plugs with the matching slots of the extensions in the program. If
a plug is connected to a slot, this relationship is called plugged. If the extension is
also a host, i.e., if it has slots, the composer will plug matching plugs into these
slots.

Removing an extension means that the composer unplugs all instances of this ex-
tension from the slots where they are plugged, i.e., it removes the plugged rela-
tionship for the corresponding slots and plugs.

The composer distinguishes between shared and unique contributor instances. A
unique contributor is connected to just a single slot, whereas a shared contributor
can be plugged into several slots. For every extension, Plux holds exactly one in-
stance as the dedicated shared instance. Slots can declare whether they want the
composer to plug them this shared instance or a new unique instance.

4.3 Composition state
Since the composer establishes all connections between components, Plux
knows the instantiated extensions, their slots and plugs, as well as their connec-
tions. These data comprise the composition state. If a host wants to use its
plugged contributors, it can query them from the composition state. For every in-
stantiated extension, the composition state holds the meta-object of the exten-
sion, the meta-objects of its slots and plugs, as well as a reference to the corre-
sponding extension object (cf. Figure 55). For every slot, the composition state
keeps track of which plugs are connected to it, and for every plug the composi-
tion state keeps track of to which slots it is connected.

Page 67

Extension
objects

Meta-
objects

Object

Contributor Extension

Plug

Host Extension

Slot

Object property1:1

Object

PluggedPlugs

use

1:1

Figure 55: Meta-objects for extensions and their connections in the Plux composition state

Figure 56 describes the host from Figure 54 on page 66 in more detail, showing
how meta-objects can be used by a program. When the composer creates the Li-
brary extension, it passes the Library meta-object to the constructor, which uses
it to retrieve the meta-object of the Books slot. When the user refreshes the li-
brary, the method RefreshListView retrieves the contributors using the Plugged-
Plugs property of the Books slot. For each plugged book store, it retrieves the ex-
tension object of this store and populates the list view with the books provided.

[Extension]
[Plug("Application")]
[Slot("Books")]
class	 Library	 :	 IApplication	 {
	 	 Slot	 booksSlot;
	 	 ListView	 view	 =	 ...
	 	 Library(Extension	 self)	 {
	 	 	 	 booksSlot	 =	 self.Slots["Books"];
	 	 }
	 	 void	 RefreshListView()	 {
	 	 	 	 foreach	 (Plug	 p	 in	 booksSlot.PluggedPlugs)	 {
	 	 	 	 	 	 Books	 store	 =	 (Books)	 p.Extension.Object;
	 	 	 	 	 	 foreach	 (Book	 b	 in	 store.Books)	 {
	 	 	 	 	 	 	 	 view.Add(b.Title);
	 	 	 	 	 	 }
	 	 	 	 }
	 	 }
	 	 ...
}

Figure 56: Retrieving meta-objects and contributors from the Plux composition state

To complete the example, we compile the slot definition interface Books to a dll
file, the so-called contract, and the classes Library and LocalBooks to plugin dll
files. From these files, Plux composes the program as shown in Figure 57.

Page 68

Ap .. Application Di .. Discovery Bo .. Books

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap LocalBooks
(Lo)Bo

Figure 57: Plux composition state of the library example

4.4 Composition events
In addition to querying the composition state, a host can listen to composition
events from the composer. This is suitable for a host that must immediately react
to added or removed contributors, e.g., to update its user interface. Figure 58
shows a modified version of our host from Figure 56. The modified version uses
the Slot attribute to register event handler methods for the Plugged and the Un-
plugged event. In this example, the event handlers just print out which book store
(its extension name and the value of the Kind parameter) was plugged and un-
plugged. Their args parameter holds information about the composition event,
e.g., the plug of the connecting extension.

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged="AddBookStore",
	 	 	 	 	 	 OnUnplugging="RemoveBookStore")]
class	 Library	 :	 IApplication	 {
	 	 ...
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 Extension	 e	 =	 args.Plug.Extension;
	 	 	 	 StoreKind	 kind	 =	 args.Plug.Params["Kind"].Value;
	 	 	 	 Console.WriteLine("Plugged:"	 +	 e.Name	 +	 "	 "	 +	 kind);
	 	 }
	 	 void	 RemoveBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 Extension	 e	 =	 args.Plug.Extension;
	 	 	 	 StoreKind	 kind	 =	 args.Plug.Params["Kind"].Value;
	 	 	 	 Console.WriteLine("Unplugged:"	 +	 e.Name	 +	 "	 "	 +	 kind);
	 	 }
	 	 ...
	 	 Library(Extension	 self)	 {	 ...	 }
	 	 void	 RefreshListView()	 {	 ...	 }
}

Figure 58: Reacting to composition events from the Plux composer

4.5 Composition infrastructure
The composition infrastructure builds programs from contracts and plugins. It dis-
covers extensions from a plugin repository and composes the program from them
by connecting matching slots and plugs. The plugin repository is typically a direc-

Page 69

tory in the file system containing contract dll files (with slot definitions) and plugin
dll files (with extensions).

Figure 59 shows the subsystems of the composition infrastructure and how they
interact. The discoverer ensures that at any time the type store contains the meta-
data of all extensions and slot definitions from the plugin repository. When the
discoverer detects an addition to the repository, it extracts the metadata from the
dll file and adds them to the type store. Vice-Versa, when it detects a removal
from the repository, it removes the corresponding metadata from the type store.

Plux Runtime

Type
StoreDiscoverer Composer Instance

Store
3

5

2

4
1

1 Adds and removes contracts
and plugins

2 Notifies on changes
3 Queries for matching slots

4 Queries for matching plugs
5 Stores instance metadata

and relationships

Figure 59: Architecture of the Plux composition infrastructure

The type store maintains the type metadata of slot definitions and extensions,
which are available for composition and notifies the composer about changes.
When new metadata become available or when metadata are removed, the com-
poser updates the program. In addition to that, the type store can be queried for
contributors; e.g., by the composer when it tries to fill slots.

The composer assembles a program by matching requests and provisions as de-
clared in the metadata. It listens to changes in the type store and updates the
program accordingly, i.e., it updates the composition state held in the instance
store.

The instance store maintains the composition state of a program, i.e., the meta-
objects of extensions, slots and plugs as well as relationships between them. The
instance store is also used by tools such as the Plux visualizer, which visualizes
the composition state and its changes during run time.

4.6 Programmatic composition
The process described in the previous sections, where the composer automati-
cally connects extensions and extensions can query their connections, is called
automatic composition. In addition to that, extensions can make connections us-
ing programmatic composition, i.e., the extensions can control how the composer
assembles the program. For example, the extensions can use the composer's API

Page 70

to connect only specific contributors, a script interpreter can assemble a program
according to a script, or a deserializer can restore a previously serialized program.

Figure 60 shows a host that uses programmatic composition to connect only spe-
cific contributors depending on some user input. To do so, the host disables
automatic composition by setting the AutoPlug parameter in the Slot attribute to
false. Furthermore, to let the user control which book stores should be connect-
ed, the host provides a user interface widget to switch between local and offsite
book stores. When the user switches, the SwitchTo method is called with a para-
meter that specifies the chosen book store kind (Local or Offsite). The method
uses the composer to unplug all currently plugged contributors; it retrieves the
available contributors for the books slot from the type store; for each contributor,
it retrieves the Kind parameter value and checks whether it matches the chosen
kind; if so, it retrieves the shared instance of this contributor from the composer
and plugs it into the books slot. Please note, that this kind of composition cannot
be achieved with automatic composition, because the composer would plug in all
available contributors, regardless of their Kind parameter value.

[Extension]
[Plug("Application")]
[Slot("Books",	 AutoPlug	 =	 false)]
class	 Library	 :	 IApplication	 {
	 	 Extension	 self;
	 	 TypeStore	 typeStore;
	 	 Composer	 composer;
	 	 Library(Extension	 self)	 {
	 	 	 	 this.self	 =	 self;
	 	 	 	 composer	 =	 self.Runtime.Composer;
	 	 	 	 typeStore	 =	 self.Runtime.TypeStore;
	 	 }
	 	 void	 SwitchTo(StoreKind	 kind)	 {
	 	 	 	 Slot	 s	 =	 self.Slots["Books"];
	 	 	 	 foreach	 (Plug	 p	 in	 s.PluggedPlugs)	 {
	 	 	 	 	 	 Composer.Unplug(s,	 p);
	 	 	 	 }
	 	 	 	 foreach	 (PlugType	 pt	 in	 typeStore.GetPlugTypes("Books"))	 {
	 	 	 	 	 	 if	 (pt.Params["Kind"]	 ==	 kind)	 {
	 	 	 	 	 	 	 	 Plug	 p	 =	 Composer.GetShared(
	 	 	 	 	 	 	 	 	 	 	 	 pt.ExtensionType).Plugs["Books"];
	 	 	 	 	 	 	 	 Composer.Plug(s,	 p);
	 	 	 	 	 	 }
	 	 	 	 }
	 	 }
	 	 ...
}

Figure 60: Using the composer for programmatic composition

Page 71

4.7 Behavior-guided composition
In addition to programmatic composition, Plux allows customizing the composi-
tion process by using composition behaviors. A composition behavior is a
reusable piece of code which can be applied to a slot or to the composer in order
to guide composition. For example, a behavior applied to a slot can control how
many contributors can be connected to this slot or it can ensure that this slot is
only filled if some other slot has been filled before. A behavior applied to the com-
poser can, for example, be used to enforce application-wide security restrictions,
e.g., it can restrict the integration of extensions to those from trusted manufactur-
ers. Plux provides predefined behaviors for common composition patterns, but
developers can also define application-specific behaviors. The benefit of using
declaratively specified behaviors instead of programmatic composition is that be-
haviors can be reused in many situations, which leads to less programming
overhead.

The library host in Figure 61 uses a behavior to guide the composition in such a
way that only a single contributor at a time can be connected to the books slot. In
the constructor, the host creates a SingleContributorBehavior and applies it to the
books slot. The behavior is a class that overrides the CanPlug method and allows
the plug operation only if no contributors are plugged at that time, and denies it
otherwise. To do so, it retrieves the number of plugged contributors from the slot
to which it is applied. In this example, the behavior creates an informational log
message, which appears in the Plux event log for diagnostic purposes. The single
contributor behavior can be reused in other hosts and actually there is such a be-
havior in the Plux library. A behavior can suppress composition operations (as
shown here), but it can also react to composition events and perform composition
operations. For more details on composition behaviors, see [Jahn et al., 2010a].

Page 72

[Extension]
[Plug("Application")]
[Slot("Books")]
class	 Library	 :	 IApplication	 {
	 	 Library(Extension	 self)	 {
	 	 	 	 self.Slots["Books"].Behaviors.Add(new	 SingleContributorBehav-‐
ior());
	 	 }
}

class	 SingleContributorBehavior	 :	 Behavior	 {
	 	 override	 bool	 CanPlug(CompositionEventArgs	 args,	 out	 LogArgs	 log)	 {
	 	 	 	 if	 (BehaviorSlot.PluggedPlugs	 >	 0)	 {
	 	 	 	 	 	 log	 =	 new	 LogArgs("Contributor	 rejected.	 Host	 supports	 "
	 	 	 	 	 	 	 	 	 	 +	 "single	 contributor	 only.");
	 	 	 	 	 	 return	 false;
	 	 	 	 }	 else	 {
	 	 	 	 	 	 log	 =	 null;
	 	 	 	 	 	 return	 true;
	 	 	 	 }
	 	 }
}

Figure 61: Using a behavior to guide the composition

4.8 Composition standard
The composition standard specifies the rules according to which a composition
must be done in order to be valid. According to the Plux composition standard,
an extension can assume the following: a contributor is only used by hosts to
which it is connected (plugged); a contributor's methods are only called from a
single thread (the Plux runtime thread); if an extension invokes a composition
operation by calling the composer, the composition change is complete when the
call returns; if such a composition operation is cancelled, an exception is thrown.

The contributor use of hosts must match the composition state, i.e., a host must
intend to use every contributor which is connected to it. If a host does not intend
to use some contributors, it must guide the composer so that these contributors
are not connected, typically using a behavior.

From these assumptions, the following constraints must be deduced: A host must
use only contributors that are plugged into it and it must use all of them. Calls be-
tween extensions must be made in the Plux runtime thread. A composition call to
the composer during a composition event, must not contradict the operation that
caused that event, e.g., a contributor must not be unplugged while the Plugged
event for this contributor is handled.

Plux extensions must comply with the constraints defined by the composition
standard. The composer prevents contradictory operations, by terminating them
with an exception. Therefore such faults can easily be detected during develop-

Page 73

ment. However, the other constraints are unchecked by Plux and thus faults may
show up only after an extension has been deployed to the user, i.e., when it is
connected to other extensions. In order to detect as many of these faults as pos-
sible already during development, a systematic test procedure is necessary.

Page 74

Chapter 5: Finding composition errors

The contributor provision characteristics of a composition mechanism and the
composition standard of a composition infrastructure determine the set of possi-
ble composability faults. A composability test method should find the resulting er-
rors. In this chapter, we present a new testing method for the run-time injection
with tracking composition mechanism, show the application of this test method
to for Plux components, present a composability test tool for Plux, and present
the results of an experimental evaluation of the test method and the test tool.

5.1 The automated composability test method Act
The automated composability test method (Act) tests the composability of com-
ponents, which are composed with the run-time injection with tracking composi-
tion mechanism. Act is a dynamic black-box test method. It is dynamic, because
it composes and executes the component under test. It is a black-box method,
because it tests components without analyzing their inner workings (i.e., the
source code).

5.1.1 Composability test procedure
Act connects and disconnects the component under test (testee) with different
hosts and contributors and thereby varies the order in which the components are
connected and disconnected. In doing so, Act tries to detect if the testee works
in some composition orders but fails in others. Components can fail if they make
wrong assumptions about the composition mechanism or the composition state.
Act reveals wrong assumptions by making the hosts integrate and remove con-
tributors in various orders. Depending on the implementation of the testee, errors
may only show up when the testee is actually executed, i.e., when its methods
are called. To reveal such errors, Act performs functional tests on the testee be-
tween composition changes.

The Act testing method (cf. flowchart in Figure 62) comprises the following steps:
Step 1 generates test cases (i.e., sequences of composition operations) for the
given testee and its test bed (i.e., its hosts and its contributors). Step 2 executes
the test cases, i.e., for each test case it sets up the test bed, instantiates the tes-
tee, and performs the functional tests. In step 3 the composition operations of the

Page 75

test case are executed. After each composition operation, the functional tests are
performed on the testee. As the result of the method, the composition errors and
the functional errors are returned.

test_cases ← generate test cases(↓testee, ↓test_bed)

test_cases ≠ { }

test_case ← poll from test_cases
set up the test_bed
instantiate testee
func_errors ← execute func_tests on testee
add func_errors to errors
operations ← get composition operations of test_case

operations ≠ { }

operation ← poll from operations
comp_errors ← execute operation
add comp_errors to errors
func_errors ← execute func_tests on testee
add func_errors to errors

1

2

3

Act(↓testee, ↓test_bed ↓func_tests, ↑errors)

Figure 62: Flowchart of the automated composability test method Act

5.1.2 Generating test cases
Act generates test cases for the given testee and the given test bed. The test bed
comprises the possible hosts and contributors of the testee. It can include actual
components as well as mock components. Act generates the test cases by using
lexicographic permutation [Knuth, 2005], i.e., it permutes the plug and unplug
composition operations for the components in the test bed in every possible or-
der, but removes invalid test cases (e.g., test cases that contain an unplug opera-
tion before the corresponding plug operation).

Page 76

Figure 63 shows the test case generation for the library example. The library com-
ponent is the testee. The test bed comprises the Plux Core as a host as well as
the local book store and the offsite book store as contributors (cf. Figure 63a).
Figure 63b shows the generated test cases (i.e., the generated composition oper-
ation sequences), e.g., test case 1 composes the testee and the test bed in the
following order: plug testee into Core, plug LocalBooks into testee, plug Offsite-
Books into testee, unplug OffsiteBooks from testee, unplug LocalBooks from tes-
tee, and unplug testee from Core. The test cases 2 to 90 permute the order of
these plug and unplug operations. The total number of test cases for this test bed
is 90 (cf. Figure 63c). The total number of test cases is the total number of permu-
tations divided by the ratio of total to valid composition orders, i.e., by 2c where c
is the number of components. The value 2 comes from the fact that there are two
composition operations (plug and unplug), which might be in the wrong order (i.e.,
a contributor is unplugged before it was plugged). The exponent c comes from
the fact that these composition operations can be in the wrong order for any of
the c components. In other words, the factor is the number of permutations
where at least one component would be unplugged before it is plugged. By this
means the invalid composition orders are excluded. In the given example the fac-
tor is 8, because for each valid composition order there are 7 composition orders
which contain an unplug-plug pair for at least one component.

Testee

Library
Ap Bo

Ap .. Application Di .. Discovery Bo .. Books

OffsiteBooks
(Of)Bo

LocalBooks
(Lo)Bo

a) Test bed setup b) Test cases

Xx .. Plug Xx .. Unplug

c) Number of test cases

Composition operations

CoLoLo

Co LoCo

...

Of

OfLo

...

LoCo

Co

...

Of

Lo

...

Of

Of

Co

Of

...

Lo

Co

Of

Of

...

Co

Lo

1

2

89

90

...

numTestCases =
(2 * numComponents)!

2numComponents
=

(2 * 3)!

23
=

720
8

= 90

Di
Ap

Core
(Co) Di

Ap

Figure 63: Test case generation for the library example

5.1.3 Reducing the number of test cases
The number of generated test cases grows with to the number of components in
the test bed (c) with (2*c)! / 2c. This causes long execution times for large test

Page 77

beds. To reduce the execution time, Act reduces the number of test cases by se-
lecting only those which are likely to find errors.

To reduce the number of test cases Act applies a heuristic similar to covering ar-
rays ([Hartman, 2005]). While covering arrays works on parameters, Act works on
subsequences of composition operations in test cases. Act splits the composition
operations in the test cases in n-tuples of operations, where n is configurable.
The choice of n is a trade-off between effectiveness and run-time cost, a higher n
leads to more test cases and thus more execution time. For example: a test case
for two components (c1, c2) comprises the plug operations p1 and p2, as well as
the corresponding unplug operations u1 and u2. Using n=2, this test case is split
into three 2-tuples:

Test case: p1, p2, u1, u2
2-Tuples: [p1 p2], [p2 u1], [u1 u2]

The heuristic selects test cases such that across all test cases each each n-tuple
is covered at least once and that as few test cases as possible are selected. The
heuristic is based on the assumption that if an n-tuple does not find an error in
one test case, it will also find no errors in other test cases.

The rationale behind this heuristic is that an error that occurs after a certain com-
position operation strongly coheres with the composition state at this time and
the preceding composition operations. We assume that the closer a previous
composition operation is, the more influence it has on the error, i.e., the previous
one has more influence than the one before the previous.

If longer tuples are used, more previous composition operations are considered,
however if our assumption is true, the influence of each additional composition
operation decreases. Longer tuples result in more test cases that must be execut-
ed, e.g, for three components and thus 90 generated test cases, the heuristic
leaves 17 test cases using 2-tuples, 49 using 3-tuples, 85 using 4-tuples, and all
90 using 5-tuples or longer. In our experimental evaluation (cf. Section 5.4) all
seeded faults could already be found with 2-tuples. Please note, if 1-tuples were
used only a single test case would be selected, no matter how many components
are in the test bed, and if the tuple length is equal to the test case length, all test
cases are selected.

Finding the minimal set of test cases is a problem that can be solved with the
Quine-McCluskey method ([Quine, 1955], [McCluskey Jr., 1956]), which finds the
prime implicants of a boolean function. Our n-tuples correspond to Quine-Mc-
Cluskey's minterms, and our test cases correspond to their implicants. The mini-
mal set of implicants can be found either using trial and error or the more system-
atic branch-and-bound method [Petrick, 1956].

