
Supporting Model Maintenance in
Component-based Product Lines

Markus Jahn Rick Rabiser Paul Grünbacher Markus Löberbauer Reinhard Wolfinger Hanspeter Mössenböck
Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University Linz, Austria
markus.jahn@jku.at

Abstract—Software product line engineering aims at increasing
software quality and development productivity by mastering
the variability of large software systems. Models are frequently
used to define the reusable assets and the restrictions regarding
asset composition in different products. However, product line
engineering is challenged by evolution. Reusable assets such as
software components need to be adapted to meet new customer or
market requirements as well as technological needs. In this paper
we present an approach that supports the maintenance of product
line models by checking their consistency with the available
components. We describe algorithms and heuristics for creating
and updating the models defining a product line’s features and
components. We evaluate our approach using realistic change
scenarios from a product line of time recorder applications.

Index Terms—Components, product lines, model-based devel-
opment, evolution.

I. INTRODUCTION

Software product line engineering (SPLE) leverages sys-
tematic reuse to improve quality and development produc-
tivity and to decrease time-to-market and costs in software
development [1, 2]. In domain engineering, reusable assets
such as requirements, components, or test cases are developed.
The commonalities and variability of these assets are typically
defined in variability models [3]. In application engineering,
products for a particular customer or market are then derived
by exploiting the variability.

SPLE is a process involving diverse roles such as sales
people, customers, product managers, architects, developers,
or testers. The involvement of these different roles means that
two views on the variability of software systems are commonly
distinguished [4]: the external view addresses variability as
visible to customers and the market, i.e., the features available
in different products of the product line; the internal view covers
the solution components, their dependencies, and the actual
implementation of the variability. Numerous approaches are
available in product line engineering and component-based soft-
ware development to realize these two views. Examples include
variability modeling [3], architecture description languages [5],
or component technologies [6].

Most product lines are developed and used for many years
and managing their evolution is thus critical for success [7].
For instance, developers modify the solution space by adding,
changing, or deleting reusable assets to realize new features
required by customers. Similarly, product managers adapt the
problem space by defining new features and their variability.

Product line models thus have to be maintained frequently to
reflect these changes and to ensure their consistency with the
underlying assets. This is a challenging, costly, and error-prone
process [8, 9]. Despite some progress it remains particularly
challenging to understand the impacts of technical changes to
product line models.

We present an approach that aims at reducing the mainte-
nance effort of product line models. Our approach distinguishes
three different views in product line models representing the
perspectives of developers, product managers, and customers
(cf. Figure 1). The development view describes the reusable el-
ements and their dependencies (e.g., restrictions defining com-
ponent composition). The product management view defines
the features of the product line. The customer view defines
the configuration options made available to customers selecting
between different product line members.

We claim two contributions supporting the evolution of
component-based product lines: i) We present an automated
approach to generate and update the development view and to
check the consistency between the development view and the
product management and customer views. ii) We propose a set
of algorithms and heuristics to support the maintenance of the
product management and customer views on the product line
model.

We use the DOPLER product line approach [10] and the Plux
component infrastructure [11] to implement our approach. In
in earlier paper [12] we described how the DOPLER tool suite
can be integrated with the Plux infrastructure. However, we did
not address evolution. In this paper we present an approach to
facilitate model maintenance during the evolution of the product
line.

The remainder of the paper is structured as follows: Section II
presents our approach and summarizes DOPLER [10] and Plux
[11]. Using an illustrative example we explain the structure of
the product line models in Section III and discuss the imple-
mentation of algorithms and heuristics for model analysis in
Section IV. Section V uses a realistic development scenario to
show how the maintainenance of product line models can be
supported with our approach. In Section VI we compare our
approach to existing literature. We round out the paper with a
summary and an outlook on future work.



Figure 1. Supporting the maintenance of a product line model comprising
a development, product management, and customer view.

II. APPROACH

Figure 1 gives an overview of our approach. The product
line model provides three different views taking into account
the perspectives of the developer, the product manager, and the
customer.

The developer uses an IDE to develop and maintain the
repository of software components with metadata describing
interfaces and contracts. Our approach uses model extraction
to reflect the changes to the component repository in the devel-
opment view of the model defining the reusable elements and
their composition constraints.

The product manager uses a modeling tool to maintain the
product management view, i.e., the available features, their vari-
ability, and dependencies. Our approach supports the product
manager with algorithms and heuristics suggesting changes to
the view depending on the changes made by the developers.

The customer uses an end-user configuration tool to derive a
product from the product line by selecting the features matching
his requirements. The configuration choices presented to the
customer depend on the available features and their variability.

The typical change scenario shown in Figure 1 is as follows:
(1) The product manager plans and defines a new product fea-
ture. (2) The developer implements the feature using the IDE.
Typical activities involve adding new components, splitting and
refactoring components, or refactoring component interfaces.
(3) The tool automatically updates the product line model to
minimize manual model maintenance. It identifies potential
inconsistencies and suggests updates to the modeler. (4) The
end user derives a product based on the new product line model
by making configuration decisions to select features. Selecting
features leads to the automatic selection of the components
realizing these features for the product.

A. DOPLER Product Line Model

The product line model is developed and maintained us-
ing the tool-supported approach DOPLER (Decision-Oriented
Product Line Engineering for effective Reuse) [10]. DOPLER
is flexible and extensible and can be tailored to different organi-
zations’ needs [10].

The customer configuration choices are based on decision
models [3] defining the available configuration options. De-
cisions distinguish the different members of a product line
and allow presenting variability during product derivation. Im-
portant attributes of decisions in DOPLER are a unique id,
a question that is asked to a user during product derivation,
and a decision type to define the possible answers (boolean,
enumeration, string, or number). Another important attribute of
decisions is a default value suggesting a predefined answer to
the user. Decisions can depend on other decisions hierarchically
(if they need to be made before other decisions) or logically (if
they affect other decisions).

The reusable components and composition constraints are
defined in DOPLER using assets models. Assets represent the
software components in the solution space and can depend on
each other functionally or structurally. Inclusion conditions link
assets to decisions and define which assets are present in a
derived product depending on the values of decisions. Asset
attributes can also depend on answers to decisions to enable
component parameterization.

The product features and their dependencies are also defined
using assets. A feature can be seen as a unit of functionality
that is based on several components. Relationships from feature
assets to component assets and from features to decisions allow
selecting and parameterizing components based on the users’
configuration choices.

B. Plux Developer IDE and Component Repository

The developer uses the Plux composition infrastructure
[11, 13, 14]. Applications developed with Plux comprise fine-
grained components which are connected by the composition
infrastructure using a plug-and-play approach. Users can adapt
the application dynamically to align it with the working sit-
uation at hand by swapping sets of components at runtime.
With plug-and-play composition, this can be done without
configuration or programming effort [11]. Plux differs from
other plug-in systems [15] such as OSGi (http://www.osgi.org)
or Eclipse (http://www.eclipse.org) by providing a built-in com-
poser which maintains a global composition state, using an
event-based programming model, and an exchangeable plug-
in discovery mechanism. The composer replaces programmatic
composition with automatic composition. Programmatic com-
position, as for example in Eclipse, means that the host com-
ponent has to query a component registry and must create and
integrate its contributors itself. Automatic composition, as in
Plux, means that the components just declare their requirements
and provisions using metadata. The composer then uses these
metadata to match requirements and provisions and connects
matching components. At any time, Plux maintains a global
composition state, i.e., it stores which host components use



which contributor components. Host components retrieve their
contributors from the composition state. Optionally, compo-
nents can react to events sent by the composer, e.g., if configura-
tion changes should be shown in the user interface immediately.
Component discovery is the process of detecting components
and extracting their metadata. The discovery mechanism is a
plug-in itself, which makes it replaceable.

Our model extraction approach automatically creates the
development view (i.e., a DOPLER asset model) based on Plux
metadata as we will describe in Section III.

C. DOPLER Product Feature Definition Tool

The product manager uses DOPLER’s variability model
editor [10] to define and maintain the end-user features and
their dependencies to the Plux components realizing them. The
variability model editor allows creating and defining product
line assets, their attributes, and relationships for all asset types
defined in a domain-specific meta-model (cf. Figure 3). The
variability of the features is defined using decisions including
questions explaining the configuration choices to end users.

Our approach uses heuristics to suggest new features by ana-
lyzing the changes made by developers to the Plux component
repository as we will show in Section IV.

D. DOPLER End-User Configuration Tool

The customer derives a product using an end-user configu-
ration tool: DOPLER’s ConfigurationWizard [16, 17] provides
capabilities for product customization based on DOPLER vari-
ability models. The output of ConfigurationWizard is a product
derived from the product line. End users can make configuration
choices by answering questions. The tool then triggers genera-
tors to compose the desired product automatically based on the
information in the underlying model.

In this paper we focus on the algorithms and heuristics to
support model maintenance and not on the end-user view on
variability as provided by the ConfigurationWizard. We refer
the reader to [16, 17] for details on product derivation and
configuration with DOPLER.

III. PRODUCT LINE MODEL

We describe the key concepts of Plux and present the meta-
model we defined in DOPLER to support the three views of
developers, product managers, and customers. We show how
our approach supports extracting a product line model from the
Plux repository. As a running example, we use a time recorder
system for recording working hours. Details about this system
and its maintenance are discussed in Section V.

A. Model Elements

Plux uses the metaphor of extensions, slots and plugs (cf.
Figure 2). An extension is a component that provides services to
other extensions and uses services provided by other extensions.
If an extension wants to use a service of some other extension
it declares a slot. Such an extension is called a host. If an
extension wants to provide a service to other extensions it
declares a plug. Such an extension is called a contributor.
Several related extensions can be packaged as a plug-in, which

is a dynamic link library (dll) file that can be deployed and
loaded separately. Plug-ins can have dependencies to other dll
files without extensions. Such dll files are called libraries.

Extension
SlotPlug

Host Contributors

uses

provides
Extension

Plug
Extension

Plug

Figure 2. Plux metadata for extensions with slots and plugs.

Slots and plugs are identified by their names. A plug matches
a slot if their names match. If so, the plug can be connected
to the slot. A slot represents an interface, which has to be
implemented by a matching plug. The interface is specified in a
slot definition with a unique name as well as optional parameters
that are provided by the contributors and retrieved by the hosts.
The names of slots and plugs refer to their respective slot
definitions. Several related slot definitions can be packaged as a
contract, which is a dll file.