Page 78

Xx .. Plug
Xx .. Unplug

122 1

1 12 2

1 12 2

1 1 2 2

1 12 2

1 12 2

1

2 1

2 1

2

2

2 1

2

1

2

2

1 1

2

1

1 1

2

x x x

x x x

x x x

x x x

x x x

x x x

n-tuples

test cases

122 1

1 12 2

1 12 2

1 1 2 2

1 12 2

1 12 2

1

2 1

2 1

2

2

2 1

2

1

2

2

1 1

2

1

1 1

2

x x x

x x x

x x x

x x x

x x x

x x x

n-tuples

test cases

a) Select test cases which contain unique n-tuples

b) Select all n-tuples from selected test cases

1, 2 .. Components .. Unique n-tuples
.. Selected test cases .. Covered n-tuples

Figure 64: Finding the minimal set of test cases using the Quine-McCluskey method

Figure 64 shows the application of the Quine-McCluskey method for the example
above (with the components c1 and c2). In step a) we select all test cases which
contain a unique n-tuple, i.e., one that is only contained in a single test case. In
step b) we select all n-tuples covered by the selected test cases from step a). Fi-
nally, we must select further test cases until all n-tuples are covered. In this exam-
ple all n-tuples are covered after step b) and thus none of the remaining test cas-
es are selected.

Finding the minimal set of test cases using the Quine-McCluskey method is time
consuming (exponential run-time complexity) and memory intensive for large test
beds, because the matrix has as many rows as there are test cases and as many

Page 79

columns as there are n-tuples. For example, for 5 components with 2-tuples there
are (2*5)! / 25 = 113400 test cases and [(2*5)! / (2*5 - 2)!] - 5 = 85 tuples. The for-
mula for the number of tuples is [(2*c)! / (2*c - n)!] - i, where c is the number of
components, n is the tuple length, and i is the number of tuples that cannot be
executed because the unplug operations occurs before the corresponding plug
operation. To reduce time and memory consumption for the test case selection,
we apply a heuristic during test case generation. Figure 65 shows that we extract
the n-tuples with the composition operations, from each generated test case. A
test case that contains at least one yet uncovered n-tuple is selected, a test case
that contains only n-tuples that have already been covered before is suppressed.
After all permutations are processed, all n-tuples are covered.

OfLoCo Lo Co Of

OfLoCo Lo Of Co

Co OfLo Of Lo Co

OfLoCo Of Co Lo

OfLoCo Co Lo Of

OfLoCo Co Of Lo

...

LoCo OfLo Of Co Co Lo Lo Of

Co Of Of LoLoCo Of CoOfLo

Of Of Of CoLoCo OfLo Co Lo

Lo CoOf OfLoCo OfLo Of Lo

Of LoLoCo OfLo Lo Of Of Co

LoCo OfLo Of Lo Lo Co Co Of

...

a) Generated test cases b) Covered 2-tuples

Co .. Core
Lo .. LocalBooks
Of .. OffsiteBooks

Xx .. Plug
Xx .. Unplug

.. Suppressed

.. Firstly covered

.. Redundantly covered

1

2

4

5

3

6

OfLoCo Lo OfCo7 Lo OfLoCo LoLo Of Co Co Of

OfCoLo Co Lo Of CoLo OfCo Of Co Co Lo Lo Of90

Figure 65: Generating test cases until all 2-tuples are covered

5.1.4 Specifying test beds
In order to execute the test cases for a testee the test bed of this testee must be
specified. The test bed comprises the testee itself, optional host and contributor
components, optional host and contributor mocks, and optional functional tests
(cf. Figure 66).

Page 80

c) Functional test specification

1

[Test]
void+Test1(Testee+testee)+{
++Assert.AssertEquals(...);
}

a) Components

Contributor
(C)S2

Mock
Contributor
(MC)

S2

Testee
S1 S2

Host
(H) S1

Mock
Host
(MH)

S1

b) Mock specification
[Extension]
[Slot("S1")]
class+MockHost+{+...+}

[Extension]
[Plug("S2")]
class+MockContributor+:+S2+{+...+}

Figure 66: Test bed specification

Host and contributor components can be real extensions or mock extensions. In
the test bed specification, the following optional attributes can be set for every
component:

Use count .. How often should an instance of this component be plugged
within the execution of a test case. The default is 1.

Targets .. The target extensions (hosts or contributors) to which this com-
ponent should be connected. The default is the testee.

Count .. The number of instances of this component that should be cre-
ated during the execution of a test case. The default is 1.

Plugs .. The names of the plugs with which this component should be
plugged. This applies only to contributors with multiple plugs.
The default is any plug.

Slots .. The names of the slots of this component into which contribu-
tors should be plugged. This applies only to hosts with multiple
slots. The default is any slot.

Role .. Host if component is a host, Contributor if it is a contributor,
Both if it is both a host and a contributor. The default is Both.

Functional tests comprise a method to execute and the following optional attrib-
utes which specify the required composition state when the test is executed, a
maximum execution time, an expected exception, and whether the composition
state should be rebuilt after the test, in detail:

Page 81

Used plugs .. The plugs of the testee that must be plugged when this functio-
nal test is executed. The default is none.

Used slots .. The slots of the testee that must have contributors plugged
when this functional test is executed. The default is none.

Plugged
hosts

.. The hosts where the testee must be plugged into when this
functional test is executed. The default is none.

Plugged
contributors

.. The contributors which must be plugged into the testee when
this functional test is executed. The default is none.

Subset .. True if it suffices when a subset of the specified plugs or slots
are connected to execute the functional test. Affects the attrib-
utes Used plugs, Used slots, Plugged hosts, and Plugged con-
tributors, if multiple values are specified. The default is False.

Expected
exception

.. The name of the exception that is expected by this functional
test. The default is none.

Timeout .. The maximum time this functional test is allowed to run. The
default is infinite.

Recompose .. Off executes the next functional test without recomposition, Al-
ways rebuilds the composition state before and after this func-
tional test, or OnError rebuilds the composition state when a
functional test finds an error. The default is Off.

5.1.5 Executing test cases
Act executes the reduced set of generated test cases for the given testee and the
testbed. Figures 67 and 68 show this procedure for test case 1 of the library
example. Figure 67 shows the set up phase. Step 1 polls the first test case. Step
2 polls the composition operations for test case 1. Step 3 sets up the testbed
with the Library (testee), the Plux Core (host), the LocalBooks and the Offsite-
Books (contributors), and the according functional tests. A functional test is attrib-
uted with information in which composition state it must be executed. In this
example, functional tests 1-3 must be executed in every composition state, func-
tional test 4 if the Core is connected, functional tests 5-6 if the LocalBooks is
connected, and functional tests 7-10 if the OffsiteBooks is connected.

Page 82

OfLoCo Co Lo Of

1) Poll test case 1

2) Poll composition operations
plug Core, plug LocalBooks, plug OffsiteBooks,
unplug Core, unplug LocalBooks, unplug OffsiteBooks

Testbed component

Functional test

Composed component

3) Set up testbed

Library
Ap Bo

OffsiteBooks
(Of)BoLocalBooks

(Lo)Bo

5 6 7 8 9 10
1 2 3

4

Di
Ap

Core
(Co) Di

Ap

Figure 67: Setting up the testbed with components and functional tests

Figure 68 shows the execution phase. Step 4 instantiates the testee and executes
functional tests 1-3. Step 5 executes the composition operation plug Core and
executes functional tests 1-4. Step 6 plugs LocalBooks and executes functional
tests 1-6. Step 7 plugs OffsiteBooks and executes functional tests 1-10. Step 8
unplugs the Library from the Core and executes functional tests 1-3 and 5-10.
Step 9 unplugs LocalBooks and executes functional tests 1-3 and 7-10. Finally,
step 10 unplugs OffsiteBooks and executes functional tests 1-3. Act adds the er-
rors that occurred during composition and during the execution of functional tests
to the result and repeats this procedure for all test cases in the reduced set.
Please note, which composability faults are found by Act depends on the used
test bed. Section 5.2 shows how to define test beds for the errors classes defined
in Section 3.3.

Page 83

4) Instantiate testee and execute functional tests 1-3

Library
Ap Bo

Ftft3

5) Execute composition operation (plug Core) and execute functional tests 1-4

Ftft3 4

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

9) Unplug LocalBooks and execute functional tests 1-3 and 7-10

OffsiteBooks
(Of)Bo

Ftft3

FtFtft10

Library
Ap Bo

8) Unplug Core and execute functional tests 1-3 and 5-10

OffsiteBooks
(Of)Bo

LocalBooks
(Lo)Bo

Ftft3 Ft6

FtFtft10

Library
Ap Bo

7) Plug OffsiteBooks and execute functional tests 1-10

OffsiteBooks
(Of)Bo

LocalBooks
(Lo)Bo

Ftft3 Ft64

FtFtft10

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

6) Plug LocalBooks and execute functional tests 1-6

LocalBooks
(Lo)Bo

Ftft3 Ft64

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

10) Unplug OffsiteBooks and execute functional tests 1-3

Library
Ap Bo

Ftft3

Figure 68: Executing composition operations and functional tests

Page 84

5.1.6 Detecting composition standard violations
Act detects composition standard violations by wiring proxies between hosts and
contributors. Figure 69 shows the Library host composed with a LocalBooks con-
tributor: (a) shows how the extensions would be connected without Act during
normal program execution (without a proxy); (b) shows how they are connected
with Act during testing (with a proxy). Please note, that for shortness the proxies
are omitted in the figures throughout the thesis. Act generates these proxies by
analyzing slot definitions and it wires them between contributor and host when
they are connected. The proxies detect if hosts use contributors that are not
plugged into them, because either they have never been plugged, or they were
unplugged earlier. They also detect when a host calls a contributor from an invalid
thread. For more on composition standard violations see Section 5.2.7.

Ap .. Application Bo .. Books

LocalBooksBo
Library

Ap Bo

a) Connection between extensions during normal program execution (without a proxy)

Library
Ap Bo LocalBooksBoBooks

ProxyBo Bo

b) Connection between extensions during testing (with a proxy)

Figure 69: Composing extensions with proxies to detect composition standard violations

5.2 Finding errors in Plux components
This section shows how to apply the automated composability test method Act
(cf. Section 5.1) in order to find errors in Plux components (cf. Section 3.3). Each
of the following subsections gives an example of a faulty component, a testbed
setup, and a test case which finds the error.

5.2.1 Contributor cardinality faults
A contributor cardinality fault is a mismatch between the cardinality supported by
a host and the cardinality composed by a composition mechanism. A contributor
cardinality fault can be found by varying the number of contributors, i.e., by
connecting more or less contributors than the testee expects and by running
functional tests against the testee. Many cardinality faults can even be found
without functional tests, because they occur in composition event handlers that
expect a specific number of contributors (e.g., in array boundaries) and fail al-

Page 85

ready during composition (i.e., when the contributor is connected to or dis-
connected) if another number is composed (e.g., because the array boundaries
are exceeded).

5.2.1.1 Single mandatory vs. multiple
The test case in Figure 70 composes the library host (cf. Figure 71) without any
contributors. The original goal of the functional test is checking whether the li-
brary raises an InvalidBookIdException if a book id less than zero is passed. Then
the functional test (cf. Figure 70d) is executed, the library host causes a null point-
er exception. Thus the functional test (incidentally) exposes the contributor car-
dinality fault. The cause for this fault is that the host expects a single mandatory
book store contributor, whereas the automatic composition in Plux can compose
the library without a contributor, unless a composition behavior makes sure that
the library is only plugged after a book store contributor was plugged into it. A
correct implementation of the host would close the book store in an OnUnplug-
ging handler and install a behavior on the Books slot, which ensures the desired
cardinality of exactly one contributor at a time.

Library
Ap Bo

a) Testbed b) Test case
1

c) Composition state

d) Functional test

1

Co Co

Progress in
the test case

[Test(ExpectedException=typeof(InvalidBookIdException))]
void:Test(Library:testee):{
::testee.GetBook(A1);
}

Di
Ap

Core
(Co) Di

Ap
Library

Ap Bo

1

Figure 70: Test case that finds a single mandatory vs. multiple cardinality fault

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "SetBookStore")]
class	 Library	 :	 IApplication	 {
	 	 Books	 bookStore;
	 	 void	 SetBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStore	 =	 (Books)	 args.Plug.Extension.Object;
	 	 }
	 	 Book	 GetBook(int	 bookId)	 {
	 	 	 	 return	 bookStore.GetBook(bookId);
	 	 }
}

Figure 71: Library host with single mandatory vs. multiple cardinality fault

Page 86

5.2.1.2 Single optional vs. multiple
The test case in Figure 72 tests the library host with two copies of a book store
mock. The book store mock checks if it is closed when it is unplugged (cf. Fig-
ure 72d). When the test case progresses to the composition operation unplug
BooksMock1, it exposes the contributor cardinality fault in the library host. The
cause for the fault is that the host overwrites the reference to BooksMock1
(stored in bookStore) when BooksMock2 is plugged (cf. Figure 73) and omits to
call the Close method on BooksMock1. This breaks the assertion in BooksMock1
when the unplug event calls the CheckIsClosed method. A correct implementa-
tion of the host would install a behavior on the Books slot, which replaces the old
book store when a new book store is plugged.

a) Testbed b) Test case

c) Composition state

d) Mock contributor
[Extension]
[Plug("Books",4OnUnplugged4=4"CheckIsClosed")]
class4BooksMock4:4Books4{
44bool4isOpen;
44void4Open()4{4isOpen4=4true;4}
44void4Close()4{4isOpen4=4false;4}
44Book4GetBook(int4bookId)4{4return4null;4}
44void4CheckIsClosed(CompositionEventArgs4args)4{
4444Assert.AssertFalse(isOpen);
44}
}

Progress in
the test case

Co M1 M2 Co M1 M2

Library
Ap Bo

BooksMock1
(M1)Bo

BooksMock2
(M2)Bo

BooksMock1
(M1)Bo

BooksMock2
(M2)Bo

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

Figure 72: Test case that finds a single optional vs. multiple cardinality fault

Page 87

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "OpenBookStore",
	 	 	 	 	 	 OnUnplugging	 =	 "CloseBookStore")]
class	 Library	 :	 IApplication	 {
	 	 Books	 default	 =	 new	 ...
	 	 Books	 bookStore	 =	 null;
	 	 void	 OpenBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStore	 =	 (Books)	 args.Plug.Extension.Object;
	 	 	 	 bookStore.Open();
	 	 }
	 	 void	 CloseBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStore.Close();
	 	 	 	 bookStore	 =	 null;
	 	 }
	 	 Book	 GetBook(int	 bookId)	 {
	 	 	 	 if	 (bookStore	 !=	 null)	 {
	 	 	 	 	 	 return	 bookStore.GetBook(bookId);
	 	 	 	 }	 else	 {
	 	 	 	 	 	 return	 default.GetBook(bookId);
	 	 	 	 }
	 	 }
}

[SlotDefinition("Books")]
interface	 Books	 {
	 	 void	 Open();
	 	 void	 Close();
	 	 Book	 GetBook(int	 bookId);
}
Figure 73: Library host with single optional vs. multiple cardinality fault

5.2.2 Contributor availability faults
A contributor availability fault is a mismatch in terms of time, order, and duration
of contributor availability between how a host expects contributors and how a
composition mechanism provides contributors. A contributor availability fault can
be found by varying the composition state or by varying the order in which the
contributors are connected and disconnected. Some faults can only be detected
by functional tests, which reveal that components have faulty behavior in certain
composition states.

5.2.2.1 Time faults
A time fault can be found by varying the time when the testee's contributors are
made available. Errors typically occur if the contributors are added later than the
testee expects.

Page 88

5.2.2.1.1 Availability at host instantiation vs. later at run time
The test case in Figure 74 tests the library host (Figure 75) with a book store
mock. The book store mock checks if it has been used when it is unplugged (cf.
Figure 74e). When the test case progresses to the composition operation plug
BooksMock, it executes the functional test, which makes the library use the con-
tributor. Later, when the test case progresses to the composition operation un-
plug BooksMock, it exposes the time fault in the library host. The cause for the
fault is that the host does not use the books mock contributor; it uses only the
contributors that it retrieved in the constructor and stored in the bookStores field.
A correctly implemented host would retrieve the contributors from the slot on de-
mand. The books mock exposes this misbehavior, because the assertion in the
CheckIsUsed method breaks when the mock is unplugged.

Page 89

a) Testbed b) Test case

c) Composition state after Co, M

e) Mock contributor
[Extension]
[Plug("Books",4OnUnplugged4=4"CheckIsUsed")]
class4BooksMock4:4Books4{
44bool4isUsed;
44Book4GetBook(int4bookId)4{4isUsed4=4true;4return4null;4}
44void4CheckIsUsed(CompositionEventArgs4args)4{
4444Assert.AssertTrue(isUsed);
44}
}

f) Functional test

1

[Test]
void4Test(Library4testee)4{
44testee.GetBook(1);
}

d) Composition state after Co, M, Co, M

Progress in
the test case

Co M Co M

c) d)

Library
Ap Bo

Books
Mock
(M)

Bo

1

Books
Mock
(M)

Bo

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

Library
Ap Bo

1
Books
Mock
(M)

Bo

Figure 74: Test case that finds a host instantiation vs. later at run time availability fault

Page 90

[Extension]
[Plug("Application")]
[Slot("Books")]
class	 Library	 :	 IApplication	 {
	 	 List<Books>	 bookStores	 =	 new	 List<Books>();
	 	 Library(Extension	 self)	 {
	 	 	 	 var	 runtime	 =	 self.Runtime;
	 	 	 	 var	 composer	 =	 runtime.Composer;
	 	 	 	 var	 typeStore	 =	 runtime.TypeStore;
	 	 	 	 foreach	 (PlugType	 pt	 in	 typeStore.GetPlugTypes("Books"))	 {
	 	 	 	 	 	 Plug	 p	 =	 composer.Create(pt.ExtensionType).Plugs["Books"];
	 	 	 	 	 	 self.Slots["Books"].Plug(p);
	 	 	 	 	 	 bookStores.Add((Books)	 p.Extension.Object);
	 	 	 	 }
	 	 }
	 	 Book	 GetBook(int	 bookId)	 {
	 	 	 	 foreach	 (Books	 bookStore	 in	 bookStores)	 {
	 	 	 	 	 	 Book	 b	 =	 bookStore.GetBook(bookId);
	 	 	 	 	 	 if	 (b	 !=	 null)	 {
	 	 	 	 	 	 	 	 return	 b;
	 	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 return	 null;
	 	 }
	 	 //	 ...
}

Figure 75: Library host with host instantiation vs. later at run time availability fault

5.2.2.1.2 Availability at host instantiation time vs. on notification
In Plux, there are two ways for a host to correctly consider contributors that be-
come available later at run time: The host can either retrieve the contributors from
the slot on demand (as suggested in Section 5.2.2.1.1.), or it can react to plug no-
tifications sent by the composer. As both ways are correct for later-at-run-time
contributor integration, the example from Section 5.2.2.1.1. applies here as well.

5.2.2.2 Order faults
An order fault can be found by varying the order in which a testee's contributors
are composed, i.e., the testee can show faulty or correct behavior with the same
composition state, depending on the order of the composition operations which
produced this composition state. Some order faults can be found during compo-
sition, whereas others can only be found with a functional test.

5.2.2.2.1 Predictable order vs. unpredictable order (same contract)
The test case in Figure 76 tests the library host (cf. Figure 77) with a book store
mock for local books and a book store mock for offsite books. Combined with a
functional test, the mocks check if the GetBook calls for local and offsite books
are forwarded to the appropriate books contributor. A call with StoreKind.Local

Page 91

should reach the LocalMock, and a call with StoreKind.Offsite should reach the
OffsiteMock. When the test case plugs the offsite mock first and the local mock
second, and executes the functional test, it exposes the order fault in the library
host. The cause for the fault is that the host assumes the first plugged book store
to be the local book store and the other book stores to be offsite book stores.
However, the test case composed them the other way round, i.e., the offsite book
store first and the local book store second. A correctly implemented host would
not keep the book stores in private fields localBookStore and offsiteBookStores,
but would retrieve them from the Books slot and use them according to the para-
meter values. The mocks expose the misbehavior of the host, because the asser-
tion in the GetBook method breaks, when the calls from the functional test are
forwarded to the wrong contributors.

a) Testbed b) Test case

c) Composition state

d) Local mock contributor
[Extension]
[Plug("Books")]
[Param("Kind",:StoreKind.Local)]
class:LocalMock:::Books:{
::Book:GetBook(int:bookId):{
::::Assert.AssertEquals(1,:bookId);
::::return:null;
::}
}

f) Functional test

1

[Test(PluggedContributors:=:{:"LocalMock",:"OffsiteMock"}:)]
void:Test(Library:testee):{
::testee.GetBook(StoreKind.Local,:1);
::testee.GetBook(StoreKind.Offsite,:2);
}

[Extension]
[Plug("Books")]
[Param("Kind",:StoreKind.Offsite)]
class:OffsiteMock:::Books:{
::Book:GetBook(int:bookId):{
::::Assert.AssertEquals(2,:bookId);
::::return:null;
::}
}

Progress in
the test case

Co OM Co LMLM OM

e) Offsite mock contributor

Library
Ap Bo

1
LocalMock
(LM)Bo

OffsiteMock
(OM)Bo

LocalMock
(LM)Bo

OffsiteMock
(OM)Bo

1

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

Figure 76: Test case that finds a predictable order vs. unpredictable order fault (same contract)

Page 92

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "AddBookStore")]
class	 Library	 :	 IApplication	 {
	 	 Books	 localBookStore;
	 	 List<Books>	 offsiteBookStores	 =	 new	 List<Books>();
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 var	 books	 =	 (Books)	 args.Plug.Extension.Object;
	 	 	 	 if	 (localBookStore	 ==	 null)	 {
	 	 	 	 	 	 localBookStore	 =	 books;
	 	 	 	 }	 else	 {
	 	 	 	 	 	 offsiteBookStores.Add(books);
	 	 	 	 }
	 	 }
	 	 Book	 GetBook(StoreKind	 kind,	 int	 bookId)	 {
	 	 	 	 Book	 b	 =	 null;
	 	 	 	 switch(kind)	 {
	 	 	 	 	 	 case	 StoreKind.Local:
	 	 	 	 	 	 	 	 b	 =	 localBookStore.GetBook(bookId);
	 	 	 	 	 	 	 	 break;
	 	 	 	 	 	 case	 StoreKind.Offsite:
	 	 	 	 	 	 	 	 foreach	 (Books	 books	 in	 offsiteBookStores)	 {
	 	 	 	 	 	 	 	 	 	 Book	 b	 =	 books.GetBook(bookId);
	 	 	 	 	 	 	 	 	 	 if	 (b	 !=	 null)	 {
	 	 	 	 	 	 	 	 	 	 	 	 break;
	 	 	 	 	 	 	 	 	 	 }
	 	 	 	 	 	 	 	 }
	 	 	 	 	 	 	 	 break;
	 	 	 	 }
	 	 	 	 return	 b;
	 	 }
}

[SlotDefinition("Books")]
[ParamDefinition("Kind",	 typeof(StoreKind))]
interface	 Books	 {	 ...	 }

enum	 StoreKind	 {	 Local,	 Offsite	 }
Figure 77: Library host with predictable vs. unpredictable order fault (same contract)

5.2.2.2.2 Predictable order vs. unpredictable order (different
contracts)
The test case in Figure 78 tests the library host (cf. Figure 79) with the local books
store and the statistics tool. When the test case progresses to the plug Local-
Books operation, it exposes the order fault in the library host. The cause for this
fault is a null pointer exception when the host accesses the uninitialized field sta-
tistics. A correct implementation of this host would, for example, apply a behavior
on the books slot which makes sure that it is only filled after the Statistics slot has
been filled. Such a behavior would return false in CanPlug until the statistics slot
is filled.

Page 93

a) Testbed b) Test case

c) Composition state

Progress in
the test case

Co Lo Co LoSt St

LocalBooks
(Lo)Bo

Statistics
(St)St

Ap

Library
Bo
St

Di
Ap

Core
(Co) Di

Ap

LocalBooks
(Lo)Bo

Ap

Library
Bo
St

Figure 78: Test case that finds a predictable order vs. unpredictable order fault (different contracts)

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "AddBookStore")]
[Slot("Statistics",	 OnPlugged	 =	 "SetStatistics")]
class	 Library	 :	 IApplication	 {
	 	 List<Books>	 bookStores	 =	 new	 List<Books>();
	 	 Statistics	 statistics;
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 Books	 b	 =	 (Books)	 args.Plug.Extension.Object;
	 	 	 	 bookStores.Add(b);
	 	 	 	 statistics.AddBookStore(b);
	 	 }
	 	 void	 SetStatistics(CompositionEventArgs	 args)	 {
	 	 	 	 statistics	 =	 (Statistics)	 args.Plug.Extension.Object;
	 	 }
}

Figure 79: Library host with predictable vs. unpredictable order fault (different contracts)

5.2.2.2.3 Same order on every run vs. unpredictable order (same
contract)
The test case in Figure 80 test the library host (cf. Figure 81) with a book store
mock for local books and a book store for offsite books. Combined with a func-
tional test, the mocks check if the library imports the books into the same book
stores where they were exported from. The functional test is executed as soon as
both book mocks have been plugged. The test case plugs the book mocks twice:
on the first time, the functional test saves the books to a memory stream; on the
second time, it restores the books from the memory stream. When the mocks are
plugged in again (this time in different order), the assertions in the book mocks
fail, because the restored books are different from the saved books. Thus the
functional test exposes the order fault in the library host. The cause for the order
fault is that the library exports and imports the data in the order in which the book
stores were plugged. If they were plugged in different orders at export and import

Page 94

time, the restored data are incorrectly assigned. A correct implementation of the
host would identify the contributors by their component name and would assign
the data accordingly.

a) Testbed

c) Composition state

Library
Ap Bo

1
LocalMock
(LM)Bo

OffsiteMock
(OM)Bo

LocalMock
(LM)Bo

OffsiteMock
(OM)Bo

1

Library
Ap Bo

b) Test case

d) Local mock contributor
[Extension]

[Plug("Books")]

class6LocalMock6:6Books6{

66Book[]6GetBooks()6{

6666return6new6Book[]6{

66666666new6MockBook(1)6};

66}

66void6SetBooks(Book[]6books)6{

6666Assert.AssertEquals(1,

66666666books.Length);

6666Assert.AssertEquals(1,

66666666books[0].Id);

}6}

Progress in
the test case

LM OM OM OMLM LM OM LM

1a 1b

f) Functional test

1a

class6LibraryTest6{

66MemoryStream6stream6=6null;

66[Test(PluggedContributors6=6{6"LocalMock",6"OffsiteMock"}6)]

66void6Test(Library6testee)6{

6666if6(stream6==6null)6{

666666stream6=6new6MemoryStream();

666666testee.ExportBooks(stream);

6666}6else6{

666666stream.Position6=60;

666666testee.ImportBooks(stream);

666666stream6=6null;

}6}6}

1b

class6MockBook6:6Book6{

66MockBook(int6id)6{6Id6=6id;6}

66int6Id6{6private6set;6get;6}

66//6...

}

e) Offsite mock contributor
[Extension]

[Plug("Books")]

class6OffsiteMock6:6Books6{

66Book[]6GetBooks()6{

6666return6new6Book[]6{

66666666new6MockBook(2)6};

66}

66void6SetBooks(Book[]6books)6{

6666Assert.AssertEquals(1,

66666666books.Length);

6666Assert.AssertEquals(2,

66666666books[0].Id);

}6}

Figure 80: Test case that finds a same on every run vs. unpredictable order fault (same contract)

Page 95

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "AddBookStore",
	 	 	 	 OnUnplugging	 =	 "RemoveBookStore")]
class	 Library	 :	 IApplication	 {
	 	 List<Books>	 bookStores	 =	 new	 List<Books>();
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStores.add((Books)	 args.Plug.Extension.Object);
	 	 }
	 	 void	 RemoveBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStores.remove((Books)	 args.Plug.Extension.Object);
	 	 }
	 	 void	 ExportBooks(Stream	 output)	 {
	 	 	 	 var	 formatter	 =	 new	 BinaryFormatter();
	 	 	 	 int	 size	 =	 bookStores.Count;
	 	 	 	 formatter.Serialize(output,	 size);
	 	 	 	 for	 (int	 store	 =	 0;	 store	 <	 size;	 ++store)	 {
	 	 	 	 	 	 Books	 b	 =	 bookStores[store];
	 	 	 	 	 	 //	 ...	 export	 the	 books	 of	 the	 store	 ...
	 	 	 	 }
	 	 }
	 	 void	 ImportBooks(Stream	 input)	 {
	 	 	 	 var	 formatter	 =	 new	 BinaryFormatter();
	 	 	 	 int	 size	 =	 (int)	 formatter.Deserialize(input);
	 	 	 	 for	 (int	 store	 =	 0;	 store	 <	 size;	 ++store)	 {
	 	 	 	 	 	 Books	 b	 =	 bookStores[store];
	 	 	 	 	 	 //	 ...	 import	 the	 books	 of	 the	 store	 ...
	 	 	 	 }
	 	 }
}

Figure 81: Library host with same on every run vs. unpredictable order fault (same contract)

5.2.2.2.4 Same order on every run vs. unpredictable order (different
contracts)
The test case in Figure 82 tests the library host (cf. Figure 83) with a local book
store contributor and a statistics tool. The test case plugs the contributors twice,
each time in a different order. When the test case progresses to the second plug
LocalBooks operation, it exposes the order fault in the library host. The cause for
the fault is that the host misuses the UseStatistics setting, which causes a null
pointer exception when the composition order of book store and statistics tool
changes. A correct implementation of this host would access the statistics only if
the UseStatistics setting is enabled and (&& instead of ||) the field statistics is not
null. Furthermore, the host would not modify the UseStatistics setting at all, be-
cause this should only be done by the user.

Page 96

a) Testbed b) Test case

Progress in
the test case

St Lo Lo LoSt St Lo St

LocalBooks
(Lo)Bo

Statistics
(St)St

Ap

Library
Bo
St

c) Composition state

LocalBooks
(Lo)Bo

Ap

Library
Bo
St

Figure 82: Test case that finds a same on every run vs. unpredictable order fault (different
contracts)

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "SetBookStore")]
[Slot("Statistics",	 OnPlugged	 =	 "SetStatistics",
	 	 	 	 	 	 OnUnplugging	 =	 "RemoveStatistics")]
class	 Library	 :	 IApplication,	 IDisposable	 {
	 	 Dictionary<String,	 bool>	 settings	 =	 LoadSettingsFromFile();
	 	 Books	 bookStore;
	 	 Statistics	 statistics;
	 	 Dictionary<String,	 bool>	 LoadSettingsFromFile()	 {	 ...	 }
	 	 void	 SaveSettingsToFile()	 {	 ...	 }
	 	 void	 SetBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStore	 =	 (Books)	 args.Plug.Extension.Object;
	 	 	 	 if	 (settings.ContainsKey("UseStatistics")
	 	 	 	 	 	 	 	 &&	 settings["UseStatistics"]	 ||	 statistics	 !=	 null)	 {
	 	 	 	 	 	 settings["UseStatistics"]	 =	 true;
	 	 	 	 	 	 statistics.UpdateBookCount(bookStore.Count);
	 	 	 	 }	 else	 {
	 	 	 	 	 	 settings["UseStatistics"]	 =	 false;
	 	 	 	 }
	 	 }
	 	 void	 SetStatistics(CompositionEventArgs	 args)	 {
	 	 	 	 statistics	 =	 (Statistics)	 args.Plug.Extension.Object;
	 	 }
	 	 void	 RemoveStatistics(CompositionEventArgs	 args)	 {
	 	 	 	 statistics	 =	 null;
	 	 }
	 	 void	 Dispose()	 {
	 	 	 	 SaveSettingsToFile();
	 	 }
}

Figure 83: Library host with same on every run vs. unpredictable order fault (different contracts)

5.2.2.2.5 All at once vs. continuously (same contract)
The test case in Figure 84 tests the library host (cf. Figure 85) with the local books
store and a functional test, which is executed after each composition operation.

Page 97

The functional test calls the UpdateBooksOrdered method in the library host,
which retrieves data from its books contributors. When the test case progresses
to the plug LocalBooks operation, it exposes the order fault in the library host.
The cause for the fault is that the library host sets the length of the result array
booksOrdered to the number of available contributors on the first call (zero con-
tributors in our example, cf. Figure 84c). On subsequent calls it writes the data re-
trieved from the then available contributors into the array. If the number of con-
tributors increases between calls (from zero to one, cf. Figure 84d), this causes an
index out of bounds exception, because the result array is too small. A correct
implementation of this host would resize the result array according to the number
of available contributors on each call.

Library
Ap Bo

f) Functional test

1

[Test]
void+Test(Library+testee)+{
++testee.UpdateBooksOrdered();
}

a) Testbed b) Test case

Progress in
the test case

Co Lo Co Lo

LocalBooks
(Lo)Bo

1 1 1
c) d)

c) Composition state

1

d) Composition state after Co, Lo

LocalBooks
(Lo)Bo

1

1

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

Library
Ap Bo

Figure 84: Test case that finds an all at once vs. continuously order fault (same contract)

Page 98

[Extension]
[Plug("Application")]
[Slot("Books")]
class	 Library	 :	 IApplication	 {
	 	 int[]	 booksOrdered	 =	 null;
	 	 Extension	 self;
	 	 public	 Library(Extension	 self)	 {
	 	 	 	 this.self	 =	 self;
	 	 }
	 	 void	 UpdateBooksOrdered()	 {
	 	 	 	 int	 count	 =	 self.Slots["Books"].PluggedPlugs.Count;
	 	 	 	 if	 (booksOrdered	 ==	 null)	 {
	 	 	 	 	 	 booksOrdered	 =	 new	 int[count];
	 	 	 	 }
	 	 	 	 for	 (int	 index	 =	 0;	 index	 <	 count;	 index++)	 {
	 	 	 	 	 	 Plug	 p	 =	 self.Slots["Books"].PluggedPlugs[index];
	 	 	 	 	 	 var	 books	 =	 (Books)	 p.Extension.Object;
	 	 	 	 	 	 int	 nrBooksOrdered	 =	 0;
	 	 	 	 	 	 foreach	 (Book	 b	 in	 books.GetBooks())	 {
	 	 	 	 	 	 	 	 if	 (b.IsOrdered)	 {
	 	 	 	 	 	 	 	 	 	 nrBooksOrdered++;
	 	 	 	 	 	 	 	 }
	 	 	 	 	 	 }
	 	 	 	 	 	 booksOrdered[index]	 =	 nrBooksOrdered;
	 	 	 	 }
	 	 }
}

Figure 85: Library host with an all at once vs. continuously order fault (same contract)

5.2.2.2.6 All at once vs. continuously (different contracts)
The test case in Figure 86 tests the library host (cf. Figure 87) with two book store
mocks (cf. Figure 86e), a statistics contributor to calculate the sum of the book
prices (cf. Figure 88), and a functional test. The functional test retrieves the sum
of book prices calculated by the statistics contributor. The functional test is anno-
tated such that it is only executed when the contributors BooksMock1,
BooksMock2, and Statistics are plugged into the testee. In this composition each
of the mocks has books with a total price of 6, which the statistics tool adds up to
a total of 12. When the test case progresses to the plug BooksMock2 operation,
the functional test exposes the order fault in the library host. The cause for this
fault is that the library host incorrectly stores the contributors in its own fields and
that it disconnects the event handler AddBookStore when a statistic contributor is
connected and disconnects the event handler AddStatistics when a book store is
connected. Therefore in this test case the books of BooksMock2 are ignored.
Please note, that all book stores were composed before the statistics tool (e.g.,
M1, M2, Su) or the statistics tool was composed before the book stores (e.g., Su,
M1, M2), the host would calculate the correct sum. Whenever book stores and
the statistics tool are composed in an interleaved way (e.g., M1, Su, M2), the host
calculates an incorrect sum. A correct implementation of this host would not rely

Page 99

on the fact that all book stores (and statistics tools) become available at once
(i.e., in a bulk), but instead would use the currently plugged book stores and sta-
tistics tools by retrieving them from the composition state on demand.

f) Functional test

1

[Test(PluggedContributors2=2{2"BooksMock1",2"BooksMock2",2
222222222222222222222222222222"Statistics"}2)]
void2Test(Library2testee)2{
22Assert.AssertEquals(12,2testee.GetStatistics("sum"));
}

a) Testbed b) Test case

c) Composition state

1

Di
Ap

Core
(Co) Di

Ap Ap

Library
Bo
St

Books
Mock1
(M1)

Bo
Books
Mock2
(M2)

Bo

SumStatistics
(Su)St

Progress in
the test case

Co M1 Su M2Su M2 Co M1

Ap

Library
Bo
St

1
Books
Mock1
(M1)

Bo

Books
Mock2
(M2)

Bo

SumStatistics
(Su)St

e) Mocks: BooksMock1, BooksMock2
[Extension("BooksMock1")]
...
[Extension("BooksMock2")]
[Plug("Books")]
class2BooksMock2:2Books2{
22Book[]2GetBooks()2{
2222return2new2Book[]2{new2MockBook(2),2new2MockBook(4)};
22}
22//2...
}
class2MockBook2:2Book2{
22MockBook(int2price)2{2Price2=2price;2}
22int2Price2{2private2set;2get;2}
22//2...
}

Figure 86: Test case that finds an all at once vs. continuously order fault (different contracts)

Page 100

[Extension]
[Plug("Application")]
[Slot("Books")]
[Slot("Statistics")]
class	 Library	 :	 IApplication	 {
	 	 Extension	 self;
	 	 List<Books>	 bookStores	 =	 new	 List<Books>();
	 	 Dictionary<String,	 Statistics>	 statisticsMap	 =
	 	 	 	 	 	 new	 Dictionary<String,	 Statistics>();
	 	 Library(Extension	 self)	 {
	 	 	 	 this.self	 =	 self;
	 	 	 	 self.Slots["Books"].Plugged	 +=	 AddBookStore;
	 	 	 	 self.Slots["Statistics"].Plugged	 +=	 AddStatistics;
	 	 }
	 	 int	 GetStatistics(String	 name)	 {
	 	 	 	 if	 (!statisticsMap.ContainsKey(name))	 {	 return	 -‐1;	 }
	 	 	 	 Statistics	 statistics	 =	 statisticsMap[name];
	 	 	 	 List<Book>	 allBooks	 =	 new	 List<Book>();
	 	 	 	 foreach	 (Books	 books	 in	 bookStores)	 {
	 	 	 	 	 	 allBooks.AddRange(books.GetBooks());
	 	 	 	 }
	 	 	 	 return	 statistics.Calculate(allBooks);
	 	 }
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 if	 (statisticsMap.Count	 >	 0)	 {
	 	 	 	 	 	 self.Slots["Statistics"].Plugged	 -‐=	 AddStatistics;
	 	 	 	 }
	 	 	 	 bookStores.Add((Books)	 args.Plug.Extension.Object);
	 	 }
	 	 void	 AddStatistics(CompositionEventArgs	 args)	 {
	 	 	 	 if	 (bookStores.Count	 >	 0)	 {
	 	 	 	 	 	 self.Slots["Books"].Plugged	 -‐=	 AddBookStore;
	 	 	 	 }
	 	 	 	 var	 statistics	 =	 (Statistics)	 args.Plug.Extension.Object;
	 	 	 	 var	 operation	 =	 (String)	 args.Plug.Params["Operation"].Value;
	 	 	 	 statisticsMap[operation]	 =	 statistics;
	 	 }
}

Figure 87: Library host with all at once vs. continuously order fault (different contracts)

[Extension]
[Plug("Statistics")]
[Param("Operation",	 "sum")]
class	 SumStatistics	 :	 Statistics	 {
	 	 int	 Calculate(List<Book>	 books)	 {
	 	 	 	 int	 sum	 =	 0;
	 	 	 	 foreach	 (Book	 b	 in	 books)	 {
	 	 	 	 	 	 sum	 +=	 b.Price;
	 	 	 	 }
	 	 	 	 return	 sum;
	 	 }
}

Figure 88: Statistics contributor that calculates the total price of books

Page 101

5.2.2.3 Duration faults
A duration fault can be found by limiting the duration of a contributor's availability
and performing a functional test. The functional test must be executed after a
contributor was disconnected.