Based on the DOPLER meta-meta-model [10] we have devel-
oped a domain-specific meta-model for Plux-based systems (cf.
Figure 3). The meta-model defines different asset types needed
for Plux-based systems together with attributes and possible
dependencies. We explain these asset types and dependencies
using the time recorder example for illustration.

Feature. A Plux feature defines a set of functionalities visible
to users. It requires one or more plug-ins to implement these
functionalities (cf. dependency Feature requires Plugin). For
example, there might be a mandatory Base feature referring to
all plug-ins that constitute the basic product that can be derived
from the product line. The MobileSync feature on the other hand
is optional and refers to a plug-in with mobile synchronization
capabilities.

Plug-in. A Plux plug-in packages several related extensions.
It is developed based on existing libraries. For instance, basic
presentation capabilities are provided by the Plux.Presentation
library (cf. dependency Plugin requires Library). A plug-in also
adheres to a certain contract. For example, a basic definition of
how presentation in a GUI can be implemented is defined by
the Plux.Presentation contract (cf. dependency Plugin requires
Contract). Plug-ins consist of extensions meaning that the basic
functionality of the system is extended in pre-defined ways (cf.
dependency Plugin has Extension). For example, the TimeRe-
corder plug-in has a Statistics extension for adding arbitrary
statistics capabilities.

Library. Libraries in Plux capture basic capabilities that
can be used by multiple plug-ins. An example is a library
for developing GUIs. Libraries can require other libraries (cf.
dependency Library requires Library) and can require contracts
(cf. dependency Library requires Contract) defining how basic
capabilities can be implemented.

Contract. The names of slots and plugs refer to their respec-
tive slot definitions. Several related slot definitions are packaged
as a contract (cf. dependency Contract defines Slot).

Extension. An extension is a component (i.e., a class) that



DecisionAsset
includes

depends on
(functional/structural)

depends on
(hierarchical/logical)

Feature Plug-in
requires

Extension
has

Slot
has

Contract
defines

fulfills
Library

requires

requiresrequires requires

Base

Plux.Layout
Manager

TimeRecorder

Layout
Manager

Recorder

Statistics

Plux.Layout
Control

Plux.Presentation
Control

TimeRecorder
.Recorder

TimeRecorder
.DataProvider

TimeRecorder
.Statistics

Plux.Presentation
.Contract

Plux.Layout
.Contract

TimeRecorder
.Contract

Plux.Presentation
.Library

TimeRecorder
.Library

fulfills

has

fulfills

has

defines

has

has

has fulfills

has defines

defines

defines
defines

re
qu

ire
s

requires

requires

re
qu

ire
s

re
qu

ire
s

requires

requires

re
qu

ire
s

re
qu

ire
s

requires

Plux
Meta-Model

DOPLER
Meta-Meta-Model

Time Recorder
Model

MobileSync
TimeRecorder
.SyncMobile

requires has

Figure 3. DOPLER meta-meta-model, Plux meta-model, and (partial) time recorder asset model.

provides services to other extensions and uses services provided
by other extensions. If an extension wants to use a service of
some other extension it declares a slot. An extension can thus
fulfill (cf. dependency Extension fulfills Slot) and have a slot
(cf. dependency Extension has Slot). These two relationships
represent the metaphor of extensions, slots and plugs: if an
extension fulfills a slot, it has a plug fitting into this slot; if
an extension has a slot, extensions with a fitting plug can be
connected.

Slot. A slot represents an interface, which has to be imple-
mented by every extension that has a matching plug.

Modeling a Plux-based system based on this meta-model thus
allows linking the technical views of developers with the views
of product managers and customers. Implementation details of a
system implemented using Plux are not needed in the DOPLER
product line model. If customers select a feature the model
allows determining the plug-ins, libraries, contracts, extensions,
and slots required for a derived product without further interven-
tion. This is sufficent for the Plux composition infrastructure to
deploy a product. For instance, two decisions might exist for
the time recorder example shown in Figure 3: ”Do you want to
buy a time recorder?” and ”Do you need to sync with mobile
devices?”. Answering the first decision would select the Base
feature while answering the second decision would select the
MobileSync feature. The model also allows automated checks
supporting Plux developers as we will describe next.

B. Model Extraction and Tool Integration

In Plux, system capabilities are implemented by extensions.
Extensions, as well as their slots and plugs, are described by
their metadata. If a program evolves, the metadata of the exten-
sions likely change. Integrating Plux and DOPLER thus relies
on exporting these metadata changes from Plux and importing
them into DOPLER.

We thus developed a tool that exports the content of the Plux
metadata into an XML file containing the information required
by DOPLER, i.e., the plug-ins, libraries, contracts, extensions,
slots and their dependencies. When the Plux repository changes,
the variability model is updated by re-importing the new version
of the XML file. New elements and dependencies are automat-
ically included; renamed and deleted elements are marked for
manual resolution.

The way for providing metadata in Plux is customizable.
The default mechanism extracts metadata from .Net attributes
in Plux plug-in and contract files [18]. Plux has the following
attributes: The SlotDefinition attribute to tag an interface as a
slot definition, the Extension attribute to tag a class that imple-
ments an extension, the Slot attribute to declare requirements
in hosts, the Plug attribute to declare provisions in contributors,
the ParamDefinition attribute to declare required parameters in
slot definitions, and the Param attribute to specify provided
parameter values in contributors.