The test case in Figure 89 composes the library host (cf. Figure 90) with a books
mock and a functional test, which calls the GetBook method where the library
host accesses the books contributor. When the test case progresses to the com-
position operation unplug Mock, the functional test is executed and exposes the
duration fault in the library host. The cause for the fault is that the host tries to use
the books contributor after it was removed, which causes the assertion in
BooksMock to fail, as it is already disposed. A correct implementation of this host
would listen to the Unplugged event and set bookStore to null in response to it.

e) Mock contributor
[Extension]
[Plug("Books")]
class6BooksMock6:6Books,6IDisposable6{
66bool6isDisposed6=6false;
66Book6GetBook(int6bookId)6{
6666Assert.AssertFalse(isDisposed);
6666return6null;
66}
66void6Dispose()6{6isDisposed6=6true;6}
}

f) Functional test

1

[Test]
void6Test(Library6testee)6{
66testee.GetBook(1);
}

b) Test case

Progress in
the test case

Co M M Co

a) Testbed
1

Books
Mock
(M)

Bo

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

c) Composition state

Library
Ap Bo

1

Figure 89: Test case that finds a permanent vs. temporary availability duration fault

Page 102

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "SetBookStore")]
class	 Library	 :	 IApplication	 {
	 	 Books	 bookStore;
	 	 void	 SetBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStore	 =	 (Books)	 args.Plug.Extension.Object;
	 	 }
	 	 Book	 GetBook(int	 bookId)	 {
	 	 	 	 if	 (bookStore	 !=	 null)	 {
	 	 	 	 	 	 return	 bookStore.GetBook(bookId);
	 	 	 	 }
	 	 	 	 //	 ...
	 	 }
}

Figure 90: Library host with permanent vs. temporary availability duration fault

5.2.3 Contributor identification faults
A contributor identification fault is a mismatch between how a host identifies its
contributors, and how the composition mechanism identifies them. A contributor
identification fault can be found by varying the contributors which are available.
The test case in Figure 91 composes the library host (cf. Figure 92) with a books
mock contributor. When the test case progresses to the plug BooksMock opera-
tion it exposes the contributor identification fault. The cause for the fault is that
the host assigns the books mock to a LocalBooks field. A correct implementation
of this host would treat the contributor as a component of type Books instead of
type LocalBooks.

b) Test case

Progress in
the test case

Co M M Co

a) Testbed

Books
Mock
(M)

Bo

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

c) Composition state

Library
Ap Bo

Books
Mock
(M)

Bo

Figure 91: Test case that finds a contributor identification fault

Page 103

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "AddBookStore")]
class	 Library	 :	 IApplication	 {
	 	 LocalBooks	 books;
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 books	 =	 (LocalBooks)	 args.Plug.Extension.Object;
	 	 	 	 //	 ...
	 	 }
}

Figure 92: Library host with a contributor identification fault

5.2.4 Contributor instantiation faults
A contributor instantiation fault is a mismatch in terms of who creates a contribu-
tor (i.e., the host itself or the composition mechanism), or how contributors are
created (i.e., uniformly for every host or in a host-specific way). A contributor in-
stantiation fault can be found by doing a functional test that checks whether the
testee actually uses a contributor instance provided by Plux; a faulty testee would
use a self-created instance instead. Moreover, the functional test should check if
the testee behaves correctly if the contributor is shared with other hosts.

5.2.4.1 By host vs. by infrastructure
The test case in Figure 93 composes the library host (cf. Figure 94) with a books
mock and a functional test. The functional test calls the GetBook method of the li-
brary host, which accesses the books contributor. Later when the test case pro-
gresses to unplug BooksMock, it exposes the instantiation fault in the library host.
The cause for the fault is that the host does not use the books mock instance
plugged by the infrastructure, but creates another instance itself. Thus the Get-
Book call of the functional test does not reach the books mock, which breaks the
assertion in the mock when it is unplugged. Furthermore, if the corresponding Act
runtime check for detecting composition standard violations is installed, it raises
a run-time error already when the library host calls the self-created instance of the
books mock (cf. Figure 93c), because a host must not call contributors that are
not plugged into it. A correct implementation of this host would use the books
contributor provided in the Plugged event.

Page 104

e) Mock contributor
[Extension]
[Plug("Books",4OnUnplugged4=4"CheckIsUsed")]
class4BooksMock4:4Books4{
44bool4isUsed;
44Book4GetBook(int4bookId)4{4isUsed4=4true;4return4null;4}
44void4CheckIsUsed(CompositionEventArgs4args)4{
4444Assert.AssertTrue(isUsed);
44}
}

f) Functional test

1

[Test]
void4Test(Library4testee)4{
44testee.GetBook(1);
}

b) Test case

Progress in
the test case

Co M Co M

c) d)

a) Testbed
1

Books
Mock
(M)

Bo

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

d) Composition state after Co, M, Co, M

Library
Ap Bo

Books
Mock
(M)

Bo

Books
Mock
(M)

Bo

c) Composition state after Co, M

Library
Ap Bo

1
Books
Mock
(M)

Bo

Books
Mock
(M)

Bo

Figure 93: Test case that finds a by host vs. by infrastructure instantiation fault

Page 105

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "AddBookStore")]
class	 Library	 :	 IApplication	 {
	 	 List<Books>	 bookStores	 =	 new	 List<Books>();
	 	 Composer	 composer;
	 	 Library	 (Extension	 self)	 {
	 	 	 	 composer	 =	 self.Composer;
	 	 }	
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 Extension	 extension	 =	 composer.Create(
	 	 	 	 	 	 	 	 args.Plug.Extension.ExtensionType);
	 	 	 	 bookStores.Add((Books)	 extension.Object);
	 	 }
	 	 Book	 GetBook(int	 bookId)	 {
	 	 	 	 foreach	 (Books	 bookStore	 in	 bookStores)	 {
	 	 	 	 	 	 Book	 b	 =	 bookStore.GetBook(bookId);
	 	 	 	 	 	 if	 (b	 !=	 null)	 	 {
	 	 	 	 	 	 	 	 return	 b;
	 	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 return	 null;
	 	 }
}

Figure 94: Library host with a by host vs. by infrastructure instantiation fault

5.2.4.2 Globally uniform vs. host-specific
The test case in Figure 95 composes the offsite book store host (cf. Figure 96)
with a statistics contributor and a functional test. The functional test compares
the total price of the books in the offsite book store provided by the book store
with the price provided by the statistics tool for this book store. To simulate that
the statistics tool is also used by another host, the test case adds a dummy book
from some other book store to the statistics. Please note, this simulation corre-
sponds to a composition where some other host retrieves the statistics contribu-
tor from the composition state in order to share it (cf. Section 3.3.4.2 on page 57).
When the test case progresses to the composition operation plug Statistics the
functional test exposes the instantiation fault in the book store host. The cause
for the fault is that the host uses the method GetTotalPrice() that returns the total
price for all books in the statistics instead of GetTotalPrice(int bookStoreId) that
returns the total price for the books of a given book store.

Page 106

d) Functional test

1

[Test(PluggedContributors2=2{2"Statistics"}2)]
void2Test(Extension2testee)2{
22var2books2=2(OffsiteBooks)2testee.Object;
22var2statistics2=2(Statistics)2testee.Slots["Statistics"]
222222.PluggedPlugs[0].Extension.Object;
22int2dummyBooksId2=2books.Id2+21;
22statistics.Add(dummyBooksId,2new2MockBook(1000));
22int2booksValue2=2books.GetTotalPrice();
22int2statisticValue2=2statistics.GetTotalPrice(books.Id);
22Assert.AssertEquals(booksValue,2statisticValue);
}

class2MockBook2:2Book2{
22MockBook(int2price)2{2Price2=2price;2}
22int2Price2{2private2set;2get;2}
22//2...
}

b) Test case

Progress in
the test case

St St

a) Testbed

Statistics
(St)St

1

Offsite
Books
(Of)Bo St

c) Composition state

Offsite
Books
(Of)Bo St

1

Statistics
(St)St

Figure 95: Test case that finds a globally uniform vs. host-specific instantiation fault

Page 107

[Extension]
[Plug("Books")]
[Slot("Statistics")]
class	 OffsiteBooks	 :	 Books	 {
	 	 Extension	 self;
	 	 int	 id	 =	 ...;
	 	 OffsiteBooks(Extension	 self)	 {
	 	 	 	 this.self	 =	 self;
	 	 }
	 	 int	 GetTotalPrice()	 {
	 	 	 	 var	 stat	 =	 (Statistics)	 self.Slots["Statistics"]
	 	 	 	 	 	 	 	 .PluggedPlugs[0].Extension.Object;
	 	 	 	 foreach	 (Book	 book	 in	 ...)	 {
	 	 	 	 	 	 stat.Add(id,	 book);
	 	 	 	 }
	 	 	 	 return	 stat.GetTotalPrice();
	 	 }
	 	 int	 Id	 {	 get	 {	 return	 id;	 }	 }
}

[Extension]
[Plug("Statistics")]
class	 StatisticsTool	 :	 Statistics	 {
	 	 void	 Add(int	 bookStoreId,	 Book	 book)	 {	 ...	 }
	 	 //	 Get	 the	 total	 price	 for	 the	 books	 in	 the	 given	 book	 store
	 	 int	 GetTotalPrice(int	 bookStoreId)	 {	 ...	 }
	 	 //	 Get	 the	 total	 price	 for	 all	 books
	 	 int	 GetTotalPrice()	 {	 ...	 }
}

Figure 96: OffsiteBooks host with a globally uniform vs. host-specific instantiation fault

5.2.5 Contributor registration faults
A contributor registration fault is a mismatch in terms of where a composition
mechanism makes contributors available (i.e., globally to all hosts or specifically
to individual hosts) or how a composition mechanism tracks contributor usage
(i.e., by storing just a global usage counter per contributor or by keeping track of
which hosts are connected to which contributors). A contributor registration fault
can occur if contributors are used by multiple hosts. It can be found if some con-
tributors are connected to one set of hosts, whereas other contributors are
connected to another set of hosts.

The test case in Figure 97 composes the library host (cf. Figure 98) with a statis-
tics contributor, two book store mocks, and a functional test. The functional test
calls the method CalculateAveragePrice of the library host and compares the
result to the expected value. When the test case progresses to the composition
operation plug BooksMock1 into Library, it exposes the registration fault in the li-
brary host, because the library uses just one book store whereas the statistics
tool is connected to two book stores. The cause for the fault is that the host uses
the method GetTotalPrice() that returns the total price for all book stores in the

Page 108

statistics, instead of GetTotalPrice(int bookStoreId) to calculate the price only for
the book store that is plugged into the library.

Please note, that this example covers the contributor registration fault global-us-
age vs. host-specific usage (cf. Section 3.3.5.1 on page 60). The contributor regis-
tration fault global availability vs. host-specific availability (cf. Section 3.3.5.2 on
page 61) does not occur in Plux. However, if this test case is applied to hosts that
use a composition mechanism where this fault can occur, the test case would find
the fault, because for the fault it is irrelevant if the host could but does not use
(usage) or if it cannot use the contributor, because it is not available (availability).

Page 109

e) Functional test

1

[Test(PluggedContributors2=2{2"BooksMock1"2}2)]
void2Test(Library2testee)2{
22Assert.AssertEquals(3,2testee.CalculateAveragePrice());
}

a) Testbed

Ap

Library
Bo
St

1

Statistics
(St)St Bo

Books
Mock1
(M1)

Bo
Books
Mock2
(M2)

Bo

c) Composition state

1

Ap

Library
Bo
St Statistics

(St)St Bo

Books
Mock1
(M1)

Bo

Books
Mock2
(M2)

Bo

b) Test case

Progress in
the test case

M1S M2S St M1L M2L M1S M2S St M1L M2L

XS.. on host Statistics
XL .. on host Library

d) Mocks: BooksMock1, BooksMock2
[Extension("BooksMock1")]
[Plug("Books")]
class2BooksMock12:2Books2{
22Book[]2GetBooks()2{
2222return2new2Book[]2{
22222222new2MockBook(2),
22222222new2MockBook(4)};
22}
22//2...
}

[Extension("BooksMock2")]
[Plug("Books")]
class2BooksMock22:2Books2{
22Book[]2GetBooks()2{
2222return2new2Book[]2{
22222222new2MockBook(10)};
22}
22//2...
}

class2MockBook2:2Book2{
22MockBook(int2price)2{2Price2=2price;2}
22int2Price2{2private2set;2get;2}
22//2...
}

Figure 97: Test case that finds a global vs. host-specific registration fault

Page 110

[Extension]
[Plug("Application")]
[Slot("Books")]
[Slot("Statistics")]
class	 Library	 :	 IApplication	 {
	 	 ...
	 	 int	 CalculateAverageValue()	 {
	 	 	 	 Slot	 s	 =	 self.Slot("Books");
	 	 	 	 int	 count	 =	 0;
	 	 	 	 foreach	 (Plug	 p	 in	 s.PluggedPlugs)	 {
	 	 	 	 	 	 var	 books	 =	 (Books)	 p.Extension.Object;
	 	 	 	 	 	 count	 +=	 books.Count;
	 	 	 	 }
	 	 	 	 int	 totalPrice	 =	 0;
	 	 	 	 if	 (self.Slots["Statistics"].Length	 !=	 0)	 {
	 	 	 	 	 	 var	 stat	 =	 (Statistics)	 self.Slots["Statistics"]
	 	 	 	 	 	 	 	 	 	 .PluggedPlugs[0].Extension.Object;
	 	 	 	 	 	 totalPrice	 =	 stat.GetTotalPrice();
	 	 	 	 }	 else	 {
	 	 	 	 	 	 foreach	 (Plug	 p	 in	 s.PluggedPlugs)	 {
	 	 	 	 	 	 	 	 var	 books	 =	 (Books)	 p.Extension.Object;
	 	 	 	 	 	 	 	 foreach	 (Book	 b	 in	 books.GetBooks())	 {
	 	 	 	 	 	 	 	 	 	 totalPrice	 +=	 b.Price;
	 	 	 	 	 	 	 	 }
	 	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 return	 totalPrice	 /	 count;
	 	 }
}
[Extension]
[Plug("Statistics")]
[Slot("Books")]
class	 StatisticsTool	 :	 Statistics	 {
	 	 int	 GetTotalPrice(int	 bookStoreId)	 {	 ...	 }
	 	 int	 GetTotalPrice()	 {	 ...	 }
}

Figure 98: Library host with a global vs. host-specific registration fault

5.2.6 Contributor sharing faults
A sharing fault in a contributor causes errors in a correctly implemented host, if a
contributor that does not support sharing is shared among hosts by the composi-
tion mechanism. Thus a sharing fault in a contributor can be found if the contribu-
tor is indeed shared, typically after the contributor was disconnected from some
hosts and is still connected to other hosts.

The test case in Figure 99 composes the local book store contributor (cf. Fig-
ure 100) with two mock hosts and a functional test. The functional test calls the
method GetBooks of the book store. When the test case progresses to the com-
position operation unplug MockHost1, the functional test exposes the contributor
sharing fault in the book store contributor, because the GetBooks method causes
a null pointer exception when it passes the null reference from the field connec-

Page 111

tion into the SqlCommand constructor. The cause for the fault is that the local
book store sets its field connection to null when it is unplugged from mock host 1.
A correctly implemented contributor would only close the connection when it is
unplugged from the last host (if (args.Plug.SlotsWherePlugged.Count == 0) { ... }).

e) Functional test

1

[Test(UsedPlugs-=-{-"Books"-}-)]
void-Test(LocalBooks-testee)-{
--testee.GetBooks("Myers");
}

a) Testbed
1

LocalBooks
(Lo)Bo

MockHost2
(M2) Bo

MockHost1
(M1) Bo

b) Test case

Progress in
the test case

M1 M2 M1 M2

c) Composition state

MockHost2
(M2) Bo

1

LocalBooks
(Lo)Bo

d) Mocks: MockHost1, MockHost2
[Extension]
[Slot("Books")]
class-MockHost1-{-}

[Extension]
[Slot("Books")]
class-MockHost2-{-}

Figure 99: Test case that finds a contributor sharing fault

[Extension]
[Plug("Books",	 OnPlugged="OpenDatabase",
	 	 	 	 	 	 OnUnplugging="CloseDatabase")]
class	 LocalBooks	 :	 Books	 {
	 	 SqlConnection	 connection;
	 	 void	 OpenDatabase(CompositionEventArgs	 args)	 {
	 	 	 	 connection	 =	 new	 SqlConnection(...);
	 	 	 	 connection.Open();
	 	 }
	 	 void	 CloseDatabase(CompositionEventArgs	 args)	 {
	 	 	 	 connection.Close();
	 	 	 	 connection	 =	 null;
	 	 }
	 	 Book[]	 GetBooks(String	 author)	 {
	 	 	 	 SqlCommand	 command	 =	
	 	 	 	 	 	 	 	 new	 SqlCommand("SELECT	 *	 ...",	 connection);
	 	 	 	 SqlDataReader	 reader	 =	 command.ExecuteReader();
	 	 	 	 ...
	 	 }
}

Figure 100: Book store contributor with a contributor sharing fault

Page 112

5.2.7 Composition standard violations
The composition standard specifies the rules according to which a composition
must be done in order to be valid. A composition standard violation can be found
by a functional test that simply calls a method on the testee. Assertions are
unnecessary, because Act raises a runtime error during the method call if a com-
position standard is violated. The composition standard violation composition
state mismatch does not cause a runtime error and must thus be tested using
mock contributors. The mock contributors check if they were actually used after
the functional test has been executed. A faulty testee does not use all mock
contributors.

5.2.7.1 Continued use of an unplugged contributor
The test case in Figure 101 composes the library host (cf. Figure 102) with a local
book store and a functional test, which calls the method GetBooks of the library
host. When the test case progresses to the composition operation unplug Local-
Books, the functional test exposes the continued use of unplugged contributor
fault, because the GetBooks call to the local books contributor causes a Plux run-
time error. The cause for the fault is that the host tries to call the GetBooks
method on the local books contributor, although this contributor is unplugged. A
correct implementation of this host would react to the Unplugged event and
would update the book store collection accordingly.

d) Functional test

1

[Test]
void+Test(Library+testee)+{
++testee.GetBooks();
}

b) Test case

Co Lo Co Lo

Progress in
the test case

a) Testbed
1

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

LocalBooks
(Lo)Bo c) Composition state

Library
Ap Bo

1

Figure 101: Test case that finds a use-of-unplugged-contributor fault

Page 113

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "AddBookStore")]
class	 Library	 :	 IApplication	 {
	 	 List<Books>	 bookStores	 =	 new	 List<Books>();
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStores.Add((Books)	 args.Plug.Extension.Object);
	 	 }
	 	 Book[]	 GetBooks()	 {
	 	 	 	 List<Book>	 books	 =	 new	 List<Book>();
	 	 	 	 foreach	 (Books	 b	 in	 bookStores)	 {
	 	 	 	 	 	 books.AddRange(b.GetBooks());
	 	 	 	 }
	 	 	 	 return	 books.ToArray();
	 	 }
}

Figure 102: Library host with a use-of-an-unplugged-contributor fault

5.2.7.2 Use of not-plugged component
The test case in Figure 103 composes the library host (cf. Figure 104) with a local
book store and a functional test, which calls the method GetBooks of the library
host. When the test case progresses to the composition operation plug Local-
Books, the functional test exposes the use of not-plugged component fault, be-
cause the GetBooks call to the local book store contributor instance that is not
plugged into the library causes a Plux runtime error. The cause for the fault is that
the host uses its self-created instance without plugging it into its slot. A correct
implementation of this host would plug the self-created instance before using it.
However, a better solution would be to use the contributors which were plugged
into the Books slot by Plux.

Page 114

d) Functional test

1

[Test(PluggedContributors2=2{2"LocalBooks"2})]
void2Test(Library2testee)2{
22testee.GetBooks();
}

b) Test case

Co Lo Co Lo

Progress in
the test case

a) Testbed
1

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

LocalBooks
(Lo)Bo c) Composition state

Library
Ap Bo

1
LocalBooks
(Lo)Bo

LocalBooks
(Lo)Bo

Figure 103: Test case that finds a use-of-a-not-plugged-component fault

[Extension]
[Plug("Application")]
[Slot("Books")]
class	 Library	 :	 IApplication	 {
	 	 Composer	 composer;
	 	 TypeStore	 typeStore;
	 	 Library(Extension	 self)	 {
	 	 	 	 Runtime	 runtime	 =	 self.Runtime;
	 	 	 	 composer	 =	 runtime.Composer;
	 	 	 	 typeStore	 =	 runtime.TypeStore;
	 	 }
	 	 Book[]	 GetBooks()	 {
	 	 	 	 List<Book>	 books	 =	 new	 List<Book>();
	 	 	 	 foreach	 (PlugType	 pt	 in	 typeStore.GetPlugTypes("Books"))	 {
	 	 	 	 	 	 Plug	 p	 =	 composer.Create(pt.ExtensionType).Plugs["Books"];
	 	 	 	 	 	 Books	 b	 =	 (Books)	 p.Extension.Object;
	 	 	 	 	 	 books.AddRange(b.GetBooks());
	 	 	 	 }
	 	 	 	 return	 books.ToArray();
	 	 }
}

Figure 104: Library host with a use-of-a-not-plugged-component fault

5.2.7.3 Contributor call in non-runtime thread
The test case in Figure 105 composes the library host (cf. Figure 106) with a local
book store and a functional test, which calls the method GetTotalPrice of the li-
brary host. When the test case progresses to the composition operation plug Lo-
calBooks, the functional test exposes the contributor call in non-runtime thread
fault, because GetTotalPrice uses worker threads, which call a method on the at-

Page 115

tached local book stores. The worker threads call CalculateTotalPrice and finally
GetBooks on the given book store. Plux forbids contributor calls from outside the
Plux runtime thread. A correct implementation of this host would retrieve the
books from the contributors in the runtime thread and pass them to the worker
threads.

d) Functional test

1

[Test(PluggedContributors2=2{2"LocalBooks"2})]
void2Test(Library2testee)2{
22Assert.AssertGreaterOrEqual(0,2testee.GetTotalPrice());
}

b) Test case

Co Lo Co Lo

Progress in
the test case

a) Testbed
1

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

LocalBooks
(Lo)Bo c) Composition state

Library
Ap Bo

1
LocalBooks
(Lo)Bo

Figure 105: Test case that finds a contributor-call-in-non-runtime thread fault

Page 116

[Extension]
[Plug("Application")]
[Slot("Books")]
class	 Library	 :	 IApplication	 {
	 	 int	 GetTotalPrice()	 {
	 	 	 	 Slot	 s	 =	 self.Slots["Books"];
	 	 	 	 List<Task<int>>	 tasks	 =	 new	 List<Task<int>>();
	 	 	 	 foreach	 (Plug	 p	 in	 s.PluggedPlugs)	 {
	 	 	 	 	 	 var	 books	 =	 (Books)	 p.Extension.Object;
	 	 	 	 	 	 Func<int>	 func	 =	 delegate()	 {	
	 	 	 	 	 	 	 	 	 	 return	 CalculateTotalPrice(books);
	 	 	 	 	 	 };
	 	 	 	 	 	 Task<int>	 task	 =	 Task<int>.Factory.StartNew(func);
	 	 	 	 	 	 tasks.Add(task);
	 	 	 	 }
	 	 	 	 int	 totalPrice	 =	 0;
	 	 	 	 foreach	 (Task<int>	 task	 in	 tasks)	 {
	 	 	 	 	 	 totalPrice	 +=	 task.Result;
	 	 	 	 }
	 	 	 	 return	 totalPrice;
	 	 }
	 	 int	 CalculateTotalPrice(Books	 books)	 {
	 	 	 	 int	 bookStorePrice	 =	 0;
	 	 	 	 foreach	 (Book	 b	 in	 books.GetBooks())	 {
	 	 	 	 	 	 bookStorePrice	 +=	 b.Price;
	 	 	 	 }
	 	 	 	 return	 bookStorePrice;
	 	 }
}

Figure 106: Library host with a contributor-call-in-non-runtime-thread fault

5.2.7.4 Composition state mismatch
The test case in Figure 107 composes the library host (cf. Figure 108) with two
book store mocks and a functional test, which calls the GetBooks method of the
library host. When the test case progresses to the composition operation plug
BooksMock2, the functional test is executed to trigger the use of the book store
mocks. When the test case progresses to the composition operation unplug
BooksMock2, it exposes the composition state mismatch fault, because the as-
sertion in the book store mock fails. The cause for this fault is that the library host
only uses the first plugged contributor and ignores the others. As this host actual-
ly requires only one contributor, a correct implementation would make sure that
Plux connects only one contributor by applying a behavior.

Page 117

e) Mock contributor
[Extension]
[Plug("Books",4OnUnplugged4=4"CheckIsUsed")]
class4BooksMock4:4Books4{
44bool4isUsed;
44Book[]4GetBooks()4{
4444isUsed4=4true;
4444return4new4Book[]4{4new4MockBook(10)4};
44}
44void4CheckIsUsed(CompositionEventArgs4args)4{
4444Assert.AssertTrue(isUsed);
44}
}

f) Functional test

1

[Test(PluggedHosts4=4{4"BooksMock1",4"BookMocks2"4})]
void4Test(Library4testee)4{
44testee.GetBooks();
}

a) Testbed

Books
Mock1
(M1)

Bo
Books
Mock2
(M2)

Bo

1

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

c) Composition state after Co, M1, M2

Books
Mock2
(M2)

Bo

Books
Mock1
(M1)

BoLibrary
Ap Bo

1

b) Test case

Progress in
the test case

Co M1 M2 Co

c) d)

M1 M2

d) Composition state
 after Co, M1, M2, Co, M1, M2

Library
Ap Bo Books

Mock2
(M2)

Bo

Figure 107: Test case that finds a composition state mismatch

Page 118

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "SetBookStore",
	 	 	 	 	 	 OnUnplugging	 =	 "ClearBookStore")]
class	 Library	 :	 IApplication	 {
	 	 Books	 bookStore;
	 	 void	 SetBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 if	 (bookStore	 ==	 null)	 {
	 	 	 	 	 	 bookStore	 =	 (Books)	 args.Plug.Extension.Object;
	 	 	 	 }
	 	 }
	 	 void	 ClearBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 if	 (bookStore	 ==	 args.Plug.Extension.Object)	 {
	 	 	 	 	 	 bookStore	 =	 null;
	 	 	 	 }
	 	 }
	 	 Book[]	 GetBooks()	 {
	 	 	 	 return	 bookStore.GetBooks();
	 	 }
}

Figure 108: Library host with a composition state mismatch

5.3 The automated composability test tool Actor
The automated composability test tool Actor implements the composability test
method from Section 5.1. It generates the test cases for a given testbed, exe-
cutes the test cases and the functional tests, and collects the tests results. Fig-
ure 109 shows how Actor uses the Plux runtime to execute the test cases: (1) it
reads the test specification from a configuration file; (2) it prepares factories to
create the testbed components; (3) it looks up the test assemblies required for the
functional tests; (4) it discovers the testbed components, i.e., it inserts the com-
ponents' metadata into the type store; (5) it uses the composer to execute the
composition operations and wires proxies between extensions (the proxies are
used to detect composition standard violations), thereby (6) the composer re-
trieves the metadata of the testbed components from the type store and (7)
stores the instances and their connections into the instance store; (8) Actor exe-
cutes the functional tests on the instances retrieved from the instance store. To
improve performance, Actor executes the test cases concurrently, i.e., it performs
the steps 4 to 8 for multiple test cases in parallel.

Page 119

Testbed

ContributorS2

Mock
ContributorS2

Testee
S1 S2

Host S1

Mock
Host S1

Components

Functional tests 321

3 Look up test methods for functional tests

1 Read test specification
2 Create factories for testbed components

4 Discover testbed components
5 Execute composition operations and wire proxies between extensions
6 Get extension types
7 Store instance metadata and relationships
8 Execute functional tests on testee

Plux Runtime

Type
Store Composer Instance

Store
76

Actor
1Test

Specification

2 3

4 5 8

Figure 109: Automated composability test tool architecture

Figure 110 shows the XML configuration file for the test specification in Fig-
ure 111, which is the configuration for the test case shown in Section 5.2.2.2.5 All
at once vs. continuously (same contract). The testee is the Library extension in
the Library plugin, the Plux Core with the Application slot is a mock host, the Lo-
calBooks extension is a mock contributor, and the FunctionalTest1 is a functional
test. The composition scenarios in which the functional test should be executed
are specified using the UsedPlugs and UsedSlots parameters of the Test attribute.
In this example, both parameters are empty because the functional test should be
executed in all composition scenarios. Please note, as this is the default, the pa-
rameters could be omitted. See Section 5.1.4 for the descriptions of the attributes

Page 120

used in the Xml file and the parameters of the Test attribute. All assemblies must
be located in one of the paths specified. As the testbed comprises two mocks
(which in this case are actual components), the number of composition opera-
tions per test case is four. With four composition operations, the number of gen-
erated test cases is small enough. Thus a reduction of generated test cases is
unnecessary and the tuple length is set to four.

<test-‐case	 tuplelength="4">
	 	 <testee	 extension="Library"	 plugin="Library"	 />
	 	 <mocks>
	 	 	 	 <mock	 role="Contributor"	 extension="LocalBooks"
	 	 	 	 	 	 	 	 plugin="LocalBooks"	 target="Library"
	 	 	 	 	 	 	 	 usecount="1"	 count="1"
	 	 	 	 	 	 	 	 plug="Books"	 slot=""	 />
	 	 	 	 <mock	 role="Host"	 extension="Core"
	 	 	 	 	 	 	 	 plugin="Plux"	 target="Library"
	 	 	 	 	 	 	 	 usecount="1"	 count="1"	 plug=""
	 	 	 	 	 	 	 	 slot="Application"	 />
	 	 </mocks>
	 	 <tests>
	 	 	 	 <test	 class="FunctionalTest1"	 assembly="FunctionalTests"	 />
	 	 </tests>
	 	 <paths>
	 	 	 	 <path	 name="Contracts"/>	 <path	 name="Plugins"/>
	 	 	 	 <path	 name="Mocks"/>	 <path	 name="Functional	 Tests"/>
	 	 </paths>
</test-‐case>

Figure 110: XML configuration file for the automated composability test tool

b) Functional test

1

[Test(UsedPlugs="",0UsedSlots="")]
void0Test(Library0testee)0{
00testee.UpdateBooksOrdered();
}

a) Testbed

LocalBooks
(Lo)Bo

1

Library
Ap Bo

Di
Ap

Core
(Co) Di

Ap

Figure 111: Example testbed for the automated composability test tool

The command Actor Library.xml invokes Actor with this configuration file. Fig-
ure 112 shows the output of Actor: on the left-hand side, the six generated test
case with 4-tuples; on the right-hand side, the results of test case 1, with a failed
assertion from functional test 1 and a stack trace that shows the source code lo-
cation of the failed assertion. Please note, the thesis uses simplified drawn user
interfaces of Actor, however, a real screenshot is given in the Appendix, see Fig-
ure 142 on page 154.

Page 121

Actor - Library.xml

Passed Assertion failed Composition failed

Xx .. Plug Xx .. Unplug
Co .. Core Lo .. LocalBooks 1 class FunctionalTest1, method Test

Results for test case 1

Co LoCo Lo

Co Lo Co Lo

Co Lo CoLo

CoLo Co Lo

CoLo CoLo

CoLo CoLo

1

2

3

4

5

6

Co Co Lo Lo

1

Assertion failed: unexpected exception

Caused by: IndexOutOfRangeException:
 Index was outside the bounds of the array.
 at Library.UpdateBooksOrdered() in
 C:\plux\Plugins\Library.cs:line 24
 at FunctionalTest1.Test() in
 C:\plux\Functional Tests\
 FunctionalTest1.cs:line 15

Progress in
the test case

Execution results:
 0 passed, 6 failed

Generation results (4-tuples):
 6 generated, 0 suppressed

Test cases

Figure 112: Test cases and results in the automated composability test tool

5.4 Experimental evaluation
We evaluated our testing approach in an experiment. The goal of study our is to
compare composability testing with and without Actor in order to evaluate the
automated composability test method. The quality focus is the effectiveness and
efficiency of the automated composability test method. The experiment was per-
formed by computer science students testing a Plux extension.

5.4.1 Experiment definition
The students had to test a Fibonacci extension, which is part of a calculator ap-
plication. The extension calculates the Fibonacci number for a given number us-
ing contributors for the operations add, subtract, and exclusive or (cf. Figure 113).

Page 122

Fibonacci
Fu Op

Add
(A)Op

Subtract
(S)Op

Xor
(X)Op

Testee Contributors

Figure 113: Testee and contributors used in our experimental evaluation

The Fibonacci extension is a contributor for the Function slot of the calculator ap-
plication (not shown). Such contributors evaluate a function value for a given
operand. The Fibonacci extension is also a host for contributors of the Operation
slot (cf. Figure 114). A contributor for the Operation slot specifies its operation as
a string using the Symbol parameter of the slot and calculates the result of the
operation in the Calculate method. Figure 115 shows the testee and Figure 116
the contributors.

[SlotDefinition("Function")]
interface	 Function	 {
	 	 //	 throws	 an	 InvalidOperationException	 if	 it	 cannot	 evaluate
	 	 //	 because	 required	 contributors	 are	 unavailable
	 	 int	 Evaluate(int	 operand);
}

[SlotDefinition("Operation")]
[ParamDefinition("Symbol",	 typeof(string))]
interface	 Operation	 {
	 	 int	 Calculate(int	 operand1,	 int	 operand2);
}

Figure 114: Slot definitions used in experimental evaluation

[Extension]
[Plug("Function")]
[Slot("Operation",	 OnPlugged	 =	 "StoreContributor",
	 	 	 	 	 	 OnUnplugging	 =	 "DisposeContributor")]
class	 FibOperation	 :	 Function	 {
	 	 void	 StoreContributor(CompositionEventArgs	 args)	 {	 ...	 }
	 	 void	 DisposeContributor(CompositionEventArgs	 args)	 {	 ...	 }
	 	 int	 Evaluate(int	 operand)	 {	 ...	 }
}

Figure 115: Testee used in experimental evaluation

Page 123

[Extension]
[Plug("Operation")]
[Param("Symbol",	 "+")]
class	 Add	 :	 Operation	 {
	 	 int	 Calculate	 (int	 operand1,	 int	 operand2)	 {
	 	 	 	 return	 operand1	 +	 operand2;
	 	 }
}

[Extension]
[Plug("Operation")]
[Param("Symbol",	 "-‐")]
class	 Subtract	 :	 Operation	 {
	 	 int	 Calculate	 (int	 operand1,	 int	 operand2)	 {
	 	 	 	 return	 operand1	 -‐	 operand2;
	 	 }
}

[Extension]
[Plug("Operation")]
[Param("Symbol",	 "^")]
class	 Xor	 :	 Operation	 {
	 	 int	 Calculate	 (int	 operand1,	 int	 operand2)	 {
	 	 	 	 return	 operand1	 ^	 operand2;
	 	 }
}

Figure 116: Contributors used in experimental evaluation

5.4.2 Seeded faults
We seeded seven faults in the Fibonacci testee. The following subsections de-
scribe these faults, explain their causes, and show what a correct implementation
would look like.

5.4.2.1 Predictable order vs. unpredictable order fault (same
contract)
Figure 117 shows the StoreContributors method of the testee, which is called
when a contributor is plugged. The testee stores the first contributor as an add
operation and the second contributor as a subtract operation, regardless of which
operation the contributor actually provides. A correct implementation would re-
trieve the Symbol parameter value and assign the contributors accordingly.

Page 124

class	 FibOperation	 :	 ...	 {
	 	 Operation	 add,	 subtract;
	 	 void	 StoreContributors(CompositionEventArgs	 args)	 {
	 	 	 	 if	 (add	 ==	 null)	 {
	 	 	 	 	 	 add	 =	 (Operation)	 args.Plug.Extension.Object;
	 	 	 	 }	 else	 if	 (subtract	 ==	 null)	 {
	 	 	 	 	 	 subtract	 =	 (Operation)	 args.Plug.Extension.Object;
	 	 	 	 }
	 	 	 	 //	 correct	 implementation:
	 	 	 	 //	 switch	 ((String)	 args.Plug.Params["Symbol"].Value)	 {
	 	 	 	 //	 	 	 case	 "+":	
	 	 	 	 //	 	 	 	 	 add	 =	 (Operation)	 args.Plug.Extension.Object;
	 	 	 	 //	 	 	 	 	 break;
	 	 	 	 //	 	 	 case	 "-‐":
	 	 	 	 //	 	 	 	 	 subtract	 =	 (Operation)	 args.Plug.Extension.Object;
	 	 	 	 //	 	 	 	 	 break;
	 	 	 	 //	 }
	 	 }
	 	 ...
}

Figure 117: Predictable order vs. unpredictable order fault (same contract) in the testee

5.4.2.2 Duration fault
Figure 118 shows the DisposeContributors method of the testee, which is called
when a contributor is unplugged. The testee does some cleanup work (not shown
here), however it does not set the field for the removed contributor (add or sub-
tract) to null as a correct implementation would.

class	 FibOperation	 :	 ...	 {
	 	 Operation	 add,	 subtract;
	 	 void	 DisposeContributor(CompositionEventArgs	 args)	 {
	 	 	 	 Object	 contributor	 =	 args.Plug.Extension.Object;
	 	 	 	 ...	 cleanup	 (cf.	 Figure	 119)	 ...
	 	 	 	 //	 correct	 implementation	 would	 include:
	 	 	 	 //	 if	 (add	 ==	 contributor)	 {	 add	 =	 null;	 }
	 	 	 	 //	 else	 if	 (subtract	 ==	 contributor)	 {	 subtract	 =	 null;	 }
	 	 }
	 	 int	 Evaluate(int	 operand)	 {
	 	 	 	 ...
	 	 	 	 switch	 (n)	 {
	 	 	 	 	 	 case	 0:	 case	 1:	 return	 n;
	 	 	 	 	 	 default:	 return	 add.Calculate(
	 	 	 	 	 	 	 	 	 	 Evaluate(subtract.Calculate(n,	 2)),
	 	 	 	 	 	 	 	 	 	 Evaluate(subtract.Calculate(n,	 1)));
	 	 	 	 }
	 	 }
	 	 ...
}

Figure 118: Duration fault in the testee

Page 125

5.4.2.3 Contributor identification fault
Figure 119 shows the DisposeContributor method of the testee, which is called
when a contributor is unplugged. The testee casts the contributor to IDisposable,
which is illegal because this is not included in the slot definition, i.e., a contributor
is not required to implement this interface.

class	 FibOperation	 :	 ...	 {
	 	 void	 DisposeContributor(CompositionEventArgs	 args)	 {
	 	 	 	 Object	 contributor	 =	 args.Plug.Extension.Object;
	 	 	 	 ((IDisposable)	 contributor).Dispose();
	 	 	 	 //	 correct	 implementation	 would	 not	 dispose	 contributors,
	 	 	 	 //	 because	 the	 Dispose	 method	 is	 not	 included	 in	 the	 slot
	 	 	 	 //	 definition
	 	 }
	 	 ...
}

Figure 119: Contributor identification fault in the testee

5.4.2.4 Composition state mismatch
Figure 120 shows the constructor of the testee and the StoreContributors
method, which is called when a contributor is plugged. The testee stores the first
two contributors into fields (add and subtract) and ignores any further contribu-
tors contributors (i.e., it does neither store further contributors in fields nor intends
to use them, although they would be plugged into the Operation slot). Further-
more, a correct implementation would use a composition behavior to make sure
that only one add and one subtract contributor is plugged.