For instance, the frontend of the time recorder works with
time stamps that hold begin and end times as well as task
descriptions. The data source for time stamps is implemented



as a contributor that plugs into the frontend. Listing 1 shows the
definition of the DataSource slot, the contributor Store (which
acts as a data source and therefore has a DataSource plug), and
the Frontend host (which has a DataSource slot and also an
Application plug that fits into the Application slot of the Plux
core).

Listing 1. Plux metadata of the simplified time recorder.
[SlotDefinition("DataSource")]
interface IDataSource { ... }

[Extension]
[Plug("DataSource")]
class Store : IDataSource { ... }

[Extension]
[Plug("Application")]
[Slot("DataSource")]
class Frontend : IApplication { ... }

To complete the example, we compile the slot definition to
a contract dll file, and the classes Frontend and Store to plug-
in dll files. From these files, Plux composes the application
as shown in Figure 4. In doing so, Plux discovers extensions
from the plug-ins and composes the program from them by
connecting matching slots and plugs. The plug-ins and contracts
are typically stored in a directory of the file system.

StoreFrontendAp Ds

Core Di
Ap Ds

Ap .. Application Di .. Discovery Ds .. DataSource

Figure 4. Schematic composition state of the time recorder.

Figure 5 explains the subsystems of Plux and how they
interact. The discoverer ensures that at any time the type store
contains the metadata of extensions and slot definitions from
the plug-in directory. When the discoverer detects an addition, it
extracts the metadata from the dll file and adds them to the type
store. The type store maintains the type metadata of slot defi-
nitions and extensions which are available for composition and
notifies the composer about changes. The composer assembles
a program by matching requirements and provisions as declared
in the metadata and stores the composition state in the instance
store.

Plux Runtime

Type
Storexml

Discoverer
Composer Instance

Store

c

e

b

df

a Adds and removes contracts
and plug-ins

b Notifies on changes
Queries for matching slotsc

a

f Exports type metadata

d Queries for matching plugs
e Stores instance metadata

and relationships

Figure 5. Architecture of the Plux composition infrastructure with type
metadata export support.

IV. MODEL ANALYSIS: DETECTING INCONSISTENCIES
AND CREATING SUGGESTIONS

We developed several algorithms and heuristics to support
model maintenance by detecting inconsistencies and suggesting
model updates after changes to the Plux repository or the
variability model.

A. Inconsistencies

Five different types of problems can be found by analyzing
product line models after changes:

A dead asset (DA) will never be included in a derived prod-
uct. This can happen if it is neither related to a decision nor to
any other non-dead asset which would require its inclusion. The
algorithm thus checks for each feature, plug-in, slot, extension,
contract, and library whether it is related to a decision or
whether at least one related non-dead asset exists. For each
identified dead asset a warning is shown.

An unused extension (UE) does neither provide nor fulfill
a slot and is hence not connected to the overall system. The
algorithm checks for each asset of type extension whether it has
at least one ’has’ or ’fulfills’ relationship. For each identified
unused extension the algorithm produces a warning for the
modeler to consider removing it.

An unused slot (US) is not used by any extension and is
hence not used by the system. It might be existing on purpose
for future extensions, but might as well be useless. As shown
in Listing 2, for each asset of type slot, the algorithm visits
all assets of type extension that have a relation to this slot. If
none are found, the slot is potentially useless and the algorithm
produces a warning to consider removing the slot.

Listing 2. Algorithm for detecting unused slots in the product line.
// (US) unused slot algorithm
// Detects slots that are not used by any extension
if (asset.isOfType(Slot))
for (Asset a : asset.requiringAssets)
if (a.isOfType(Extension)) return

print("Slot " + asset + " is not used by any"
+ " Extension; consider removing")

Feature updates (FU) are necessary to preserve consistency
between the problem space and the solution space. When plug-
ins are renamed in the system and the variability model is
updated, the original plug-ins are kept in the model and marked
as candidate removes. This is done because system developers
might rename an existing plug-in and then create a new plug-
in with the original name of the just renamed plug-in. Manual
intervention is required in such cases. When a feature is related
to a plug-in that is a candidate remove, the modeler has to relate
the feature to another existing plug-in.

Features without plug-in (FWOP) are the result of removing
plug-ins from the system without considering the features they
realize. The FWOP algorithm checks for each feature whether
it requires at least one plug-in. If not, the algorithm produces a
warning.

B. Suggestions

We provide a heuristic to suggest features to the product
manager based on the similarity of plug-ins (cf. Listing 3) to



further support model maintenance. If two plug-ins have similar
characteristics and one of them is required by a feature and the
other is not, the algorithm suggests to either add the similar
plug-in to the existing feature or to create a new feature for it.
The algorithm compares each plug-in p1 with all other plug-ins
p2. p2 is considered as potentially similar with p1 if: (i) it has at
least the same number of extensions as p1 and (ii) the number
of slots fulfilled by the extensions of p2 is equal or greater than
the number of slots fulfilled by the extensions of p1. Depending
on THRESHOLD p1 and p2 are regarded as similar.

Listing 3. Heuristic for computing the similarity of plug-ins and for
suggesting feature candidates.

void printFeatureCandidates(List<Plugin> allPlugins)
Map<Plugin, List<Plugin>> candidates =

getSimilarPlugins(allPlugins)
for (Plugin p1 : candidates.keySet())
for (Plugin p2 : candidates.get(p1))
if (!p2.isRequiredByAFeature())
if (computeSimilarity(p1, p2) > THRESHOLD)
print("Plugin " + p2 + " is similar to plugin "

+ p1 + " but not required by any feature."
+ " Consider adding it to a feature (e.g., "
+ getFeatureThatRequiresPlugin(p1)
+ ") or creating a new feature.")

Map<Plugin, List<Plugin>> getSimilarPlugins(
List<Plugin> allPlugins)

Map<Plugin, List<Plugin>> candidates = new ...
for (Plugin p1 : allPlugins)
for (Plugin p2 : allPlugins)

if (p1 != p2
&& p2.extensions.size >= p1.extensions.size
&& countSlots(p2) >= countSlots(p1))

candidates.get(p1).add(p2)
return candidates

int countSlots(Plugin p)
int count = 0;
for (Extension e : p.extensions)
count += e.slots.size

return count

float computeSimilarity(Plugin p1, Plugin p2)
int equalSlots = 0, totalSlots = 0
for (Extension e1 : p1.extensions)
for (Extension e2 : p2.extensions)
for (Slot s1 : e1.slots)
for (Slot s2 : e2.slots)
if (s1.name == s2.name) equalSlots++;
totalSlots++;

return equalSlots / totalSlots

V. EVALUATION

We use the time recorder system as the example for our
evaluation. The time recorder provides features for recording
and evaluating working hours. Users can log the start time,
the end time, the related project, and a work description. The
system provides a desktop frontend, a mobile application, or a
dedicated hardware recorder. Furthermore, users can extend the
time recorder with statistics extensions to analyze the recorded
data. The system has been implemented using Plux as a set of
extensions. The user interface is separated from the business
logic, and the data are stored in a common generic data model.

To evaluate our approach, we performed the evolution of
the time recorder system in 12 evolution scenarios. Our main
research goal was to find out how well our approach supports
developers in these basic evolution scenarios and how it helps
to reduce model maintenance.

We started with the initial development of the time recorder
system and in each scenario we added, removed, and refactored
plug-ins, extension, slots, libraries, and contracts. The evolution
scenarios reflect the evolution of the time recorder system as it
has really been performed over time. However, evolution was
simulated for the purpose of this evaluation.

A. Evaluation Steps

In our evaluation we performed the following research steps:
Developing and maintaining the system. We developed and

evolved the time recorder system according to the 12 evolution
scenarios.

Generating DOPLER model from Plux type store. We used
our tool to automatically create a DOPLER model from the Plux
type store via the XML export/import. Initially a new model
was created. In all subsequent evolution scenarios the DOPLER
model was updated after the changes.

Resolving warnings and implementing suggestions. After
each evolution scenario, for the created DOPLER model, our
tool detected inconsistencies and/or suggested creating features.
We analyzed these suggestions and, where relevant, manually
made model changes and created features accordingly.

Defining feature variability. Features are included in DO-
PLER based on making decisions. Whenever a new feature
was added to a DOPLER model we added decisions to allow
selecting the feature in product derivation.

Determining the success of the approach. Based on the results
of every evolution scenario, we analyzed how well our approach
supported model maintenance.

B. Evolution Scenarios

For each evolution scenario we describe the changes in the
Plux component repository as well as the warnings and sugges-
tions provided by our tool (for a summary of the results see
Table I). For the similar evolution scenarios 1-6, we aggregated
the description and results. Figure 6 shows our tool support
reporting warnings and heuristics suggestions for scenario 7.

Change Scenario 0 – Initial development. The initial devel-
opment led to five plug-ins, six libraries, three contracts, ten
extensions, and eight slots, which were the input for creating
the initial DOPLER model. The tool provided several dead
asset warnings as expected, because the new assets were not
yet included by any decisions, which still had to be defined.

Change Scenario 1-6 – Growing phase: New plug-ins and
extensions, reuse of existing slots. Over these initial six evolu-
tion scenarios, six new plug-ins were developed including one
extension each to provide a graphical viewer, a project recorder,
a stamp note editor, a backup tool, a hardware time recorder,
and support for synchronization with mobile phones. During
this phase again several dead asset warnings were created for
the new plug-ins. In addition, our heuristics provided several
suggestions. For instance, the extension of the project recorder
plug-in has and fulfills partly the same slots as the graphical
viewer. Thus our heuristic suggested to either add the project
recorder to the same feature as the graphical viewer or to create
a new feature with the project recorder.



Figure 6. Warnings and feature suggestions for evolution scenario 7 in the DOPLER modeling tool.

Change Scenario 7 – New contracts, new slots, new/deleted
extensions, new/deleted plug-ins. Scenario 7 involved major
refactorings, i.e., a new contract (+1), new slots (+4), new
extensions (+5), and a new plug-in (+1) were defined but also
existing plug-ins (-2) and extensions (-4) were deleted. Our
tool detected all renames (marking the original elements as
candidates for removal and correctly recognizing the ’new’
names) as expected. It also displayed dead asset warnings for
all new elements, feature update warnings for renamed features,
and feature without plug-ins warnings for removed plug-ins. In
total four suggestions were provided as shown in Table I and
Figure 6.