class	 FibOperation	 :	 ...	 {
	 	 FibOperation(Extension	 self)	 {
	 	 	 	 this.self	 =	 self;
	 	 	 	 //	 a	 correct	 implementation	 would	 install	 a	 composition
	 	 	 	 //	 behavior	 to	 prevent	 unnecessary	 contributors	 from
	 	 	 	 //	 being	 plugged
	 	 }	
	 	 Operation	 add,	 subtract;
	 	 void	 StoreContributors(CompositionEventArgs	 args)	 {
	 	 	 	 if	 (add	 ==	 null)	 {
	 	 	 	 	 	 add	 =	 (Operation)	 args.Plug.Extension.Object;
	 	 	 	 }	 else	 if	 (subtract	 ==	 null)	 {
	 	 	 	 	 	 subtract	 =	 (Operation)	 args.Plug.Extension.Object;
	 	 	 	 }
	 	 }
	 	 ...
}
Figure 120: Composition state mismatch in the testee

Page 126

5.4.2.5 Contributor call in non-runtime thread
Figure 121 shows the Evaluate method of the testee. For numbers greater than
five, the testee parallelizes the calculation using worker threads. When such a
worker thread re-enters the Evaluate method, it accesses the operation contribu-
tors, which causes a Plux runtime error. A correct implementation would not call
the contributors outside the Plux runtime thread.

class	 FibOperation	 :	 ...	 {
	 	 Operation	 add,	 subtract;
	 	
	 	 int	 Evaluate(int	 operand)	 {
	 	 	 	 ...
	 	 	 	 if	 (operand	 >	 5)	 {
	 	 	 	 	 	 int	 n1	 =	 0,	 n2	 =	 0;
	 	 	 	 	 	 var	 n1Thread	 =	 new	 Thread(delegate()	 {
	 	 	 	 	 	 	 	 	 	 n1	 =	 Evaluate(subtract.Calculate(n,	 1));	 };
	 	 	 	 	 	 var	 n2Thread	 =	 new	 Thread(delegate()	 {
	 	 	 	 	 	 	 	 	 	 n2	 =	 Evaluate(subtract.Calculate(n,	 2));	 };
	 	 	 	 	 	 n1Thread.Start();	 n2Thread.Start();
	 	 	 	 	 	 n1Thread.Join();	 	 n2Thread.Join();
	 	 	 	 	 	 return	 add.Calculate(n1,	 n2);
	 	 	 	 }	 else	 {
	 	 	 	 	 	 switch	 (n)	 {
	 	 	 	 	 	 	 	 case	 0:	 case	 1:	 return	 n;
	 	 	 	 	 	 	 	 default:	 return	 add.Calculate(
	 	 	 	 	 	 	 	 	 	 	 	 Evaluate(subtract.Calculate(n,	 2)),
	 	 	 	 	 	 	 	 	 	 	 	 Evaluate(subtract.Calculate(n,	 1)));
	 	 	 	 	 	 }
	 	 	 	 }
	 	 }
	 	 ...
}

Figure 121: Contributor call in non-runtime thread in the testee

5.4.2.6 Single mandatory vs. multiple contributor cardinality
fault
Figure 122 shows the Evaluate method of the testee. It accesses the contributors
without prior null check, which can cause a null pointer exception depending on
the composition state. A correct implementation would check the fields add and
subtract for null references and would raise an InvalidOperationException. Please
note, that according to the documentation of the slot definition Function, contrib-
utors are supposed to do so if required contributors are unavailable.

Page 127

class	 FibOperation	 :	 ...	 {
	 	 Operation	 add,	 subtract;
	 	 void	 StoreContributors(CompositionEventArgs	 args)	 {
	 	 	 	 if	 (add	 ==	 null)	 {
	 	 	 	 	 	 add	 =	 (Operation)	 args.Plug.Extension.Object;
	 	 	 	 }	 else	 if	 (subtract	 ==	 null)	 {
	 	 	 	 	 	 subtract	 =	 (Operation)	 args.Plug.Extension.Object;
	 	 	 	 }
	 	 }
	 	 int	 Evaluate(int	 operand)	 {
	 	 	 	 //	 correct	 implementation:
	 	 	 	 //	 if	 (add	 ==	 null	 ||	 subtract	 ==	 null)	 {
	 	 	 	 //	 	 	 throw	 new	 InvalidOperationException(...);
	 	 	 	 //	 }
	 	 	 	 ...
	 	 	 	 switch	 (n)	 {
	 	 	 	 	 	 case	 0:	 case	 1:	 return	 n;
	 	 	 	 	 	 default:	 return	 add.Calculate(
	 	 	 	 	 	 	 	 	 	 Evaluate(subtract.Calculate(n,	 2)),
	 	 	 	 	 	 	 	 	 	 Evaluate(subtract.Calculate(n,	 1)));
	 	 	 	 }
	 	 }
	 	 ...
}

Figure 122: Single mandatory vs. multiple contributor cardinality fault in the testee

5.4.2.7 Use of not-plugged component
Figure 123 shows the Evaluate method of the testee. If Evaluate is called and the
field subtract is null because the contributor was not plugged, the testee access-
es the type store and creates a subtract contributor itself. When the testee calls a
method on this self-created contributor, Plux raises a runtime error because the
contributor is not plugged into the testee. A correct implementation would not
create contributors itself but would raise an InvalidOperationException if required
contributors were unavailable.

Page 128

class	 FibOperation	 :	 ...	 {
	 	 Composer	 composer;
	 	 TypeStore	 typeStore;
	 	 Operation	 add,	 subtract;
	 	 FibOperation(Extension	 self)	 {
	 	 	 	 Runtime	 runtime	 =	 self.Runtime;
	 	 	 	 composer	 =	 runtime.Composer;
	 	 	 	 typeStore	 =	 runtime.TypeStore
	 	 }
	 	 int	 Evaluate(int	 operand)	 {
	 	 	 	 if	 (subtract	 ==	 null)	 {
	 	 	 	 	 	 foreach	 (PlugType	 pt	 in	 typeStore.GetPlugTypes("Operation")){
	 	 	 	 	 	 	 	 if	 (((String)	 pt.Params["Symbol"].Value)	 ==	 "-‐")	 {
	 	 	 	 	 	 	 	 	 	 subtract	 =	 (Operation)	 composer
	 	 	 	 	 	 	 	 	 	 	 	 	 	 .Create(pt.ExtensionType).Object;
	 	 	 	 	 	 	 	 	 	 break;
	 	 	 	 	 	 	 	 }
	 	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 ...
	 	 	 	 switch	 (n)	 {
	 	 	 	 	 	 case	 0:	 case	 1:	 return	 n;
	 	 	 	 	 	 default:	 return	 add.Calculate(
	 	 	 	 	 	 	 	 	 	 Evaluate(subtract.Calculate(n,	 2)),
	 	 	 	 	 	 	 	 	 	 Evaluate(subtract.Calculate(n,	 1)));
	 	 	 	 }
	 	 }
	 	 ...
}

Figure 123: Use of not-plugged component fault in the testee

5.4.3 Execution of the experiment
The experiment was conducted with two groups of students, with five students in
each group. Group 1 tested with Actor, group 2 without Actor. The students had
90 minutes time to find as many faults as possible. We tracked which errors the
students found and we conducted a survey where the students self-assessed
how many errors they found and how confident they were that all faults were
found.

Group 1 found 4.8 errors on average, whereas group 2 found only 2.6 errors. As a
group, group 1 found all seeded faults, whereas group 2 missed 3 out of 7 faults.
The results indicate four kinds of faults: faults which can easily be found, regard-
less of Actor support (faults A and C); faults which are easier to find with Actor
than without it (faults F and G); faults which are hard to find, but were found
equally often regardless of Actor support (fault D); and faults which are generally
hard to find and were only found with Actor (faults B and E). The self-assessed
confidence in group 1 was higher than in group 2 (2.2 vs. 1.6). Figure 124 shows

Page 129

the results in detail. Please note, that some students reported more found faults
than they actually found, because they counted the same fault multiple times.

Fault foundFault foundFault foundFault foundFault found Actual
number

Self-assessmentSelf-assessment

StudentStudent
Fault foundFault foundFault foundFault foundFault found Actual

number Number Confidence** StudentStudent
A B C D E F G

number
of faults

found

Number
of faults
found*

Confidence**
[1-4]

more is better

Group 1Group 1
using Actorusing Actor

Total group 1

Group 2Group 2
without Actorwithout Actor

Total group 2

1 X - X - - X - 3  4  1 
2 X - X X - X X 5  5  3 
3 X - X - - X X 4  5  2 
4 X - X - X X X 5  6  2 
5 X X X X X X X 7  8  3 

1-5 5 1 5 2 2 5 4 4.8  5.6  2.2 

6 X - - X - - - 2  1  1 
7 X - X - - X - 3  4  2 
8 - - X X - - - 2  2  1 
9 X - X X - - - 3  4  2 

10 X - X - - X - 3  7  2 
6-10 4 0 4 3 0 2 0 2.6  3.6  1.6 

Faults
A

B
C
D
E
F

G

Specific reliable order vs. unreliable order fault
 (same contract)
Duration fault
Contributor identification fault
Composition state mismatch
Contributor call in non-runtime thread
Single mandatory vs. multiple contributor
 cardinality fault
Use of not-plugged component

Self-assessment

How confident are you that you
found all faults?

**

How many faults have you found?*

1
2
3
4

not at all (missed most)
a little (missed some)
quite (found most)
most (found all)

Figure 124: Results of the experimental evaluation

Page 130

Chapter 6: Locating the cause of composition
errors

The composability test method finds errors in components by executing a large
number of test cases. In order to fix a faulty component, developers must debug
it and find out which fault causes the error. Typically the same error is found by
multiple test cases. One approach to find out the cause of an error is to analyze
the commonalities of the test cases that revealed the error as well as the differ-
ences to other test cases.

In this chapter, we present a debugging method based on the above approach for
the run-time injection with tracking composition mechanism. The debugging
method records the composition of a program, analyzes composition operation
sequences and composition states, and hints at possible causes of a composi-
tion error. We show the application of this debugging method for Plux compo-
nents and present a debugging tool for Plux.

6.1 The composition debugging method Doc
The composition debugging method (Doc) analyzes the composition state and
the composition operations that produced that composition state in order to find
out the cause of a composition error. Doc is a post-mortem debugging method,
i.e., it analyzes the composition that was recorded during program execution.

The Doc method can be applied in two scenarios: it can analyze the test results
produced by Act (test mode), or it can analyze a program execution where the
user controls the program (user mode). In test mode, Doc support developers in
finding the cause of errors revealed during testing; in user mode, Doc helps find-
ing the cause of errors reported by users.

6.1.1 Recording composition operations
During the execution of a program, Doc records all composition operations in a
composition trace. In test mode, Act executes test cases and Doc records a com-
position trace for each test case. In user mode, the user executes a program and
Doc records the composition trace while the program is running. Doc records all
composition operations into the trace. Figure 125 shows an example of a compo-

Page 131

sition trace recorded in a library application (for shortness only the Plug and Un-
plug operations are shown).

Composition state Compostion
trace

Library
Ap Bo

Di
Ap

Core Di
Ap

LocalBooksBoLibrary
Ap Bo

Di
Ap

Core Di
Ap

OffsiteBooksBo

LocalBooksBoLibrary
Ap Bo

Di
Ap

Core Di
Ap

OffsiteBooksBo

LocalBooksBoLibrary
Ap Bo

Di
Ap

Core Di
Ap

OffsiteBooksBo

Library
Ap Bo

Di
Ap

Core Di
Ap

Library
Ap Bo

Di
Ap

Core Di
Ap

Co←Li

Co←LiLi←Lo

Co←LiLi←LoLi←Of

Co←LiLi←LoLi←OfLi→Lo

Co←LiLi←LoLi←OfLi→LoLi→Of

Co←LiLi←LoLi←OfLi→LoLi→OfCo→Li

Co .. Core

Lo .. LocalBooks
Of .. OffsiteBooks

Li .. Library
Di .. Discovery

Bo .. Books
Ap .. Applications

Figure 125: Recording composition operations

Page 132

6.1.2 Filtering composition operations
In test mode all recorded composition operations are relevant for debugging, but
in user mode the program usually consists of a large number of components,
many of which are irrelevant for the error that occurred. To focus on the relevant
composition operations, Doc provides the following filters:

Extension
type filter

.. Selects the composition operations for all instances of the
specified extension type.

Extension
instance filter

.. Selects the composition operation for the specified extension
instance.

Composition
state filter

.. Selects the composition operations for the specified host in-
stance and all its (direct or indirect) contributors.

Composite
filter

.. Combines multiple filters, either by union (any filter matches) or
by intersection (all filters match).

Figure 126 shows an example for composition trace filtering. The unfiltered com-
position trace (a) was recorded in user mode and shows the composition of the li-
brary with the local books and offsite books contributors. The first composition of
the library host (time 3 with Li←Lo until 10 with Li→Of) does not reveal an error,
whereas the second (time 14 with Li←Of until 21 with Li→Of) shows an error. As
the Core is irrelevant for this error, it is filtered out using the composition state fil-
ter with the Library as root (b).

Page 133

Time

0

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1

17
18
19
20
21
22
23
24
25

b) Filtered composition trace

Co←Li

Li←Lo

Li←Of

Li→Lo

Li→Of

Co→Li

Li←Lo

Li←Of

Li→Lo

Li→Of

Error
occured
here

a) Composition trace

Li←Lo

Li←Of

Li→Lo

Li→Of

Li←Lo

Li←Of

Li→Lo

Li→Of

Error
occured
here

Lo .. LocalBooks
Of .. OffsiteBooks

Co .. Core
Li .. Library

Composition state filter
Root = Library

Figure 126: Filtering the composition operations

6.1.3 Splitting composition traces
Doc can divide a composition trace into parts that contain related composition
operations. Each part typically contains a different composition sequence for the
faulty component, which can be compared with other parts in order to analyze the
fault. This is useful in user mode, where a composition trace originally contains a
whole program execution and needs to be split into parts before composition se-
quences can be compared. In order to split a composition trace, Doc searches for
clusters of composition operations that are chronologically related, using the k-
means clustering algorithm [Lloyd, 1982]. This is reasonable, because during pro-

Page 134

gram execution a sequence of composition operations that belong together is
typically followed by a state where the composition is idle, because the program
waits for user input or executes operations. The fact that the idle phase is typical-
ly longer than the composition phase allows building clusters of related composi-
tion operations.

Figure 127 shows how the composition trace for the library is split into parts (cf.
Figure 126 for the trace before the split). Doc found three phases where composi-
tion was idle (6-8, 11-14, 17-19) and thus identified four composition operation
clusters. So the composition is split into four parts. Parts 1 and 3 compose the li-
brary, parts 2 and 4 decompose it.

Time

0

2
3
4
5
6
7
8
9
10
11

1

Time

14
15
16
17
18
19
20
21
22
23
24
25

Li←Lo

Li←Of

Li→Lo

Li→Of

Li←Lo

Li←Of

Li→Lo

Li→Of

Lo .. LocalBooks
Of .. OffsiteBooks

Li .. Library

Part 1

Part 2

Part 3

Error
occured
here

Part 4

Figure 127: Splitting the composition trace

6.1.4 Comparing composition traces
Doc can compare composition traces (or parts of a trace) in order to find the
composition state in which a faulty component shows an error. Doc also visual-
izes the differences between two composition traces. To determine these differ-
ences Doc uses the Needleman-Wunsch [Needleman and Wunsch, 1970] algo-
rithm, which aligns the composition operations of two traces by adding gaps or
by setting mismatches in the alignment. It compares the total costs for all possi-
ble combinations of gaps and mismatches and determines an optimal combina-
tion, i.e., an alignment with the lowest possible costs. The algorithm is configured
with the costs for gaps, mismatches, and matches. Depending on this configura-
tion, the algorithm finds a more or less compact alignment. A compact alignment
contains more mismatches, whereas a sparse alignment contains more gaps.

Page 135

Figure 128 shows how two composition trace parts for the library are aligned. In
this example, the user compared part 3 (because it showed the error) with part 1
(because it also composes the library). The goal is to find the swapped composi-
tion operations as shown in (a), because this is likely related to the cause of the
error. In the first alignment, where Doc detects two mismatches (b), the user can
see that the traces are different, but it is difficult to see the swap. In the second
alignment, where Doc inserted two gaps, the swap is easier to see, because one
can see that the composition operation Li←Of is equal in both traces and that
Li←Lo occurs before it in part 1 and after it in part 2. As these swapped composi-
tion operations are likely the cause for the error, the user must inspect the imple-
mentation that handles the composition events for the books contributors in the
library.

using the costs: gap = 2, mismatch = 1, match = -1
b) Alignment with minimal total cost

Li←Lo

Li←Of

Part 1

Li←Lo

Li←Of

Part 3

Error
occured
here

2 mismatches
Total cost = 2

a) Composition trace parts

Li←Lo

Li←Of

Part 1

Li←Lo

Li←Of

Part 3

Error
occured
here

Goal is to find this swap

Costs: gap = 1, mismatch = 2, match = -1
c) Alignment with minimal total cost using gaps

Part 1

Li←Lo

Li←Of

Part 3

Error
occured
here

Li←Lo

Li←Of 2 gaps
Total cost = 1

Gap

Gap

Lo .. LocalBooks
Of .. OffsiteBooks

Li .. Library

Figure 128: Comparing composition traces

Page 136

6.1.5 Reasoning about the error causes
Doc can generate hints for possible error causes using reasoning. It generates
language automata from reference traces (without errors) as well as from error
traces, and creates hints by comparing these automata.

Doc generates the language automata as follows: it starts with an empty compo-
sition state; it uses the first composition operation from the trace as transition into
the next composition state; this procedure is repeated for all composition opera-
tions in the trace. If the composition trace contains composition sequences that
lead to equal composition states (i.e., states with the same components), the
same composition state is used in the automaton, i.e., these composition se-
quences transition to the same composition state.

The hints are created as follows: Doc starts at the final composition state of the
error automaton and finds all composition operations that transition into this
state; it looks up the corresponding composition operations in the reference
automaton and compares the source composition states in both automata; finally,
it prints the differences between the source composition states as a human-read-
able hint. If the composition operation causing the error appears repeatedly in the
composition trace, and the corresponding source composition states are differ-
ent, Doc generates multiple hints.

In order to rank the hints, a confidence is calculated. This confidence corre-
sponds to the fraction of composition states (please note, only composition
states on which the according composition operation is executed) that contain
the hinted extension (i.e., the extension that is likely to trigger the error in the
composition operation) within all composition states, if that extension is missing
in the error case, i.e., confidence = states with hinted extension / (states with hint-
ed extension + states without hinted extension). Otherwise, if the error case con-
tains the hinted extension, the confidence is calculated the other way round, i.e.,
with the composition states that miss the hinted extension in the nominator.

Figure 129 shows the reasoning of the error cause for our library example. Part 1
is the reference composition trace and part 3 is the error composition trace (a).
Doc generates a language automaton for both traces (b). Thereby it ignores any
composition operation which comes after the error when generating the error
automaton (shown with dashed lines). The reasoning starts at the final composi-
tion state in the error automaton (1); it follows the composition operation Li←Of
back to the empty composition state (2); it looks up Li←Of in the reference
automaton and follows it back to the Lo composition state (3); it compares the
empty and the Lo composition states and creates the hint "Li←Of depends on

Page 137

Lo" which means that the likely cause for this error is that the handler for the
Plugged event in the library relies on the local library to be already plugged when
the offsite library is plugged.

b) Language automatons generated from composition traces
and hint created through reasoning

a) Composition traces used for reasoning

Li←Lo

Li←Of

Part 3

Error
occured
here

Error composition trace

Li←Lo

Li←Of

Part 1

Reference composition trace

Reference automaton

Lo

Li←Lo

Lo, Of

Li←Of

Error automaton

Of

Li←Of

Li←Lo

1

2

3

Composition state

Composition operation
Irrelevant composition operation

Final composition stateLo .. LocalBooks
Of .. OffsiteBooks

Li .. Library

Hint:
Li←Of

depends
on Lo

Figure 129: Reasoning the error cause

6.1.6 Replaying composition traces
Doc can replay composition traces in such a way that it visualizes the composi-
tion state of the program for every point in the composition trace. This is useful to
see differences between composition traces that show an error and such that do
not. Doc allows the user to replay a composition trace step by step and in both
directions, i.e., one can step forwards and backwards. Each composition opera-
tion updates a virtual composition state (i.e., the program is not executed) which
is visualized as a graph.

Page 138

Figures 130 and 131 show the replaying of the library. In this example, the error
composition trace (cf. Figure 130) and the reference composition trace (cf. Fig-
ure 131) are replayed. By comparing the visualization of both composition states
(reference and error) one can see that the error occurs when OffsiteBooks is
plugged before LocalBooks is plugged.

Composition state Composition
trace

Di
Ap

Core Di
Ap

Library
Ap Bo

Di
Ap

Core Di
Ap

Co .. Core

Lo .. LocalBooks
Of .. OffsiteBooks

Li .. Library
Di .. Discovery

Bo .. Books
Ap .. Applications

Co→LiLi→OfLi→LoLi←OfLi←LoCo←Li

Co→LiLi→OfLi→LoLi←LoLi←Of

Co→LiLi→OfLi→LoLi←Lo

...

...

Co→LiLi→OfLi→Lo

OffsiteBooksBo

Library
Ap Bo

Di
Ap

Core Di
Ap

LocalBooksBo

Library
Ap Bo

Di
Ap

Core Di
Ap

OffsiteBooksBo

Error

Error

Error

Figure 130: Replaying the error composition trace

Page 139

Composition state Composition
trace

Di
Ap

Core Di
Ap

Library
Ap Bo

Di
Ap

Core Di
Ap

Co .. Core

Lo .. LocalBooks
Of .. OffsiteBooks

Li .. Library
Di .. Discovery

Bo .. Books
Ap .. Applications

LocalBooksBoLibrary
Ap Bo

Di
Ap

Core Di
Ap

OffsiteBooksBo

Library
Ap Bo

Di
Ap

Core Di
Ap

LocalBooksBo

Co→LiLi→OfLi→LoLi←OfLi←LoCo←Li

Co→LiLi→OfLi→LoLi←OfLi←Lo

Co→LiLi→OfLi→LoLi←Of

...

...

Co→LiLi→OfLi→Lo

Figure 131: Replaying the reference composition trace

6.2 Debugging Plux programs
This section shows how to apply the composition debugging method Doc in or-
der to find the cause of errors in the Plux library example. Figure 132 shows the
user interface of the library application with a flawless calculation of the statistics
(a) and a null pointer error (b).

Page 140

a) Library statistics use without error

Statistics
Local books 122 items € 1,708.50
Offsite books 511 items € 6,132.20
Total 633 items € 7,840.70

Library

Title Autor Year
A Midsummer Night's Dream Shakespeare, W. 1590
As you like it 1623
Much Ado About Nothing 1600
The Comedy of Errors 1623
The Winter's Tale 1623

Search in: Local Books Shakespeare Go

Shakespeare, W.

Shakespeare, W.
Shakespeare, W.

Shakespeare, W.

Show statistics

b) Library statistics use with error

Statistics
Failure: null pointer exception occured

Library

Title Autor Year

Search in: Go

Show statistics

Figure 132: User interface of the library application with statistics

Doc recorded the composition trace (of a run showing an error) in Figure 133 (a).
We filtered the composition trace using a composition state filter with the Library
extension as the root (b) and split the composition trace between the uses of the
library at time 222-450 (c). Part 1 is the reference composition trace and part 2 is
the error composition trace.

Page 141

Time

0

2
3
4
5

122
123
144
145
159
160
199
200
209
210
219

1

220
221

460
469
470
471
472
473

222
450
451
459

b) Filtered composition trace

Co←Li

Li←Lo

Li←Of

Co→Li

Li→Lo

Li→Of

a) Composition trace

Li←St

Lo .. LocalBooks
Of .. OffsiteBooks

Co .. Core
Li .. Library

St .. Statistics

Li→St

Li←St

Li→St

Li←St

Li→St

Error
occured
here

Li←Lo

Li←Of

Li→Lo

Li→Of

Li←St

Li→St

Li←St

Li→St

Li←St

Li→St

c) Split composition trace

Composition state filter
Root = Library

Li←Lo

Li←Of

Li→Lo

Li→Of

Li←St

Li→St

Li←St

Li→St

Li←St

Li→St

Part 1

Part 2

R
e
f
e
r
e
n
c
e

E
r
r
o
r

Co→Li

Co←Li

Figure 133: Filtering and splitting the composition trace of the library application

We compared the composition trace parts of the library application (cf. Fig-
ure 134). Doc aligned the composition trace parts by inserting gaps. We can al-
ready see that in the reference trace (a) the book store contributors LocalBooks
and OffsiteBooks were plugged before the statistics tool, whereas in the error
trace (b) the book store contributors were not plugged when the statistics tool
was added.

Page 142

Li←Lo

Li←Of

Li→Lo

Li→Of

Li←St

Li→St

Li←St

Li→St

Part 1

a) Reference
composition trace

Li←St

Li→St Part 2

Gap

Gap

Gap

Gap

Gap

Gap

Error
occured
here

Lo .. LocalBooks
Of .. OffsiteBooks

Li .. Library
St .. Statistics

b) Error
composition trace

Figure 134: Comparing the composition trace parts of the library application

Doc generates the language automata (cf. Figure 135) for the reference (a) and the
error (b) composition trace and uses them to infer the hints (c): the composition
operation Li←St depends on the LocalBooks contributor with a confidence of 1
and on the OffsiteBooks contributor with a confidence of 0.5. These two hints in-
dicate that the statistics tool requires a book store contributor plugged into the li-
brary. The reason for the different confidence is that the reference trace contains
more relevant composition states that include the LocalBooks contributor than
the OffsiteBooks contributor.

Page 143

b) Error automaton

St

Li←St

Li→St

c) Hints
Li←St depends on Lo (confidence 1)
Li←St depends on Of (confidence 0.5)

a) Reference automaton

Lo

Li←Lo

Lo, Of

Li←Of

Lo, Of,
St

Li←St

Lo, St Li←St

Li→Lo

St Li→St

Li→St

Li→Of

Lo .. LocalBooks
Of .. OffsiteBooks

Li .. Library
St .. Statistics

Composition
state

Composition operation
Irrelevant composition
operation

Final composition
state

Figure 135: Reasoning about the error cause in the library application

In order to verify the hints we replayed the composition trace parts. Figure 136
shows the relevant sections of the replay where the statistics contributor is
plugged into the library. In the replay of the error trace the Books slot is empty,
whereas in the replay of the reference trace the Books slot is filled. This confirms
the hints.

Page 144

...

...

...

StatisticsSt

Ap

Library
Bo
St

Offsite
BooksBo

Local
BooksBo

StatisticsSt

Ap

Library
Bo
St

Li→StLi→LoLi←StLi→OfLi→St

Li→St

Li→StLi→LoLi←StLi→OfLi→StLi←St

Li→StLi←St

a) Reference composition trace b) Error composition trace

Error

...

Composition state

Composition trace

Composition trace

Li .. Library Bo .. BooksAp .. Applications St .. Statistics
Figure 136: Replaying the composition trace parts of the library application

Let us finally check the implementation of the library host for the actual error
cause (cf. Figure 137). The Plugged event of the Statistics slot calls the SetStatis-
tics method. There the bookStores field is accessed without a prior null reference
check, which causes the null pointer error in the composition state shown by the
error composition trace. A correct implementation of the library host would check
for the null reference.

Page 145

[Extension]
[Plug("Application")]
[Slot("Books",	 OnPlugged	 =	 "AddBookStore",
	 	 	 	 	 	 OnUnpluging	 =	 "RemoveBookStore")]
[Slot("Statistics",	 OnPlugged	 =	 "SetStatistics")]
class	 Library	 :	 IApplication	 {
	 	 List<Books>	 bookStores;
	 	 Statistics	 statistics;
	 	 void	 AddBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 if	 (bookStores	 ==	 null)	 {
	 	 	 	 	 	 bookStores	 =	 new	 List<Books>();
	 	 	 	 }
	 	 	 	 bookStores.Add((Books)	 args.Plug.Extension.Object);
	 	 }
	 	 void	 RemoveBookStore(CompositionEventArgs	 args)	 {
	 	 	 	 bookStores.Remove((Books)	 args.Plug.Extension.Object);
	 	 	 	 if	 (bookStores.Count	 ==	 0)	 {
	 	 	 	 	 	 bookStores	 =	 null;
	 	 	 	 }
	 	 }
	 	 void	 SetStatistics(CompositionEventArgs	 args)	 {
	 	 	 	 statistics	 =	 (Statistics)	 args.Plug.Extension.Object;
	 	 	 	 foreach	 (Books	 books	 :	 bookStores)	 {
	 	 	 	 	 	 foreach	 (Book	 b	 :	 books)	 {
	 	 	 	 	 	 	 	 statistics.Add(books.Id,	 b);
	 	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 //	 ...
	 	 }
}

Figure 137: Implementation of the library application

6.3 Composition debugging tool Doctor
The composition debugging tool Doctor implements the composition debugging
method Doc from Section 6.1. This section gives only a short description of Doc-
tor, a detailed description with implementation specifics can be found in
[Lengauer, 2012]. Doctor records the composition operations from the Plux com-
position infrastructure. Figure 138a shows how the Doctor operation recorder is
integrated into the Plux runtime to record the composition operations: (6) it
records the discovery operations from the type store; (7) it records the composi-
tion operations from the composer; (8) for diagnostic purposes, it records the log
messages from extensions that use the Plux log mechanism, e.g., when an exten-
sion fails to open a file (8a), and the method calls between extensions (8b). The
recording happens while Plux executes the program (1 to 5 cf. Section 4.5). Fig-
ure 138b shows the integration of the composition recorder in the instance store
in detail. Doctor installs a proxy between every host and contributor connection.
This proxy wraps the methods of the contributor and records the method calls (in-
cluding parameter values) from the host to the contributor.

Page 146

1 Adds and removes contracts
and plugins (discovery)

2 Notifies on changes
3 Queries for matching slots
4 Queries for matching plugs

5 Stores instance metadata
and relationships

6 Records discovery operations
7 Records composition operations
8 Records log (a) and call (b) operations

b) Instance store in detail

Instance Store

ContributorS2
Host

S1 S2
Proxy

S2 S2

8b8a 8a

Composition Recorder

Plux Runtime

Type
StoreDiscoverer Composer Instance

Store
3

5

2

4
1

Composition Recorder

6 7 8

a) Plux composition infrastructure and Doctor composition recorder

Figure 138: Composition debugging tool architecture

The command Doctor Library.trace invokes Doctor with the recorded composition
trace of the library application. Figures 139 and 140 show the output of Doctor.
Figure 139 shows on the left-hand side the comparison of the reference trace with
the error trace and on the right-hand side the hints for the error cause created by
reasoning. Figure 140 (left) shows the replay output of Doctor, i.e., the visualiza-
tion of the virtual composition state (top) and the progress in the replayed error
trace (bottom); on the right-hand side, it shows the detected composition
standard violations. Doctor detected that the library extension calls the book
store contributors in a non-runtime thread. Please note, this thesis uses simplified
drawn user interfaces of Doctor, however, real screenshots are given in the Ap-
pendix, see Figures 143-146 on page 155ff.

Page 147

Doctor - Library.trace

Li←Lo

Li←Of

Li→Lo

Li→Of

Li←St

Li→St

Li←St

Li→St

Reference trace

Li←St

Li→St

Error trace
Compare Replay

Li .. Library Lo .. LocalBooks
Of .. OffsiteBooks

Xx←Yy .. Plug
Xx→Yy .. Unplug

Composition state filter
Root = Library

Hints

Li←St depends on Lo
 (confidence 1)
Li←St depends on Of
 (confidence 0.5)

Violations

St .. Statistics

Figure 139: Composition trace comparison and hints in the composition debugging tool

Page 148

Doctor - Library.trace

Li←St

Li→St

Error trace

Compare Replay

Xx←Yy .. Plug
Xx→Yy .. Unplug

Hints

Li calls Lo in non-runtime thread
Li calls Of in non-runtime thread

Violations

StatisticsSt

Ap

Library
Bo
St

Progress

Co→Li

Co←Li

ForwardBack

Li .. Library Lo .. LocalBooks
Of .. OffsiteBooks St .. Statistics

Figure 140: Composition trace replay and composition standard violations in the composition de-
bugging tool

Page 149

Chapter 7: Summary

This chapter summarizes the contributions of this thesis and discusses how they
address the problem statement from Section 1.2. The thesis concludes with an
outlook on future research and the current state of this work.

7.1 Contributions
Although component-based software development is used in practice for quite
some time and was recently enhanced with dynamic composition, composability
testing has been neglected so far. To the best of our knowledge our testing
method is the first that systematically tests components for their composability,
and our debugging method is the first that supports developers to locate causes
for composability errors. Additionally, our classification of composition mecha-
nisms systematically describes current component systems by their contributor
provision characteristics. In detail, this thesis contributes the following:

• We propose a collection of contributor provision characteristics that describe
how contributor components can be provided to a host component in a com-
ponent system.

• We propose a collection of composition mechanisms that allows classifying
component systems by their contributor provision characteristics.

• We propose a composability fault classification that describes which composa-
bility faults are typical for a given composition mechanism.

• We propose a composability test method that systematically tests the compos-
ability of components in dynamically composed programs.

• We propose a composition debugging method that analyzes composition
traces of dynamically composed programs and gives hints to possible causes
for composability errors.

• We provide a composability testing tool that automates the proposed compos-
ability test method.

• We provide a debugging tool that automates the proposed debugging method.

Page 150

7.2 Conclusions
The problem statement in Section 1.2 stated three problems in state-of-the-art
component testing methods, which make it hard to test dynamically composed
programs and which are addressed by the contributions of this thesis:
• Problem 1: Specifying test-relevant composition scenarios

This problem has been solved in this thesis, because the contributor provision
characteristics and the composition mechanism classification from Chapter 3
allow specifying the test-relevant composition scenarios for a given
composition mechanism, i.e. those scenarios that have a high probability for
revealing errors. Additionally, the composability fault classification gives an
overview of the possible composability faults for a given composition
mechanism.

• Problem 2: Selecting test-relevant composition scenarios
This problem has been solved in this thesis, because the composability test
method Act generates all possible composition scenarios and selects a
manageable and representative subset of them. The composability test tool
Actor automates the method Act. Figure 141 shows the composability faults
covered by Act.

• Problem 3: Finding the differences between composition scenarios that show
an error and those that do not
This problem has been solved in this thesis, because the composition
debugging method Doc records, filters, splits and compares composition
traces which show an error with those that do not. Additionally, it creates hints
for possible error causes. The composition debugging tool Doctor automates
the method Doc.

Page 151

Single m
andatory vs. single optional

Covered

Predictable order vs. unpredictable order (different contracts)
Sam

e order on every run vs. unpredictable order (sam
e contract)

Sam
e order on every run vs. unpredictable order (different contracts)

All at once vs. continuously (sam
e contract)

All at once vs. continuously (different contracts)
Duration
faults

Contributor identification faults

Contributor instantiation
faults

By host vs. by infrastructure
G

lobally uniform
 vs. host-specific

Contributor registration
faults

G
lobal availability vs. host-specific availability

G
lobal usage vs. host-specific usage

Contributor sharing faults

Contributor cardinality
faults

Single m
andatory vs. m

ultiple

Contributor
availability
faults

Single optional vs. m
ultiple

Host instantiation tim
e vs. later at run tim

e
Host instantiation tim

e vs. on notification
Predictable order vs. unpredictable order (sam

e contract)

Tim
e faults

Com
position standard

violations

Use of an unplugged contributor
Use of not-plugged com

ponent
Contributor call in non-runtim

e thread
Com

position state m
ism

atch

O
rder

faults

Figure 141: Composability faults covered by the composability test method Act

7.3 Future research
The contributions of this thesis allow developers to systematically test and debug
dynamically composed programs. The following points could be addressed by fu-
ture research in order to further simplify composability testing in practice.

1. The splitting of composition traces in the Doc method could be improved by
enriching the time-based clustering with semantic information to better identi-
fy related composition operations. The comparison of composition trace parts
could be improved by automatically identifying parts that are similar, e.g.,
parts that compose and decompose the same part of the program.

Page 152

2. The Actor tool could be improved by executing the test cases in parallel on
multiple computers to reduce execution time. The test cases could also be or-
dered in such a way that the test cases that are most likely to find errors are
executed first. In that way a large number of errors could already be found
early in testing, whereas executing more test cases would only increase accu-
racy. Finally, Actor could be integrated into a build server in order to automate
the test case execution.

7.4 Current state
The composability test tool Actor and the debugging tool Doctor are publicly
available together with the Plux composition infrastructure for desktop applica-
tions at http://www.ssw.jku.at/Research/Projects/Plux/. An ongoing dissertation
project extends Plux to support distributed multi-user web applications. Other
student projects port Plux, which is currently implemented in .Net, to Delphi and
Java.

Page 153

Appendix

Figure 142: Screenshot of the automatic composability test tool Actor

Page 154

Figure 143: Screenshot of the composition debugger Doctor, replaying a composition trace

Figure 144: Screenshot of the composition debugger Doctor, splitting a composition trace

Page 155

Figure 145: Screenshot of the composition debugger Doctor, comparing two composition traces

Figure 146: Screenshot of the composition debugger Doctor, reasoning error causes

Page 156

List of figures

1. User interface of the library application 19..
2. Components of the library application 19..
3. Host that identifies its contributors by component 20..............................
4. Contract and implementation of a contributor 20......................................
5. Host that identifies its contributors by contract 21...................................
6. Application with host-specific contributor instantiation 22.......................
7. Host that retrieves its contributors at instantiation time 23.......................
8. Host that retrieves its contributors later at run time 23.............................
9. Host that retrieves its contributors when it is notified 24..........................
10. Host that uses its contributors temporarily 25...
11. Host that retrieves its contributors in unpredictable order 25...................
12. Host that retrieves all its contributors at once 26......................................
13. Host that receives its contributors continuously 26..................................
14. Host that retrieves its contributors for different contracts in

predictable order 27...
15. Host that retrieves its contributors for different contracts in

unpredictable order 27...
16. Host that retrieves contributors for all contracts at once 28.....................
17. Host that retrieves its contributors from a global registry 29.....................
18. Host that retrieves its contributors from a registry which stores

global contributor usage 29...
19. Host that retrieves its contributors from a registry which stores

host-specific contributor availability 30...
20. Component that retrieves the composition from a registry which

stores host-specific contributor usage 30...
21. Host that depends on a single mandatory contributor 31.........................
22. Host that can be extended with a single optional contributor 31..............
23. Host that retrieves multiple contributors 32...
24. Composition mechanisms classified by their contributor provision

characteristics 34...
25. Library application composed with compile-time binding 35....................
26. Library application using one mandatory and one optional

contributor, composed with the run-time binding composition
mechanism 36..

27. Library host retrieving the contributors as specified in a
configuration file, using the startup-time lookup composition
mechanism 37..

Page 157

28. Library host that uses startup-time injection to obtain its
contributors as specified in a configuration file 38....................................

29. Library host supporting dynamic additions by continually
looking up the contributors using the run-time lookup
composition mechanism 39...

30. Library host that updates its contributors at run time using the
run-time lookup with notification composition mechanism 40..................

31. Library host that gets its contributors from the composition
infrastructure using the run-time injection composition mechanism 41....

32. Library host that gets its contributors from the composition
infrastructure using the run-time injection composition mechanism 42....

33. Library host with single mandatory cardinality that fails if composed
with a single optional cardinality composition mechanism 44..................

34. Library host with single mandatory cardinality that fails if a multiple
cardinality composition mechanism composes with zero or with
more than one contributors 45..

35. Library host with single optional cardinality that fails if a multiple
cardinality composition mechanism composes more than one
contributor 46..

36. Library host with time fault that fails if the composition mechanism
makes the contributor available only later at run time 48..........................

37. Library host with time fault that neglects the contributors that the
composition mechanism makes available later at run time 48..................