Change Scenario 8 – More generic notes plug-in instead
of stamp note editor; project recorder plug-in split. In this
scenario the main idea was to abstract from the rather spe-
cific stamp note editor and implement a more generic notes
solution. Furthermore, the project recorder plug-in was split
into a recorder control and the actual recorder. This led to one
added plug-in and one removed plug-in; one added contract;
two added extensions; one removed extension; and one added
slot. The tool showed the expected dead asset warnings for
the new plug-in and a feature without plug-in warning for the
StampNoteSupport feature (as the stamp note editor plug-in was
removed).

Change Scenario 9 – SyncMobile now using other slots/ex-
tensions (no new elements, just refactoring). In this scenario
the support for mobile synchronization was refactored to use
other slots and extensions. In the course of these refactorings,

one plug-in and one extension were renamed. No warnings or
suggestions were detected as only dependencies were adapted
and no elements were introduced or renamed.

Change Scenario 10 – Hardware recorder refactoring. This
scenario involved renaming the string ’Hw’ in a plug-in and
in an extension to ’Hardware’. Also, the slot of the extension
was changed from model to recorder (an already existing slot).
The tool showed the expected warning indicating the unused
slot, as the extension was the only one using the model slot. It
also showed a dead asset warning for the renamed plug-in and a
feature without plug-in warning.

Change Scenario 11 – New plug-in and extension for payroll
integration; reuse of existing slots. In this scenario the unused
model slot was removed and a new plug-in PayrollIntegration
was added together with the extension PayrollIntegration which
has the slot DataProvider and fulfills the (existing) slot Control.
The approach reported a dead asset warning for the new plug-in
as well as two suggestions for features to add the new plug-in
to.

Change Scenario 12 – Discoverer extracted from existing
plug-in; new plug-in FilesystemDetector including slot and
extension. This scenario involved adding two new plug-ins,
one contract, two extensions, and two slots. The tool showed
expected dead asset warnings for the two new plug-ins and the
new contract.

C. Results
Table I summarizes for each scenario the warnings found

after creating the variability model (using our checks) and the



TABLE I
EVALUATION RESULTS (WARNINGS, SUGGESTIONS, MANUAL ACTIONS, AND REMAINING PROBLEMS) FOR THE EVOLUTION SCENARIOS 0-12.

Sce-
nario

Warnings Suggestions Manual Actions Remaining Problems

0 14 DA Warnings (without features, no assets will be included) no features -> no suggestion defined a Base Feature for all new
plug-ins

none

1 1 DA Warning for Plug-in GraphView no suggestion defined Feature GraphView none

2 1 DA Warning for Plug-in ProjectRecorder 1 suggestion (similar to
Plug-in GraphView)

defined Feature ProjectRecorder none

3 1 DA Warning for Plug-in StampNoteEditor 2 suggestions (similar to
Plug-ins GraphView and
ProjectRecorder)

defined Feature StampNoteSupport none

4 1 DA Warning for Plug-in BackupTool 3 suggestions (similar to
Plug-ins GraphView,
ProjectRecorder and
StampNoteEditor)

defined feature BackupSupport none

5 1 DA Warning for Plug-in HwTimeRecorder 4 suggestions (similar to
Plug-ins GraphView,
ProjectRecorder,
StampNoteEditor and
BackupTool)

defined Feature HardwareRecorder none

6 1 DA Warning for Plug-in SyncMobile 5 suggestions (similar to
Plug-ins GraphView,
ProjectRecorder,
StampNoteEditor,
BackupTool and
HwTimeRecorder)

defined Feature
MobileSynchronization

none

7 1 DA Warning for Plug-in LayoutManager; 2 FWOP
Warnings: ’Features BackupSupport and GraphView have at
least one requires relation to a candidate remove Plug-in’

4 suggestions (similar to
Plug-ins HwTimeRecorder,
ProjectRecorder,
StampNoteEditor, and
SyncMobile)

removed Features BackupSupport
and GraphView; added new
Plug-in LayoutManager to the
Base feature; removed candidate
removes

none

8 1 DA Warning for Plug-in StampNoteSupport; 1 FWOP
Warning: ’Feature StampNoteSupport has at least one requires
relation to a candidate remove plug-in’

no suggestions renamed Feature
StampNoteSupport to
NotesSupport and added renamed
Plug-in Notes; removed candidate
removes

none

9 none no suggestions none none

10 1 DA Warning for Plug-in HardwareRecorder; 1 FWOP
Warning: ’Feature HardwareRecorder has at least one requires
relation to a candidate remove plug-in’; 1 US Warning: ’Slot
Model is not used by any Extension and might thus be
unused’

no suggestions added renamed HardwareRecorder
Plug-in to Feature
HardwareRecorder; removed
candidate removes

none

11 1 DA Warning for Plug-in PayrollIntegration 2 suggestions (similar to
Plug-ins LayoutManager and
HardwareRecorder)

added a new Feature
PayrollIntegration with the new
plug-in

suggestion to add plug-in
PayrollIntegration to
HardwareRecorder Feature
does not make sense
semantically

12 3 DA Warnings for Contract Discoverer, Plug-in
FileSystemDetector, and Plug-in Discoverer

no suggestions added Discoverer Plug-in to
Feature Base and defined new
Feature
DynamicPluginUpdateSupport
with new Plug-in
FileSystemDetector

approach did not recognize
that in this scenario an
existing plug-in was split

suggestions made by the heuristics, the necessary (manual)
actions to fix the warnings, and the remaining problems which
could not be automatically solved and were not identified via a
warning.

For scenarios 0-6, 8, 9, and 10 the results exactly matched our
expectations. For scenario 7 results matched or even exceeded
our expectations: everything was updated correctly and only one
dead asset warning and two FWOP warnings remained. Four
useful suggestions were made by our heuristics which greatly
helped with manual model maintenance. For scenario 11, the
results also were better than expected: two suggestions were

made by our heuristic. However, the suggestion to add plug-
in PayrollIntegration to the HardwareRecorder feature does
semantically not make sense – an unresolved issue we have to
address in future work. For scenario 12, except for the expected
dead asset warnings, the heuristic did not recognize the fact that
one plug-in was split into two plug-ins. This issue will also be
resolved in future work.

VI. RELATED WORK

Our work is related with research on the co-evolution of mod-
els and product lines as well as work on consistency checking.



The idea to provide different views on the product line model is
based on existing research on perspectives and viewpoints.

Co-evolution of models and product lines. Managing evolu-
tion is success-critical in model-based product line approaches
to ensure consistency after changes to meta-models, models,
and development artifacts. Similar to existing work on product
line evolution [19–21] our approach aims to avoid product line
erosion and deviation from the product line model. Deng et
al. [22] describe a model-driven product line approach that
explicitly focuses on the issue of domain evolution and product
line architectures. Mende et al. [23] present tool support for
the evolution of software product lines based on identifying
code that might be moved from products to the product line
level. Dhungana et al. [24] describe an approach supporting the
definition of model fragments to simplify the evolution of large-
scale systems. This work nicely complements the presented
approach regarding scalability to very large systems. Similar
to Murta et al. [8] we try to ensure consistency of architecture
models to implementation focusing on evolution. However, our
approach also addresses variability and problem space artifacts.

Consistency checking. Numerous approaches have been de-
veloped to identify inconsistencies between arbitrary artifacts
in software development. Nentwich et al. [25] present a con-
sistency checking approach for arbitrary distributed software
engineering documents encoded in XML. Egyed [26] presents
an incremental approach for evaluating consistency rules after
changes to arbitrary models. Blanc et al. [27] focus on struc-
tural inconsistencies between different models in large-scale
industrial software systems. Similar to Egyed et al. they use
an event-driven approach which enables incremental evaluation
of constraints. Consistency checking is also receiving a lot of
attention in product line engineering research. For example,
Czarnecki and Pietroszek [28] present a feature-based approach
based on model templates that uses constraints defined in OCL.
Our approach currently does not use a generic approach to
consistency checking. However, we presented algorithms which
can easily be used in such frameworks as we have shown in [9].

Perspectives and Views. Models are powerful as they allow
separating concerns in software development. However, the size
and complexity of models requires mechanisms to create and
work with views. Creating views and perspectives is not a new
idea and has been proposed almost 20 years ago [29, 30]. Our
approach aims to provide views for three key stakeholder groups
in product line engineering. Developers, product managers and
customers need different representations when working on a
software product line. We use a product line model to integrate
these views while allowing each group to use the most appro-
priate enviroment.

VII. SUMMARY AND CONCLUSIONS

In this paper we presented a tool-supported approach to
support maintaining models of component-based product lines.
The approach automatically updates the development view in
product line models and checks the consistency between the
development, product management, and customer views. It
further supports model maintenance by suggesting changes to

product managers. Our approach is extensible and new checks
and heuristics can easily be added. Using evolution scenarios
from a time recorder product line we have demonstrated the
usefulness of the approach for model maintenance.

In future work we plan to improve our heuristics for feature
suggestions by taking into account semantics. This will allow
us, e.g., to detect if adding a certain software-related plug-in to
a hardware-related feature does not make sense. We also plan
to improve the detection of common evolution patterns with the
heuristic, e.g., to recognize that a plug-in has been split and that
related features need to be split accordingly. Both improvements
will require to take historical data on evolution into account. We
also plan to identify further possible warnings and suggestions
and develop new algorithms and heuristics to support these.
This will require investigating other systems to generalize from
the concepts used in Plux.

ACKNOWLEDGMENT

This work has been supported by the Christian Doppler For-
schungsgesellschaft, Austria, Siemens VAI Metals Technolo-
gies GmbH, and BMD Systemhaus GmbH.

REFERENCES

[1] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. SEI Series in Software Engineer-
ing, Addison-Wesley, 2001.

[2] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles, and
Techniques. Springer, 2005.

[3] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and
A. Wasowski. Cool features and tough decisions: A
comparison of variability modeling approaches. In 6th
Int’l WS on Variability Modeling of Software-Intensive
Systems, pp. 173–182. ACM, 2012.

[4] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, and
G. Saval. Disambiguating the documentation of variabil-
ity in software product lines: A separation of concerns,
formalization and automated analysis. In 15th IEEE Int’l
Requirements Engineering Conf., pp. 243–253. 2007.