38. Library host with order fault that expects the contributors in a
specifc order (same contract) 49...

39. Library host with order fault that expects the contributors for
different contracts in a specific order 50...

40. Library host with order fault that expects the contributors in the
same order on every run (same contract) 51...

41. Library host with order fault that expects the contributors in the
same order on every run (different contracts) 52.......................................

42. Library host with order fault that expects the contributors to be
available all at once (same contract) 53...

43. Library host with order fault that expects the contributors to be
available all at once (different contracts) 54..

44. Library host with duration fault, which expects the contributors to
be available permanently after provision and thus fails if a
temporary contributor is removed 55..

45. Library host with identification fault, which expects a specific
contributor and thus fails if a different contributor is provided 56.............

46. Library host with instantiation fault, which fails because it creates
a contributor itself instead of using the contributor connected to it 57.....

47. Library host with instantiation fault, which expects that contributors
are instantiated in a globally uniform way, and thus fails if
contributors are instantiated in a host-specific way 59.............................

Page 158

48. Library host with registration fault, which expects that contributors
are made available globally, and thus fails if contributors are
made available only to specific hosts 61...

49. Book store contributor with sharing fault, which expects that
dedicated contributor instances are created for each host, and
thus fails if instances are shared among hosts 63.....................................

50. Metadata for Plux extensions with slots and plugs 65..............................
51. Metadata of a slot and plug named "X" 65..
52. Interface and metadata for Plux slot definition 66.....................................
53. Implementation and metadata for the contributor extension 66...............
54. Implementation and metadata for the host extension 66..........................
55. Meta-objects for extensions and their connections in the Plux

composition state 68...
56. Retrieving meta-objects and contributors from the Plux

composition state 68...
57. Plux composition state of the library example 69......................................
58. Reacting to composition events from the Plux composer 69....................
59. Architecture of the Plux composition infrastructure 70.............................
60. Using the composer for programmatic composition 71............................
61. Using a behavior to guide the composition 73..
62. Flowchart of the automated composability test method Act 76................
63. Test case generation for the library example 77..
64. Finding the minimal set of test cases using the Quine-McCluskey

method 79..
65. Generating test cases until all 2-tuples are covered 80.............................
66. Test bed specification 81...
67. Setting up the testbed with components and functional tests 83.............
68. Executing composition operations and functional tests 84.......................
69. Composing extensions with proxies to detect composition

standard violations 85..
70. Test case that finds a single mandatory vs. multiple cardinality fault 86...
71. Library host with single mandatory vs. multiple cardinality fault 86..........
72. Test case that finds a single optional vs. multiple cardinality fault 87.......
73. Library host with single optional vs. multiple cardinality fault 88...............
74. Test case that finds a host instantiation vs. later at run time

availability fault 90..
75. Library host with host instantiation vs. later at run time availability

fault 91...
76. Test case that finds a predictable order vs. unpredictable order

fault (same contract) 92...
77. Library host with predictable vs. unpredictable order fault

(same contract) 93...
78. Test case that finds a predictable order vs. unpredictable order

fault (different contracts) 94...

Page 159

79. Library host with predictable vs. unpredictable order fault
(different contracts) 94...

80. Test case that finds a same on every run vs. unpredictable order
fault (same contract) 95...

81. Library host with same on every run vs. unpredictable order fault
(same contract) 96...

82. Test case that finds a same on every run vs. unpredictable order
fault (different contracts) 97...

83. Library host with same on every run vs. unpredictable order fault
(different contracts) 97...

84. Test case that finds an all at once vs. continuously order fault
(same contract) 98...

85. Library host with an all at once vs. continuously order fault
(same contract) 99...

86. Test case that finds an all at once vs. continuously order fault
(different contracts) 100...

87. Library host with all at once vs. continuously order fault
(different contracts) 101...

88. Statistics contributor that calculates the total price of books 101..............
89. Test case that finds a permanent vs. temporary availability

duration fault 102...
90. Library host with permanent vs. temporary availability duration fault 103..
91. Test case that finds a contributor identification fault 103............................
92. Library host with a contributor identification fault 104................................
93. Test case that finds a by host vs. by infrastructure instantiation fault 105..
94. Library host with a by host vs. by infrastructure instantiation fault 106......
95. Test case that finds a globally uniform vs. host-specific

instantiation fault 107...
96. OffsiteBooks host with a globally uniform vs. host-specific

instantiation fault 108...
97. Test case that finds a global vs. host-specific registration fault 110...........
98. Library host with a global vs. host-specific registration fault 111...............
99. Test case that finds a contributor sharing fault 112.....................................
100. Book store contributor with a contributor sharing fault 112........................
101. Test case that finds a use-of-unplugged-contributor fault 113...................
102. Library host with a use-of-an-unplugged-contributor fault 114..................
103. Test case that finds a use-of-a-not-plugged-component fault 115.............
104. Library host with a use-of-a-not-plugged-component fault 115.................
105. Test case that finds a contributor-call-in-non-runtime thread fault 116......
106. Library host with a contributor-call-in-non-runtime-thread fault 117..........
107. Test case that finds a composition state mismatch 118..............................
108. Library host with a composition state mismatch 119..................................
109. Automated composability test tool architecture 120...................................
110. XML configuration file for the automated composability test tool 121........
111. Example testbed for the automated composability test tool 121................

Page 160

112. Test cases and results in the automated composability test tool 122.........
113. Testee and contributors used in our experimental evaluation 123..............
114. Slot definitions used in experimental evaluation 123..................................
115. Testee used in experimental evaluation 123..
116. Contributors used in experimental evaluation 124......................................
117. Predictable order vs. unpredictable order fault (same contract)

in the testee 125..
118. Duration fault in the testee 125..
119. Contributor identification fault in the testee 126..
120. Composition state mismatch in the testee 126...
121. Contributor call in non-runtime thread in the testee 127.............................
122. Single mandatory vs. multiple contributor cardinality fault

in the testee 128..
123. Use of not-plugged component fault in the testee 129...............................
124. Results of the experimental evaluation 130...
125. Recording composition operations 132...
126. Filtering the composition operations 134..
127. Splitting the composition trace 135...
128. Comparing composition traces 136..
129. Reasoning the error cause 138..
130. Replaying the error composition trace 139..
131. Replaying the reference composition trace 140..
132. User interface of the library application with statistics 141.........................
133. Filtering and splitting the composition trace of the library application 142.
134. Comparing the composition trace parts of the library application 143.......
135. Reasoning about the error cause in the library application 144..................
136. Replaying the composition trace parts of the library application 145.........
137. Implementation of the library application 146...
138. Composition debugging tool architecture 147..
139. Composition trace comparison and hints in the composition

debugging tool 148..
140. Composition trace replay and composition standard violations in

the composition debugging tool 149...
141. Composability faults covered by the composability test method Act 152..
142. Screenshot of the automatic composability test tool Actor 154..................
143. Screenshot of the composition debugger Doctor, replaying a

composition trace 155...
144. Screenshot of the composition debugger Doctor, splitting a

composition trace 155...
145. Screenshot of the composition debugger Doctor, comparing two

composition traces 156...
146. Screenshot of the composition debugger Doctor, reasoning error

causes 156...

Page 161

Bibliography
Abu-Eid: Testing OSGi-based Applications with DA-Testing Framework,
http://www.dynamicjava.org/projects/da-testing/overview, 2009.

ANSI: Software engineering standards, Institute of Electrical and Electronics
Engineers, 1987.

Baker,C.: Review of D.D. McCracken’s “Digital Computer Programming’’,
Mathematical Tables and Other Aids to Computation, 11, pp. 298-305, 1957.

Beck,K.: Extreme Programming Explained: Embrace Change, Addison-Wesley
Professional, 1999.

Beizer,B.: Software Testing Techniques, 2nd Edition, Intl Thomson Computer Pr
(T), 1990.

Bertolino,A., and Polini,A.: A framework for component deployment testing,
Software Engineering, 2003. Proceedings. 25th International Conference on, IEEE,
pp. 221-231, 2003.

Besson,F., Leal,P., Kon,F., Goldman,A., and Milojicic,D.: Towards automated
testing of web service choreographies, hal.archives-ouvertes.fr, 2011.

Beust,C., and Suleiman,H.: Next generation java™ testing: testng and advanced
concepts, Addison-Wesley Professional, 2007.

Birsan,D.: On plug-ins and extensible architectures, Queue, 3(2), Association for
Computing Machinery, Inc, One Astor Plaza, 1515 Broadway, New York, NY,
10036-5701, USA, pp. 40-46, 2005.

Boudreau,T., Tulach,J., and Wielenga,G.: Rich Client Programming: Plugging into
the NetBeans Platform, 1, Prentice Hall International, 2007.

da Silva,C. E., and de Lemos,R.: Dynamic plans for integration testing of self-
adaptive software systems, Proceeding of the 6th international symposium on
Software engineering for adaptive and self-managing systems, ACM, pp. 148-157,
2011.

EasyMock: EasyMock, http://easymock.org, 2012.

Eclipse: Test & Performance Tools Platform, http://www.eclipse.org/tptp, 2012.

Eclipse: Eclipse Platform Technical Overview. Object Technology International,
Inc, http://www.eclipse.org, 2003.

ECMA: Common Language Infrastructure (CLI), 4th edn., 2006.

Page 162

Eder,M.: Ein Plugin-basiertes Werkzeug zur Überwachung von Web-Inhalten,
2008.

Fröhlich,J., and Schwarzinger,M.: Improve Component-Based Programs with
Connectors, Modular Programming Languages, Springer, pp. 306-325, 2006.

Fröhlich,J. H., and Schwarzinger,M.: Treating Interfaces as Components, Citeseer,
2005.

Gamma,E.: The extension objects pattern, 3rd Conference on Pattern Languages
of Programs (PLoP’96), 1996.

Gao,J.: Component testability and component testing challenges, Proceedings of
International Workshop on Component-based Software Engineering (CBSE2000,
held in conjunction with the 22nd International Conference on Software
Engineering (ICSE2000), 2000.

Gelperin,D., and Hetzel,B.: The growth of software testing, Communications of
the ACM, 31(6), ACM, pp. 687-695, 1988.

Gruber,A.: Konfigurationswerkzeug “Plugin-Explorer” für die Plugin-Plattform
Plux.NET, 2010.

Hagmüller,P.: Plux for Delphy (to be published), 2012.

Hartman,A.: Software and hardware testing using combinatorial covering suites,
Graph Theory, Combinatorics and Algorithms, Springer, pp. 237-266, 2005.

Heineman,G. T., and Councill,W. T.: Component-based software engineering:
putting the pieces together, 17, Addison-Wesley USA, 2001.

Hewett,R., and Kijsanayothin,P.: Automated test order generation for software
component integration testing, Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, IEEE Computer Society, pp.
211-220, 2009.

Hribernig,T.: Retrofitting Security in Component-based Applications (to be
published), 2012.

Jahn,M.: Entwurf und Implementierung eines Cross-Compilers von Delphi nach
C#, 2008.

Jahn,M., Löberbauer,M., Wolfinger,R., and Mössenböck,H.: Rule-Based
Composition Behaviors in Dynamic Plug-In Systems, Software Engineering
Conference (APSEC), 2010 17th Asia Pacific, IEEE, pp. 80-89, 2010a.

Jahn,M., Wolfinger,R., Löberbauer,M., and Mössenböck,H.: Composing user-
specific web applications from distributed plug-ins, Computer Science-Research
and Development, Springer, pp. 1-21, 2011.

Jahn,M., Wolfinger,R., and Mössenböck,H.: Extending Web Applications with
Client and Server Plug-ins, Gesellschaft für Informatik (GI), pp. 33, 2010b.

JMock: JMock, http://www.jmock.org, 2012.

Page 163

Johnson,R., Hoeller,J., Donald,K., Sampaleanu,C., Harrop,R., Arendsen,A.,
Risberg,T., Davison,D., Kopylenko,D., Pollack,M., Templier,T., Vervaet,E., Tung,P.,
Hale,B., Colyer,A., Lewis,J., Leau,C., Fisher,M., Brannen,S., Laddad,R.,
Poutsma,A., Beams,C., Abedrabbo,T., Clement,A., Syer,D., Gierke,O., and
Stoyanchev,R.: Spring Reference Documentation 3.1, 2011.

JUnit: JUnit, http://www.junit.org/, 2011.

Kernighan,B., and Ritchie,D.: C Programming Language, The (ANSI C Version),
Prentice Hall India, 1988.

Knuth,D.: The Art of Computer Programming, Volume 4, Generating All Tuples and
Permutations, Fascicle 2, Addison-Wesley, 2005.

Kranzlmüller,D., Löberbauer,M., Maurer,M., Schaubschläger,C., and Volkert,J.:
Automatic Testing of Nondeterministic Parallel Programs, Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications-Volume 2, CSREA Press, pp. 538-544, 2002a.

Kranzlmüller,D., Maurer,M., Löberbauer,M., Schaubschläger,C., and Volkert,J.:
Ant—A Testing Environment for Nondeterministic Parallel Programs, Distributed
and Parallel Systems, Springer, pp. 125-132, 2002b.

Lengauer,P.: Trace-based Debugger for Dynamically Composed Applications,
2012.

Liu,W., and Dasiewicz,P.: Formal test requirements for component interactions,
Electrical and Computer Engineering, 1999 IEEE Canadian Conference on, 1,
IEEE, pp. 295-299 vol. 1, 1999.

Lloyd,S.: Least squares quantization in PCM, Information Theory, IEEE
Transactions on, 28(2), IEEE, pp. 129-137, 1982.

Löberbauer,M., Wolfinger,R., Jahn,M., and Mössenböck,H.: Testing the
composability of plug-and-play components: A method for unit testing of
dynamically composed applications, Intelligent Systems and Informatics (SISY),
2010 8th International Symposium on Intelligent Systems and Informatics, IEEE,
pp. 413-418, 2010.

Löberbauer,M., Wolfinger,R., Jahn,M., and Mössenböck,H.: Composition
Mechanisms Classified by their Contributor Provision Characteristics, Intelligent
Systems and Informatics (SISY), 2012 10th International Symposium on Intelligent
Systems and Informatics, IEEE, 2012.

Mariani,L., Papagiannakis,S., and Pezze,M.: Compatibility and regression testing
of COTS-component-based software, Software Engineering, 2007. ICSE 2007.
29th International Conference on, IEEE, pp. 85-95, 2007.

Mariani,L., and Pezze,M.: Behavior capture and test: Automated analysis of
component integration, Engineering of Complex Computer Systems, 2005.
ICECCS 2005. Proceedings. 10th IEEE International Conference on, IEEE, pp.
292-301, 2005.

Page 164

McCluskey Jr.,E. J.: Minimization of Boolean functions, Bell System Technical
Journal, 1956.

Microsoft,Equipment_Corporation,D.: The component object model specification,
0.9, Microsoft Corporation and Digital Equipment Corporation, 1995.

Microsoft: Unity 2.0, General Purpose Dependency Injection Mechanism for
your.Net Applications, Microsoft Corporation, 2010a.

Microsoft: MEF Programming Guide,
http://msdn.microsoft.com/en-us/library/dd460648.aspx, 2010b.

Mittermair,C.: Umstrukturierung eines monolithischen Softwaresystems in ein
Plug-In-basiertes Komponentensystem, 2009.

Myers,G. J.: The Art of Software Testing, Wiley, 1979.

NBS: Guideline for lifecycle validation, verification, and testing of computer
software, U.S. Dept. of Commerce, National Bureau of Standards, 1984.

Needleman,S. B., and Wunsch,C. D.: A general method applicable to the search
for similarities in the amino acid sequence of two proteins, Journal of molecular
biology, 48(3), Elsevier Science, pp. 443-453, 1970.

Oracle: ServiceLoader,
http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html, 2006.

OSGi: OSGi Service Platform - Release 4, http://www.osgi.org, 2011.

Petrick,S. R.: A direct determination of the irredundant forms of a Boolean
function from the set of prime implicants, Air Force Cambridge Res. Center Tech.
Report, pp. 56-110, 1956.

Petzold,C.: Programming Windows, Fifth Edition, Microsoft Press, 1998.

Pichler,R.: Metrix - A Measuring Tool for Run-time Figures in Plug-in based.NET
Applications, 2009.

PicoContainer: Constructor Injection, http://picocontainer.org/constructor-
injection.html, 2011.

PicoContainer: PicoContainer, http://www.picocontainer.org, 2012.

Plux: http://www.ssw.jku.at/Research/Projects/Plux/, 2012.

Quine,W. V.: A way to simplify truth functions, The American Mathematical
Monthly, 62(9), JSTOR, pp. 627-631, 1955.

Reinthaler,T.: Deployment Assistant for Plux, 2012.

Reiter,S., and Wolfinger,R.: Erfahrungen bei der Portierung von Delphi Legacy
Code nach.NET, Nachwuchs-Workshop, SE, pp. 27-30, 2007.

Saglietti,F., and Pinte,F.: Automated unit and integration testing for component-
based software systems, Proceedings of the International Workshop on Security
and Dependability for Resource Constrained Embedded Systems, ACM, pp. 5,
2010.

Page 165

Schenkermayr,B.: Ein komponentenbasierter Taschenrechner auf Basis von Plux
(to be published), 2012.

SWTBot: SWTBot, http://www.eclipse.org/swtbot, 2012.

Szyperski,C., Gruntz,D., and Murer,S.: Component software: beyond object-
oriented programming, Addison-Wesley Professional, 2002.

Committee: Tool Interface Standard (TIS) Executable and Linking Format (ELF)
Specification Version 1.2, TIS Committee, 1995.

Weinreich,R., and Sametinger,J.: Component models and component services:
Concepts and principles, Component-Based Software Engineering: Putting
Pieces Together, pp. 33-48, 2001.

Weiss,S.: Kundenbeziehungsmanagement Plux-CRM für Plux.NET, 2010.

Weyuker,E. J.: Testing component-based software: A cautionary tale, Software,
IEEE, 15(5), IEEE, pp. 54-59, 1998.

Wolfinger,R., Dhungana,D., Prähofer,H., and Mössenböck,H.: A Component Plug-
In Architecture for the. NET Platform, Modular Programming Languages, Springer,
pp. 287-305, 2006.

Wolfinger,R., Löberbauer,M., Jahn,M., and Mössenböck,H.: Adding genericity to a
plug-in framework, ACM SIGPLAN Notices, 46(2), ACM, pp. 93-102, 2010.

Wolfinger,R., Löberbauer,M., Jahn,M., and Mössenböck,H.: Retrofitting Security in
Component-based Applications (submitted), Computer Science-Research and
Development, Springer, 2012.

Wolfinger,R., and Prähofer,H.: Integration models in a.NET plug-in framework, SE
2007 Conference on Software Engineering, 2007.

Wolfinger,R.: Dynamic application composition with Plux.NET: composition
model, composition infrastructure, 2010.

Wu,Y., Chen,M. H., and Offutt,J.: UML-based integration testing for component-
based software, COTS-Based Software Systems, 2003.

Wu,Y., Pan,D., and Chen,M. H.: Techniques for testing component-based
software, Engineering of Complex Computer Systems, 2001. Proceedings.
Seventh IEEE International Conference on Engineering of Complex Computer
Systems, 2001.

Zheng,J., Williams,L., and Robinson,B.: Pallino: automation to support regression
test selection for COTS-based applications, Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, ACM,
pp. 224-233, 2007.

Page 166

Curriculum Vitae
Name: Markus Löberbauer

Date of birth: August 22, 1977

Place of birth: Wels, Austria

Nationality: Austria

Contact: Markus.Loeberbauer@jku.at | M.Loeberbauer@gmail.com

Education

2003-2012 Doctorate Degree in Technical Sciences
Johannes Kepler University, Linz

1998-2003 Diploma Degree in Informatics
Johannes Kepler University, Linz

1997-1998 Austrian Federal Armed Forces
Hiller-Kaserne, Linz Ebelsberg

1992-1997 High school
Höhere technische Bundeslehranstalt, Vöcklabruck

1988-1992 Secondary school
Hauptschule Gmunden-Stadt 2, Gmunden

1984-1988 Primary school
Volksschule Marienbrücke, Gmunden

Page 167