[5] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture descrip-
tion languages. IEEE Trans. Software Eng., 26(1):70–93,
2000.

[6] R. Johnson, J. Höller, and A. Arendsen. Professional
Java Development with the Spring Framework. Wiley
Publishing, 2005.

[7] M. Svahnberg and J. Bosch. Evolution in software product
lines: two cases. J. of Software Maintenance: Research
and Practice, 11(6):391–422, 1999.

[8] L. G. P. Murta, A. van der Hoek, and C. M. L. Werner.
ArchTrace: Policy-based support for managing evolving
architecture-to-implementation traceability links. In Int’l
Conf. on Automated Software Engineering, pp. 135–144.
IEEE, 2006.

[9] M. Vierhauser, P. Grünbacher, A. Egyed, R. Rabiser, and
W. Heider. Flexible and scalable consistency checking



on product line variability models. In 25th Int’l Conf. on
Automated Software Engineering, pp. 63–72. ACM, 2010.

[10] D. Dhungana, P. Grünbacher, and R. Rabiser. The dopler
meta-tool for decision-oriented variability modeling: A
multiple case study. Automated Software Engineering,
18(1):77–114, 2011.

[11] R. Wolfinger. Dynamic Application Composition with
Plux.NET: Composition Model, Composition Infrastruc-
ture. Ph.D. thesis, Johannes Kepler University, Linz,
Austria, 2010.

[12] R. Wolfinger, S. Reiter, D. Dhungana, P. Grünbacher,
and H. Prähofer. Supporting runtime system adaptation
through product line engineering and plug-in techniques.
In Proceedings 7th Int’l Conference on Composition-
Based Software Systems, ICCBSS 2008), February 25-29,
Madrid, Spain, pp. 21–30. IEEE Computer Society, 2008.

[13] R. Wolfinger, M. Löberbauer, M. Jahn, and H. Mössen-
böck. Adding genericity to a plug-in framework. In
Int’l Conf. on Generative Programming and Component
Engineering, pp. 93–102. 2010.

[14] M. Jahn, M. Löberbauer, R. Wolfinger, and H. Mössen-
böck. Rule-based composition behaviors in dynamic plug-
in systems. In 17th Asia Pacific Software Engineering
Conf., pp. 80–89. 2010.

[15] D. Birsan. On plug-ins and extensible architectures.
Queue, 3(2):40–46, Mar. 2005.

[16] R. Rabiser. Flexible and user-centered visualization sup-
port for product derivation. In 2nd Int’l WS on Visualisa-
tion in Software Product Line Engineering, pp. 323–328.
Lero TR, 2008.

[17] P. Grünbacher, R. Rabiser, D. Dhungana, and M. Lehofer.
Model-based customization and deployment of Eclipse-
based tools: Industrial experiences. In Int’l Conf. on Auto-
mated Software Engineering, pp. 247–256. ACM, 2009.

[18] ECMA. Int’l Standard ECMA-335, Common Language
Infrastructure (CLI). 2006.

[19] S. Deelstra, M. Sinnema, and J. Bosch. Variability as-
sessment in software product families. Information and
Software Technology, 51(1):195–218, 2009.

[20] S. Johnson and J. Bosch. Quantifying software product

line ageing. In WS on Software Product Lines: Economics,
Architectures, and Implications, pp. 27–32. 2000.

[21] H. Siy and D. Perry. Challenges in evolving a large scale
software product. In WS on the Principles of Software
Evolution), pp. 29–32. 1998.

[22] G. Deng, J. Gray, D. Schmidt, Y. Lin, A. Gokhale, and
G. Lenz. Evolution in model-driven software product-
line architectures. In P. Tiako (Ed.), Designing Software-
intensive Systems, pp. 1280–1312. Idea Group Inc. (IGI),
2008.

[23] T. Mende, F. Beckwermert, R. Koschke, and G. Meier.
Supporting the grow-and-prune model in software product
lines evolution using clone detection. In 12th European
Conf. on Sw. Maintenance and Reengineering, pp. 163–
172. IEEE CS, 2008.

[24] D. Dhungana, P. Grünbacher, R. Rabiser, and T. Neu-
mayer. Structuring the modeling space and supporting
evolution in software product line engineering. J. of
Systems and Software, 83(7):1197–1122, 2010.

[25] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer.
Flexible consistency checking. ACM Transactions on
Software Engineering Methodology, 12(1):28–63, 2003.

[26] A. Egyed. Instant consistency checking for the UML. In
28th Int’l Conf. on Software Engineering, pp. 381–390.
ACM, 2006.

[27] X. Blanc, I. Mounier, A. Mougenot, and T. Mens. Detect-
ing model inconsistency through operation-based model
construction. In 30th Int’l Conf. on Software Engineering,
pp. 511–520. ACM, 2008.

[28] K. Czarnecki and K. Pietroszek. Verifying feature-
based model templates against well-formedness OCL con-
straints. In 5th Int’l Conf. on Generative Programming
and Component Engineering, pp. 211–220. ACM, 2006.

[29] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework
for expressing the relationships between multiple views in
requirements specification. IEEE TSE, 20(10):760–773,
Oct. 1994.

[30] P. Kruchten. The 4+1 view model of architecture. IEEE
Software, 12(6):42–50, 1995.


